Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Najczulszy detektor ciemnej materii zarejestrował niezwykłe sygnały. Fizycy nie wiedzą, czym one są

Recommended Posts

Fizycy pracujący przy najbardziej czułym eksperymencie poszukującym ciemnej materii poinformowali o zarejestrowaniu nietypowych sygnałów. Istnieją trzy możliwe interpretacje tego, co zauważono. Ta najmniej interesująca, to wystąpienie zanieczyszczenia. Dwie alternatywne są za to bardzo ekscytujące. Pierwsza z nich mówi o nieznanych właściwościach neutrin. Druga zaś – i to byłaby największa sensacja – dopuszcza, że po raz pierwszy w historii zdobyto dowód na istnienie aksjonu, hipotetycznej cząstki spoza Modelu Standardowego.

Jesteśmy bardzo podekscytowani tym sygnałem, ale musimy uzbroić się w cierpliwość, powiedział Luca Grandi z University of Chicago, jeden z liderów eksperymentu XENON1T. Jak wyjaśnia uczony, najpierw trzeba sprawdzić, czy nie doszło do zanieczyszczeniem atomami trytu. Wykaże to następca eksperymentu XENON1T – XENONnT – który rozpocznie pracę jeszcze w bieżącym roku.

Wielu specjalistów zauważa, że zwykle prawdziwe okazuje się to wyjaśnienie, na które najmniej czekamy. Jednak nie zawsze tak jest i jeśli istnieje chociaż cień szansy, że XENON1T zarejestrował coś więcej niż zanieczyszczenie trytem, warto to sprawdzić.

Jeśli okaże się, że to nowa cząstka, będziemy mieli przełom, na który czekamy od 40 lat, stwierdza Adam Falkowski z Uniwersytetu Paris-Saclay. Takiego odkrycia nie da się przecenić, dodaje. Z kolei Kathryn Zurek, fizyczka-teoretyczka z California Institute of Technology mówi, że jeśli sygnały pochodzą z aksjonów, które są głównymi kandydatami na cząstki tworzące ciemną materię, lub z niestandardowych neutrin to będzie to niezwykle ekscytujące. Uczona pozostaje jednak ostrożna i dodaje, że jej zdaniem najbardziej prawdopodobne jest jednak zanieczyszczenie trytem.

XENON1T to wspólny projekt, przy którym pracuje 160 naukowców z Europy, USA i Bliskiego Wschodu. Laboratorium Narodowe Gran Sasso, którego właścicielem jest włoski Narodowy Instytut Fizyki Jądrowej, znajduje się na głębokości 1400 metrów pod masywem Gran Sasso. To wykrywacz ciemnej materii, a jego umiejscowienie głęboko pod ziemią ma chronić przed promieniowaniem kosmicznym generującym fałszywe sygnały. Zgodnie z teoretycznymi założeniami, cząstki ciemnej materii mają zderzać się z atomami w detektorze, a sygnały ze zderzeń będą rejestrowane.

Centralna część XENON1T to cylindryczny zbiornik o długości 1 metra wypełniony 3200 kilogramami płynnego ksenonu o temperaturze -95 stopni Celsjusza. Gdy ciemna materia zderzy się z atomem ksenonu, energia trafia do jądra, które pobudza jądra innych atomów. Wskutek tego pobudzenia pojawia się słaba emisja w zakresie ultrafioletu, którą wykrywają czujniki na górze i na dole cylindra. Te same czujniki są też zdolne do zarejestrowania ładunku elektrycznego pojawiającego się wskutek zderzenia. W ubiegłym roku informowaliśmy, że XENON1T zarejestrował najrzadsze wydarzenie we wszechświecie, rozpad ksenonu-124.

Obecnie XENON1T jest wyłączony, gdyż trwa jego rozbudowa do XENONnT. Nowy detektor będzie zawierał 3-krotnie więcej ksenonu i będzie lepiej zabezpieczony przed szumem tła. Dzięki temu jego czułość będzie o cały rząd wielkości lepsza.

Eksperymenty z serii XENON to pomysł fizyczki Eleny Aprile z Columbia University. Ona opracowała metody detekcji i od początku stoi na czele eksperymentów. XENON zostały zaprojektowane do poszukiwania hipotetycznych cząstek ciemnej materii o nazwie WIMP (weakly interacting massive particles). Przez 14 lat niczego nie znaleziono. Brak sukcesów odnotowały też konkurencyjne projekty naukowe.

