Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Najczulszy detektor ciemnej materii zarejestrował niezwykłe sygnały. Fizycy nie wiedzą, czym one są

Recommended Posts

Fizycy pracujący przy najbardziej czułym eksperymencie poszukującym ciemnej materii poinformowali o zarejestrowaniu nietypowych sygnałów. Istnieją trzy możliwe interpretacje tego, co zauważono. Ta najmniej interesująca, to wystąpienie zanieczyszczenia. Dwie alternatywne są za to bardzo ekscytujące. Pierwsza z nich mówi o nieznanych właściwościach neutrin. Druga zaś – i to byłaby największa sensacja – dopuszcza, że po raz pierwszy w historii zdobyto dowód na istnienie aksjonu, hipotetycznej cząstki spoza Modelu Standardowego.

Jesteśmy bardzo podekscytowani tym sygnałem, ale musimy uzbroić się w cierpliwość, powiedział Luca Grandi z University of Chicago, jeden z liderów eksperymentu XENON1T. Jak wyjaśnia uczony, najpierw trzeba sprawdzić, czy nie doszło do zanieczyszczeniem atomami trytu. Wykaże to następca eksperymentu XENON1T – XENONnT – który rozpocznie pracę jeszcze w bieżącym roku.

Wielu specjalistów zauważa, że zwykle prawdziwe okazuje się to wyjaśnienie, na które najmniej czekamy. Jednak nie zawsze tak jest i jeśli istnieje chociaż cień szansy, że XENON1T zarejestrował coś więcej niż zanieczyszczenie trytem, warto to sprawdzić.

Jeśli okaże się, że to nowa cząstka, będziemy mieli przełom, na który czekamy od 40 lat, stwierdza Adam Falkowski z Uniwersytetu Paris-Saclay. Takiego odkrycia nie da się przecenić, dodaje. Z kolei Kathryn Zurek, fizyczka-teoretyczka z California Institute of Technology mówi, że jeśli sygnały pochodzą z aksjonów, które są głównymi kandydatami na cząstki tworzące ciemną materię, lub z niestandardowych neutrin to będzie to niezwykle ekscytujące. Uczona pozostaje jednak ostrożna i dodaje, że jej zdaniem najbardziej prawdopodobne jest jednak zanieczyszczenie trytem.

XENON1T to wspólny projekt, przy którym pracuje 160 naukowców z Europy, USA i Bliskiego Wschodu. Laboratorium Narodowe Gran Sasso, którego właścicielem jest włoski Narodowy Instytut Fizyki Jądrowej, znajduje się na głębokości 1400 metrów pod masywem Gran Sasso. To wykrywacz ciemnej materii, a jego umiejscowienie głęboko pod ziemią ma chronić przed promieniowaniem kosmicznym generującym fałszywe sygnały. Zgodnie z teoretycznymi założeniami, cząstki ciemnej materii mają zderzać się z atomami w detektorze, a sygnały ze zderzeń będą rejestrowane.

Centralna część XENON1T to cylindryczny zbiornik o długości 1 metra wypełniony 3200 kilogramami płynnego ksenonu o temperaturze -95 stopni Celsjusza. Gdy ciemna materia zderzy się z atomem ksenonu, energia trafia do jądra, które pobudza jądra innych atomów. Wskutek tego pobudzenia pojawia się słaba emisja w zakresie ultrafioletu, którą wykrywają czujniki na górze i na dole cylindra. Te same czujniki są też zdolne do zarejestrowania ładunku elektrycznego pojawiającego się wskutek zderzenia. W ubiegłym roku informowaliśmy, że XENON1T zarejestrował najrzadsze wydarzenie we wszechświecie, rozpad ksenonu-124.

Obecnie XENON1T jest wyłączony, gdyż trwa jego rozbudowa do XENONnT. Nowy detektor będzie zawierał 3-krotnie więcej ksenonu i będzie lepiej zabezpieczony przed szumem tła. Dzięki temu jego czułość będzie o cały rząd wielkości lepsza.

Eksperymenty z serii XENON to pomysł fizyczki Eleny Aprile z Columbia University. Ona opracowała metody detekcji i od początku stoi na czele eksperymentów. XENON zostały zaprojektowane do poszukiwania hipotetycznych cząstek ciemnej materii o nazwie WIMP (weakly interacting massive particles). Przez 14 lat niczego nie znaleziono. Brak sukcesów odnotowały też konkurencyjne projekty naukowe.

Wiele lat temu naukowcy pracujący przy XENON zdali sobie sprawę, że mogą wykorzystać swój eksperyment do poszukiwań cząstek inną metodą. Zamiast rejestrować cząstki, które zderzą się z jądrem ksenonu, można spróbować wychwycić takie, które zderzają się z elektronem. Zwykle tego typu zderzenia traktowane są jako szum tła i odfiltrowywane, gdyż wiele z takich sygnałów pochodzi z prozaicznych źródeł, jak ołów czy krypton. Jednak z czasem uczeni coraz bardziej udoskonalali swoje urządzenia, eliminowali coraz więcej źródeł potencjalnych zakłóceń i w końcu eksperymenty XENON stały się tak czułe i dobrze izolowane od zakłóceń, że stwierdzono, iż szum tła również może przynieść interesujące informacje.

