-
Similar Content
-
By KopalniaWiedzy.pl
CERN podjął pierwsze praktyczne działania, których celem jest zbudowania następcy Wielkiego Zderzacza Hadronów (LHC). Future Circular Collider (FCC) ma mieć 91 kilometrów długości, a plany zakładają, że jego tunel będzie miał 5 metrów średnicy. Urządzenie będzie więc ponaddtrzykrotnie dłuższe od LHC. Akcelerator, który ma powstać w granicach Francji i Szwajcarii, będzie tak olbrzymi, by osiągnąć energię zderzeń sięgającą 100 TeV (teraelektronowoltów). Energia zderzeń w LHC wynosi 14 TeV.
Specjaliści z CERN przeprowadzili już analizy teoretyczne, a obecnie rozpoczynają etap działań polowych. Miejsca, w których mają przebiegać FCC zostaną teraz poddane ocenie środowiskowej, a następnie przeprowadzone zostaną szczegółowe badania sejsmiczne i geotechniczne. Trzeba w nich będzie uwzględnić również osiem naziemnych ośrodków naukowych i technicznych obsługujących olbrzymią instalację.
Po ukończeniu wspomnianych badań, a mogą one zająć kilka lat, 23 kraje członkowskie CERN podejmą ostateczną decyzję dotyczącą ewentualnej budowy FCC. Poznamy ją prawdopodobnie za 5–6 lat. W FCC mają być początkowo zderzane elektrony i pozytony, a następnie również hadrony.
Zadaniem FCC ma być m.in. znalezienie dowodu na istnienie ciemnej materii, szukanie odpowiedzi na pytanie o przyczyny przewagi ilości materii nad antymaterią czy określenie masy neutrino.
Fizycy przewidują, że możliwości badawcze Wielkiego Zderzacza Hadronów wyczerpią się około połowy lat 40. Problem z akceleratorami polega na tym, że niezależnie od tego, jak wiele danych dzięki nim zgromadzisz, natrafiasz na ciągle powtarzające się błędy. W latach 2040–2045 osiągniemy w LHC maksymalną możliwą precyzję. To będzie czas sięgnięcia po potężniejsze i jaśniejsze źródło, które lepiej pokaże nam kształt fizyki, jaką chcemy zbadać, mówi Patrick Janot z CERN.
W 2019 roku szacowano, że koszt budowy FCC przekroczy 21 miliardów euro. Inwestycja w tak kosztowne urządzenie spotkała się z krytyką licznych specjalistów, którzy argumentują, że przez to może zabraknąć funduszy na inne, bardziej praktyczne, badania z dziedziny fizyki. Jednak zwolennicy FCC bronią projektu zauważając, iż wiele teoretycznych badań przekłada się na życie codzienne. Gdy stworzono działo elektronowe, powstało ono na potrzeby akceleratorów. Nikt nie przypuszczał, że dzięki temu powstanie telewizja. A gdy tworzona była ogólna teoria względności, nikomu nie przyszło do głowy, że będzie ona wykorzystywana w systemie GPS, zauważa Janot. Wśród innych korzyści zwolennicy budowy FCC wymieniają fakt, że zachęci on do trwającej dziesięciolecia współpracy naukowej. Zresztą już obecnie z urządzeń CERN korzysta ponad 600 instytucji naukowych i uczelni z całego świata.
« powrót do artykułu -
By KopalniaWiedzy.pl
Na zakończonej przed dwoma dniami Recontres de Moriond, organizowanej od 1966 roku dorocznej konferencji, podczas której omawiane są najnowsze osiągnięcia fizyki, naukowcy CERN-u poinformowali o zaobserwowaniu jednoczesnego powstania czterech kwarków wysokich (kwarków t). To rzadkie wydarzenie zarejestrowały zespoły pracujący przy eksperymentach ATLAS i CMS, a może ono pozwolić na badanie zjawisk fizycznych wykraczających poza Model Standardowy.