Wiele lat temu naukowcy pracujący przy XENON zdali sobie sprawę, że mogą wykorzystać swój eksperyment do poszukiwań cząstek inną metodą. Zamiast rejestrować cząstki, które zderzą się z jądrem ksenonu, można spróbować wychwycić takie, które zderzają się z elektronem. Zwykle tego typu zderzenia traktowane są jako szum tła i odfiltrowywane, gdyż wiele z takich sygnałów pochodzi z prozaicznych źródeł, jak ołów czy krypton. Jednak z czasem uczeni coraz bardziej udoskonalali swoje urządzenia, eliminowali coraz więcej źródeł potencjalnych zakłóceń i w końcu eksperymenty XENON stały się tak czułe i dobrze izolowane od zakłóceń, że stwierdzono, iż szum tła również może przynieść interesujące informacje.

I właśnie na nim się teraz skupiono. Naukowcy przeanalizowali szum tła z pierwszego roku eksperymentu XENON1T. Spodziewali się, że w danych znajdą 232 sygnały zderzeń z elektronami, pochodzące ze znanych źródeł zanieczyszczeń. Tymczasem okazało się, że sygnałów takich jest 285. To spory naddatek świadczący o istnieniu nieznanego źródła sygnału.

Naukowcy przez rok trzymali swoje spostrzeżenie w tajemnicy. Przez ten czas próbowali zrozumieć sygnały i odnaleźć ich źródło. W końcu, po wyeliminowaniu wszystkich możliwych źródeł sygnału pozostały wspomniane na wstępie trzy wyjaśnienia, które pasują do nadmiarowych danych.

Pierwsze z nich, i najbardziej interesujące, to zarejestrowanie „słonecznych aksjonów”, hipotetycznych cząstek ciemnej materii powstających wewnątrz Słońca. To cząstki spoza Modelu Standardowego. Ich odkrycie byłoby dowodem, że aksjony istnieją, można więc znaleźć i te, które tworzą ciemną materię, jaka powstała po Wielkim Wybuchu.

Druga hipoteza mówi, że zarejestrowane sygnały mogą świadczyć o tym, iż neutrino mają silny moment magnetyczny. Właściwość ta pozwalałaby im zwiększać rozpraszanie elektronów, co tłumaczyłoby nadmiarowy sygnał. Neutrino z momentem magnetycznym również nie mieści się w Modelu Standardowym.

W końcu trzecia z możliwości, to zanieczyszczenie zbiornika z ksenonem śladową ilością trytu.

Zdaniem naukowców niezaangażowanych w XENON1T, najbardziej prawdopodobna jest ostatnia odpowiedź. Jeśli bowiem Słońce tworzy aksjony, to powstają one również w innych gwiazdach. Aksjony unoszą zaś ze sobą energię od gwiazdy. W najgorętszych gwiazdach, jak czerwone olbrzymy czy białe karły, produkcja aksjonów powinna być największa, a ilość unoszonej przez nie energii powinna być wystarczająca, by ochłodzić gwiazdy. Biały karzeł wytwarzałby tyle aksjonów, że nie obserwowalibyśmy tak wielu gwiazd tego typu, co obecnie, mówi Zurek. Podobnie wygląda problem z neutrino z dużym momentem magnetycznym. Również ono powinno ochłodzić gwiazdy, więc tych gorących nie powinno być tyle, ile jest.

Na odpowiedź nie powinniśmy długo czekać. Eksperyment XENONnT ruszy w najbliższych miesiącach. Jeśli i tam zaobserwujemy nadmiar sygnałów na podobnym poziomie, powinniśmy w ciągu kilku miesięcy być w stanie stwierdzić, która z hipotez jest prawdziwa, mówi Grandi.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Z podważaniem modelu standardowego jest jak z rewolucją w przemyśle baterii: słyszymy i czytamy o tym często ale nie widać skutków. W bateriach jest łatwiej bo te wszystkie "rewolucje" składają się na jakiś tam powolny postęp, który zwykły użytkownik czasami dostrzeże (bo nowy smartfon ma troszkę więcej), ale złamanie modelu standardowego jest raczej zero-jedynkowe: albo w końcu się uda, albo nie. Pozytywny efekt jest mniej spektakularny: to postęp naukowy - dużo mniej rewolucyjny i słabiej sprzedający się w mediach. 

Share this post


Link to post
Share on other sites

Aby pomóc Kathryn Zurek  i Elena Aprile przesłałem im angielską wersję art. "Faraday disc and ether" z listem przewodnim:

Dear Professor .........,
I am sending a short article "Faraday disc and ether". Please read its content, because it can help you with your scientific work.

Yours sincerely
Bogdan Shenkaryk "Pinopa"

PS
If you would like to read my other articles, only a small part of them is in English. These articles can be found at http://pinopa.narod.ru/Polska.html.
(The links are located in the lower left corner of the computer screen.)
BS

A może znacie kogoś, kto byłby zainteresowany rozwiązaniem problemów, z jakimi zmaga się dzisiejsza nauka o przyrodzie?

Dysk_Faradaya_i_eter_uk.pdf Dysk_Faradaya_i_eter.pdf

Share this post


Link to post
Share on other sites

Z całym szacunkiem, ale chciałem zapytać, czy spam, który serwuje pan pinopa można jakoś odfiltrować?

Share this post


Link to post
Share on other sites
11 minut temu, Sławko napisał:

Z całym szacunkiem, ale chciałem zapytać, czy spam, który serwuje pan pinopa można jakoś odfiltrować?

Nie będziesz tak mówił, jak za 10 lat będą uczyli o tym w szkołach.

Spoiler

Wcale nie będą ;)

 

Share this post


Link to post
Share on other sites
9 minut temu, gooostaw napisał:

Nie będziesz tak mówił, jak za 10 lat będą uczyli o tym w szkołach.

Rozumiem, że zażartowałeś, ale jak będą tego uczyli, to odszczekam to wszytko na czworaka.

A tak na poważnie, to to, czego obecnie uczą w szkołach, także czasami woła o litość

Chociaż pamiętam, że w moich czasach szkoły podstawowej miałem nauczycielkę fizyki, która już wtedy załamywała mnie poziomem swojej wiedzy. Znała oczywiście wszystkie wzory, ale jej tłumaczenie niektórych zjawisk fizycznych wskazywało, że nie rozumiała o czym, tak naprawdę mówiła.

Share this post


Link to post
Share on other sites
5 minut temu, Sławko napisał:

Rozumiem, że zażartowałeś, ale jak będą tego uczyli, to odszczekam to wszytko na czworaka.

Byłbym ostrożny. To nie tylko fizycy dokonują wyborów np. szefa MEN czy MNiSW. Niekoniecznie fizycy odpowiadają za powstanie np. takiego Ministerstwa Klimatu. No taki mamy klimat...

8 minut temu, Sławko napisał:

także czasami woła o litość

Zdecydowanie nie czasami...

9 minut temu, Sławko napisał:

le jej tłumaczenie niektórych zjawisk fizycznych wskazywało, że nie rozumiała o czym, tak naprawdę mówiła.

Kolego. Dziś matematyki uczą już katecheci, bo zwyczajnie nie ma matematyków w szkołach (i nie chodzi o "dobrych"). Taki mamy klimat, czyli "odpowiednią" motywację do zawodu.

Share this post


Link to post
Share on other sites
2 godziny temu, Astro napisał:

Dziś matematyki uczą już katecheci, bo zwyczajnie nie ma matematyków w szkołach (i nie chodzi o "dobrych"). Taki mamy klimat, czyli "odpowiednią" motywację do zawodu.


Potwierdza to moją obserwację że wszystkich sensownych ludzi wsysa branża IT.
Jeśli ktoś jest w stanie studiować matematykę, to poradzi sobie jako programista i zarobi minimum 5x więcej.

 