Co niezwykle ważne, obserwacje dokonane zarówno przez ATLAS jak i CMS przekraczają statystyczny poziom ufności 5σ, przy którym można mówić o dokonaniu odkrycia. W przypadku ATLAS poziom ten wyniósł 6.1σ, a w przypadku CMS – 5.5σ.
Kwark wysoki to najbardziej masywna cząstka Modelu Standardowego, a to oznacza, że jest najsilniej powiązana z bozonem Higgsa. Dzięki temu kwarki t to najlepsze cząstki mogące posłużyć do badania fizyki poza Modelem Standardowym.
Najczęściej kwarki t obserwowane są w parach z odpowiadającym im antykwarkiem. Czasem powstają samodzielnie. Według Modelu Standardowego istnieje możliwość jednoczesnego powstania czterech kwarków wysokich czyli dwóch par składających się z kwarka i antykwarka. Jednak prawdopodobieństwo takiego zdarzenia jest 70 tysięcy razy mniejsze niż prawdopodobieństwo powstania pary kwark-antykwark. Zatem uchwycenie czterech kwarków t jest niezwykle trudne.
ATLAS już w roku 2020 i 2021 zarejestrował pewne sygnały sugerujące, że doszło do jednoczesnego powstania czterech kwarków t, a CMS wykrył taki sygnał w 2022 roku, jednak dotychczas poza pewnym wskazówkami, nigdy nie zdobyto pewności. Nie zarejestrowano takiego wydarzenia.
Nie dość, że to rzadkie wydarzenie, jest ono trudne do zarejestrowania. Fizycy, rozglądając się za konkretnymi cząstkami, szukają ich sygnatur, czyli produktów rozpadu. Kwark t rozpada się na bozon W i kwark niski (kwark b), a bozon W rozpada się następnie albo na naładowany lepton i neutrino, albo na parę kwark-antykwark. A to oznacza, że sygnatura wydarzenia, w ramach którego jednocześnie powstały cztery kwarki t może zawierać od 0 do 4 naładowanych leptonów i do 12 dżetów powstających w wyniku hadronizacji kwarków. Znalezienie takiej sygnatury jest więc trudne.
Na potrzeby badań naukowcy z ATLAS i CMS wykorzystali nowatorskie techniki maszynowego uczenia, dzięki którym algorytm wyłowił z olbrzymiej ilości danych te informacje, które mogły być sygnaturami powstania czterech kwarków t. Skoro się to udało, naukowcy mają nadzieję, że podczas obecnie trwającej kampanii badawczej – Run 3 – zarejestrowanych zostanie więcej tego typu zdarzeń. Run 3 potrwa, z przerwami, do końca 2025 roku. W grudniu 2025 Wielki Zderzacz Hadronów zostanie zamknięty, a przerwa potrwa aż do lutego 2029.
« powrót do artykułu -
By KopalniaWiedzy.pl
CERN poinformował, że w przyszłym roku przeprowadzi o 20% mniej eksperymentów, a w roku bieżącym akcelerator zostanie wyłączony 28 listopada, 2 tygodnie wcześniej, niż planowano. Zmiany mają związek z niedoborami energii i rosnącymi jej kosztami. W ten sposób CERN chce pomóc Francji w poradzeniu sobie z problemami z dostępnością energii.
CERN kupuje 70–75% energii z Francji. Gdy wszystkie akceleratory w laboratorium pracują, zużycie energii wynosi aż 185 MW. Sama infrastruktura Wielkiego Zderzacza Hadronów potrzebuje do pracy 100 MW.
W związku ze zbliżającą się zimą we Francji wprowadzono plan zredukowania zużycia energii o 10%. Ma to pomóc w uniknięciu wyłączeń prądu. Stąd też pomysł kierownictwa CERN, by pomóc w realizacji tego planu. Ponadto rozpoczęto też prace nad zmniejszeniem zapotrzebowania laboratorium na energię. Podjęto decyzję m.in. o wyłączaniu na noc oświetlenia ulicznego, rozpoczęcia sezonu grzewczego o tydzień później niż zwykle oraz zoptymalizowania ogrzewania pomieszczeń przez całą zimę.