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Dwaj członkowie Czeskiej Akademii Nauk zaproponowali nową hipotezę zmodyfikowanej dynamiki newtonowskiej (MOND), która wzbudziła zainteresowanie środowiska fizycznego. MOND modyfikuje zasady dynamiki Newtona o nieliniową zależność siły od przyspieszenia. Obywa się ona bez ciemnej materii oraz ciemnej energii, dobrze opisuje zjawiska zachodzące w galaktykach, ale nie radzi sobie z opisem w większej skali. Nie zyskała więc powszechnej akceptacji. Praca Constantinosa Skordisa i Toma Złośnika ma to zmienić.
      Od wielu lat fizycy akceptują hipotezę istnienia ciemnej materii, dzięki której można wyjaśnić pewne obserwowane zjawiska, których w standardowy sposób wyjaśnić się nie da. Nie wszyscy jednak się z nią zgadzają, wskazując na brak fizycznych dowodów na obecność ciemnej materii. Dlatego też pojawiła się hipoteza MOND mówiąca o istnieniu grawitacji nieznanego typu. Jednak różne odmiany MOND nie były w stanie wyjaśnić pewnych cech mikrofalowego promieniowania tła (CMB).
      Skordis i Złośnik twierdzą, że stworzyli model MOND, który opisuje i CMB i soczewkowanie grawitacyjne.
      Ich model wychodzi od oryginalnego założenia MOND o istnieniu dwóch pól zachowujących się razem jak grawitacja. Jedno pole jest skalarne, drugie wektorowe. Czescy uczeni dodali parametry sugerujące utworzenie we wczesnym wszechświecie pól modyfikujących grawitację. Pola takie zachowują się jak ciemna materia z innych hipotez. Pola te, jak twierdzą badacze, ewoluowały tak, że stały się siłami opisywanymi przez MOND.
      Skordis i Złośnik twierdzą, że ich model wyjaśnia zarówno soczewkowanie grawitacyjne, jak i cechy CMB. Na następnym etapie swoich rozważań chcą sprawdzić, czy wyjaśnia ona obfitość litu we wszechświecie oraz różnice w pomiarach tempa rozszerzania się wszechświata. Hipotezy zakładające istnienie ciemnej materii nie potrafią bowiem wyjaśnić tych zagadek.
      Szczegóły pracy przeczytamy w artykule New Relativistic Theory for Modified Newtonian Dynamics opublikowanym na łamach Physical Review Letters.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Prowadzony głęboko pod włoskimi Alpami eksperyment XENON1T mógł wykryć ciemną energię, twierdzą członkowie międzynarodowej grupy badawczej, na której czele stali uczeni z Cambridge University. W artykule opublikowanym na łamach Physical Review D uczeni z Wielkiej Brytanii, Włoch, Holandii, Francji i USA donoszą, że część z niewyjaśnionych sygnałów mogło zostać spowodowanych interakcją z ciemną energią, a nie ciemną materią dla której XENON1T został zaprojektowany.
      XENON1T znajduje się we włoskim Laboratorium Narodowym Gran Sasso położonym 1400 metrów pod masywem Gran Sasso. To wykrywacz ciemnej materii, a jego umiejscowienie głęboko pod ziemią ma chronić przed promieniowaniem kosmicznym generującym fałszywe sygnały. Zgodnie z teoretycznymi założeniami, cząstki ciemnej materii mają zderzać się z atomami w detektorze, a sygnały ze zderzeń będą rejestrowane.
      Centralna część XENON1T to cylindryczny zbiornik o długości 1 metra wypełniony 3200 kilogramami płynnego ksenonu o temperaturze -95 stopni Celsjusza. Gdy ciemna materia zderzy się z atomem ksenonu, energia trafia do jądra, które pobudza jądra innych atomów. Wskutek tego pobudzenia pojawia się słaba emisja w zakresie ultrafioletu, którą wykrywają czujniki na górze i na dole cylindra. Te same czujniki są też zdolne do zarejestrowania ładunku elektrycznego pojawiającego się wskutek zderzenia.
      Przed rokiem informowaliśmy, że „Najczulszy detektor ciemnej materii zarejestrował niezwykłe sygnały. Fizycy nie wiedzą, czym one są", a kilka miesięcy później pojawiła się informacja o kilku interesujących hipotezach dotyczących tych sygnałów. Nikt wówczas nie przypuszczał, że rozwiązaniem zagadki może być ciemna energia, gdyż XENON1T nie został przygotowany do jej rejestrowania.
      Autorzy najnowszych badań stworzyli model fizyczny, który wyjaśnia część z tych niezwykłych sygnałów. Zgodnie z nim, mamy tu do czynienia z cząstkami ciemnej energii, które powstały w regionie Słońca o silnych polach magnetycznych.
      To, co jesteśmy w stanie obecnie dostrzec stanowi mniej niż 5% wszechświata. Cała reszta jest dla nas ciemna. Wszechświat składa się w 27% z ciemnej materii, a 68% stanowi ciemna energia. Pomimo tego, że obie te składowe są dla nas niewidoczne, znacznie więcej wiemy o ciemnej materii, gdyż jej obecność sugerowano już w latach 20. ubiegłego wieku. O tym, że musi istnieć też ciemna energia dowiedzieliśmy się dopiero w 1998 roku, wyjaśnia doktor Sunny Vagnozzi z Kavli Institute for Cosmology na Cambridge University. Wielkie eksperymenty, jak XENON1T zostały zaprojektowane tak, by bezpośrednio wykrywać ciemną materię, rejestrując zderzenia jej cząstek z cząstkami zwykłej materii. Jednak uchwycenie ciemnej energii jest jeszcze trudniejsze.
      Chcąc wykryć ciemną energię naukowcy poszukują dowodów jej oddziaływania grawitacyjnego na otoczenie. Wiemy, że w największej skali – całego wszechświata – ciemna energia odpycha obiekty od siebie, dlatego też wszechświat rozszerza się coraz szybciej.
      Przy tego typu złożonych badaniach często pojawiają się niewytłumaczalne sygnały, które po analizach zwykle okazują się różnego typu zakłóceniami. Gdy w XENON1T zarejestrowano w ubiegłym roku wspomniane już tajemnicze sygnały, pojawiło się kilka pomysłów na to, czym mogą one być. Najpopularniejsze wyjaśnienie brzmiało, że zarejestrowano aksjony, hipotetyczne cząstki tworzące ciemną materię, oraz że pochodziły one ze Słońca. Jednak analizy wykazały, że liczba aksjonów, które musiałyby dotrzeć do nas ze Słońca, by wywołać taki sygnał w XENON1T musiałaby być bardzo duża. Tak duża, że gdyby gwiazdy emitowały tyle aksjonów, to gwiazdy o masie większej od masy Słońca ewoluowałyby w inny sposób, niż ewoluują.
      Autorzy najnowszych badań przyjęli więc założenie, że tajemnicze sygnały wywołała ciemna energia. I stworzyli model, który pokazuje, co powinien zarejestrować XENON1T gdyby dotarła doń ciemna energia wygenerowana w tachoklinie, obszarze Słońca, w którym pola magnetyczne są wyjątkowo silne.
      Naukowcy byli zaskoczeni, gdy okazało się, że ich model pasuje do obserwacji. Uzyskane wyniki sugerują bowiem, że wykrywacze takie jak XENON1T mogą być też używane do poszukiwania ciemnej energii. Vagnozzi i jego koledzy zastrzegają jednak, że ich badania wciąż wymagają potwierdzenia. Musimy wiedzieć, że to nie jest jakieś zakłócenie. Jeśli jednak XENON1T coś zarejestrował, to w niedalekiej przyszłości powinniśmy zarejestrować podobne, ale znacznie silniejsze sygnały, mówi Luca Visinelli z Narodowych Laboratoriów Frascati we Włoszech.
      Uczony ma tutaj na myśli badania prowadzone przez znacznie większe i doskonalsze urządzenia. Takie jak LUX-ZEPLIN, XENONnT czy PandaX-xT, które już rozpoczęły pracę lub w najbliższym czasie ją rozpoczną.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Nowa mapa ciemnej materii ujawniła istnienie nieznanych wcześniej struktur łączących galaktyki. Mapa, stworzona za pomocą technik maszynowego uczenia, pomoże w badaniach nad ciemną materią oraz w opisaniu historii i przyszłości naszego lokalnego wszechświata. Jest ona dziełem międzynarodowego zespołu naukowego.
      Jako że nie potrafimy bezpośrednio obserwować ciemnej materii, o jej rozkładzie dowiadujemy się, badając wpływ grawitacyjny, jaki wywiera na inne obiekty we wszechświecie, np. na galaktyki.
      Co interesujące, łatwiej jest badać rozkład ciemnej materii znajdującej się znacznie dalej, gdyż pokazuje to daleką przeszłość, kiedy budowa wszechświata była mniej złożona. Z czasem wielkie struktury tylko się powiększyły, stopień złożoności wszechświata wzrósł, więc znacznie trudniej jest dokonywać lokalnych pomiarów ciemnej materii, mówi jeden z autorów badań, profesor Donghui Jeong z Pennsylvania State University.
      Już wcześniej próbowano tworzyć podobne mapy rozpoczynając od modelu wczesnego wszechświata i symulując jego ewolucję przez miliardy lat. Jednak to metoda wymagająca olbrzymich mocy obliczeniowych i dotychczas nie udało się za jej pomocą stworzyć mapy na tyle szczegółowej, by można było zobaczyć nasz lokalny wszechświat.