Działania na rzecz oszczędności energii nie są w CERN niczym niezwykłym. Laboratorium od wielu lat pracuje nad zmniejszeniem swojego zapotrzebowania i w ciągu ostatniej dekady konsumpcję energii udało się ograniczyć o 10%. Było to możliwe między innymi dzięki zoptymalizowaniu systemów chłodzenia w centrum bazodanowym, zoptymalizowaniu pracy akceleratorów, w tym zmniejszenie w nich strat energii.
W CERN budowane jest właśnie nowe centrum bazodanowe, które ma ruszyć pod koniec przyszłego roku. Od początku zostało ono zaprojektowane z myślą o oszczędności energii. Znajdą się tam m.in. systemy odzyskiwania ciepła generowanego przez serwery. Będzie ono wykorzystywane do ogrzewania innych budynków laboratorium. Zresztą już teraz ciepło generowane w jednym z laboratoriów CERN jest używane do ogrzewania budynków w pobliskiej miejscowości Ferney-Voltaire. Trwają też prace nad optymalizacją systemu klimatyzacji i wentylacji oraz nad wykorzystaniem energii fotowoltaicznej.
« powrót do artykułu -
By KopalniaWiedzy.pl
Fizycy potrzebują coraz potężniejszych narzędzi, by prowadzić swoje badania. Dlatego przed 2 laty Rada CERN przyjęła plan dotyczący strategii rozwoju badań nad fizyką cząstek w Europie. Zakłada on m.in. wybudowanie 100 kilometrowego akceleratora Future Circular Collider (FCC). Fizycy z CERN – Patrick Janot i Alain Blondel – argumentują, że w związku z olbrzymim zapotrzebowaniem akceleratorów na prąd, pod uwagę należy brać również ślad węglowy tych urządzeń.
Na świecie rozważanych jest kilka projektów budowy potężnych akceleratorów, jednak prawdopodobnie żaden kraj nie porwie się samodzielnie na realizację takiego przedsięwzięcia. Potrzebna jest współpraca międzynarodowa i przekonanie partnerów, że to właśnie ten a nie inny projekt wart jest realizacji.
Międzynarodowa społeczność fizyków zastanawia się obecnie nad budową trzech akceleratorów liniowych – International Linear Collider (ILC) w Japonii, Cool Copper Collider (C3) w USA oraz Compact Linear Collider w CERN – i dwóch kołowych – FCC i China Electron Positron Collider (CEPC) w Chinach. Naukowcy podają argumenty za konkretnymi rozwiązaniami, a Janot i Blondel postulują, by "w przyszłych projektach z dziedziny fizyki wysokich energii uwzględniać nie tylko koszt i wydajność akceleratora, ale również jego ślad węglowy na każdy uzyskany wynik naukowy", stwierdzają naukowcy.
Uczeni przeprowadzili analizę postulowanych akceleratorów i stwierdzili, że najbardziej „zielonym” z nich byłby FCC. Uzyskanie w nim jednego bozonu Higgsa wymagałoby zużycia 3 MWh. Drugim najlepszym byłby CEPC z wynikiem 4,1 MWh/bozon, natomiast najgorzej wypadł C3, który do wytworzenia jednego bozonu Higgsa zużyłby aż 18 MWh. Na tym jednak analiza się nie skończyła. Naukowcy przyjrzeli się też, jak dany kraj, w którym miałby znaleźć się akcelerator, uzyskuje energię. W tej konkurencji również wygrał FCC, w którym uzyskanie pojedynczego bozonu Higgsa wiązałoby się z wyemitowaniem 0,17 tony CO2. Z kolei ILC wyemituje 9,4 tony CO2 na każdy bozon. Niska emisja z FCC wiąże się z faktem, że we Francji niemal 80% energii elektrycznej pozyskiwane jest z elektrowni atomowych.
« powrót do artykułu
-
-
Recently Browsing 0 members
No registered users viewing this page.