      Autorzy najnowszych badań wykorzystali inną metodę – za pomocą maszynowego uczenia się stworzyli model, który na podstawie znanych informacji o rozkładzie i ruchu galaktyk, przewiduje rozkład ciemnej materii.
      Naukowcy zbudowali i wyćwiczyli swój model na Illustris-TNG, wielkim zestawie symulacji galaktyk, który zawiera informacje o galaktykach, gazach, innej widzialnej materii oraz ciemnej materii. Szczególnie skupiono się na strukturach podobnych do Drogi Mlecznej. W końcu udało się określić, które dane są niezbędne do poznania rozkładu ciemnej materii.
      Do tak stworzonego modelu wprowadzono prawdziwe dane o lokalnym wszechświecie pochodzące z katalogu Cosmicflow-3. Zawiera on informacje o rozkładzie i ruchu ponad 17 000 galaktyk znajdujących się w odległości 200 megaparseków od Drogi mlecznej. Na tej podstawie powstała mapa rozkładu ciemnej materii.
      Model prawidłowo odtworzył w niej Lokalną Grupę Galaktyk, Gromadę w Pannie, puste przestrzenie i inne struktury. Pokazał też struktury, o których istnieniu nie wiedzieliśmy, w tym włókna łączące galaktyki.
      Możliwość stworzenia mapy lokalnej sieci kosmicznej otwiera nowy rozdział w kosmologii. Możemy teraz badać, jak rozkład ciemnej materii ma się do innych danych, co pozwoli nam na lepsze zrozumienie ciemnej materii. Możemy też bezpośrednio badać te włókna, tworzące wielkie pomocy pomiędzy galaktykami, mówi Jeong.
      Uczeni sądzą, że dodając informacje o mniejszych galaktykach, będą mogli poprawić rozdzielczość mapy. Bardzo więc liczą na dane z Teleskopu Kosmicznego Jamesa Webba.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Układ Słoneczny przemieszcza się przez wszechświat z prędkością 370 km/s. Wraz z nim przemieszcza się Ziemia, która na swojej drodze napotyka ciemną materię. Wykrywacze ciemnej materii, jak XENON1T, rejestrują zderzenia z cząstkami ciemnej materii. Jednak nie określają, z jakiego kierunku nadeszła cząstka. A to poważnie ogranicza możliwości badawcze.
      XENON1T to wyjątkowe urządzenie. To jeden z najczulszych wykrywaczy ciemnej materii, w którym zaobserwowano najrzadsze zjawisko we wszechświecie, wykryto tajemnicze sygnały, a naukowcy zaproponowali kilka interesujących pomysłów na ich interpretację.
      Teraz Ciaran O'Hare i jego koledzy z University of Sydney przetestowali projekt nowego detektora ciemnej materii, który nie tylko wykryje obecność jej cząstek, ale również określi kierunek, z którego nadeszły. Uczeni przeprowadzili pierwszą symulację działania ich wykrywacza i poinformowali o bardzo obiecujących wynikach.
      Nowy wykrywacz ciemnej materii ma bazować na DNA. Podwójne helisy kwasów nukleinowych miałyby tworzyć gęsty las zwisając z warstw złotych płacht. Pozycja każdej z nici DNA byłaby znana z nanometrową dokładnością.
      Gdy cząstka ciemnej materii trafi do takiego wykrywacza i uderzy w którąkolwiek z nici DNA, rozbije ją, a odłamane fragmenty wpadną do położonego poniżej specjalnego układu mikroprzepływowego. Za pomocą techniki PCR potrafimy precyzyjnie badać sekwencję par bazowych kwasów nukleinowych, zatem będziemy mogli z nanometrową precyzją określić oryginalną pozycję każdego z odłamanych fragmentów, stwierdzają naukowcy. W ten sposób możliwe będzie śledzenie trasy cząstek ciemnej materii w detektorze.
      Pomysł detektora ciemnej materii opartego na DNA pojawił się już w 2012 roku. Teraz po raz pierwszy udało się przeprowadzić symulację pracy takiego detektora, by sprawdzić, czy ma on szansę działać. Badacze wzięli pod uwagę różne potencjalne typy cząstek, różne energie i kierunki. Doszliśmy do wniosku, że oparty na DNA detektor byłby ekonomicznym, przenośnym i potężnym wykrywaczem nowych cząstek, stwierdzają uczeni.
      Nowy detektor byłby znacznie mniejszy i tańszy niż obecnie istniejące i budowane wykrywacze ciemnej materii. Nie jest jednak doskonały. Detektor DNA nie jest w stanie dostarczyć wystarczająco dużo informacji, by móc określić rodzaj cząstki czy jej dokładną energię. Dlatego też takie wykrywacze będą prawdopodobnie używane jako uzupełnienie tych tradycyjnych.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...