I właśnie na nim się teraz skupiono. Naukowcy przeanalizowali szum tła z pierwszego roku eksperymentu XENON1T. Spodziewali się, że w danych znajdą 232 sygnały zderzeń z elektronami, pochodzące ze znanych źródeł zanieczyszczeń. Tymczasem okazało się, że sygnałów takich jest 285. To spory naddatek świadczący o istnieniu nieznanego źródła sygnału.

Naukowcy przez rok trzymali swoje spostrzeżenie w tajemnicy. Przez ten czas próbowali zrozumieć sygnały i odnaleźć ich źródło. W końcu, po wyeliminowaniu wszystkich możliwych źródeł sygnału pozostały wspomniane na wstępie trzy wyjaśnienia, które pasują do nadmiarowych danych.

Pierwsze z nich, i najbardziej interesujące, to zarejestrowanie „słonecznych aksjonów”, hipotetycznych cząstek ciemnej materii powstających wewnątrz Słońca. To cząstki spoza Modelu Standardowego. Ich odkrycie byłoby dowodem, że aksjony istnieją, można więc znaleźć i te, które tworzą ciemną materię, jaka powstała po Wielkim Wybuchu.

Druga hipoteza mówi, że zarejestrowane sygnały mogą świadczyć o tym, iż neutrino mają silny moment magnetyczny. Właściwość ta pozwalałaby im zwiększać rozpraszanie elektronów, co tłumaczyłoby nadmiarowy sygnał. Neutrino z momentem magnetycznym również nie mieści się w Modelu Standardowym.

W końcu trzecia z możliwości, to zanieczyszczenie zbiornika z ksenonem śladową ilością trytu.

Zdaniem naukowców niezaangażowanych w XENON1T, najbardziej prawdopodobna jest ostatnia odpowiedź. Jeśli bowiem Słońce tworzy aksjony, to powstają one również w innych gwiazdach. Aksjony unoszą zaś ze sobą energię od gwiazdy. W najgorętszych gwiazdach, jak czerwone olbrzymy czy białe karły, produkcja aksjonów powinna być największa, a ilość unoszonej przez nie energii powinna być wystarczająca, by ochłodzić gwiazdy. Biały karzeł wytwarzałby tyle aksjonów, że nie obserwowalibyśmy tak wielu gwiazd tego typu, co obecnie, mówi Zurek. Podobnie wygląda problem z neutrino z dużym momentem magnetycznym. Również ono powinno ochłodzić gwiazdy, więc tych gorących nie powinno być tyle, ile jest.

Na odpowiedź nie powinniśmy długo czekać. Eksperyment XENONnT ruszy w najbliższych miesiącach. Jeśli i tam zaobserwujemy nadmiar sygnałów na podobnym poziomie, powinniśmy w ciągu kilku miesięcy być w stanie stwierdzić, która z hipotez jest prawdziwa, mówi Grandi.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Z podważaniem modelu standardowego jest jak z rewolucją w przemyśle baterii: słyszymy i czytamy o tym często ale nie widać skutków. W bateriach jest łatwiej bo te wszystkie "rewolucje" składają się na jakiś tam powolny postęp, który zwykły użytkownik czasami dostrzeże (bo nowy smartfon ma troszkę więcej), ale złamanie modelu standardowego jest raczej zero-jedynkowe: albo w końcu się uda, albo nie. Pozytywny efekt jest mniej spektakularny: to postęp naukowy - dużo mniej rewolucyjny i słabiej sprzedający się w mediach. 

Share this post


Link to post
Share on other sites

Aby pomóc Kathryn Zurek  i Elena Aprile przesłałem im angielską wersję art. "Faraday disc and ether" z listem przewodnim:

Dear Professor .........,
I am sending a short article "Faraday disc and ether". Please read its content, because it can help you with your scientific work.

Yours sincerely
Bogdan Shenkaryk "Pinopa"

PS
If you would like to read my other articles, only a small part of them is in English. These articles can be found at http://pinopa.narod.ru/Polska.html.
(The links are located in the lower left corner of the computer screen.)
BS

A może znacie kogoś, kto byłby zainteresowany rozwiązaniem problemów, z jakimi zmaga się dzisiejsza nauka o przyrodzie?

Dysk_Faradaya_i_eter_uk.pdf Dysk_Faradaya_i_eter.pdf

Share this post


Link to post
Share on other sites

Z całym szacunkiem, ale chciałem zapytać, czy spam, który serwuje pan pinopa można jakoś odfiltrować?

Share this post


Link to post
Share on other sites
11 minut temu, Sławko napisał:

Z całym szacunkiem, ale chciałem zapytać, czy spam, który serwuje pan pinopa można jakoś odfiltrować?

Nie będziesz tak mówił, jak za 10 lat będą uczyli o tym w szkołach.

Spoiler

Wcale nie będą ;)

 

Share this post


Link to post
Share on other sites
9 minut temu, gooostaw napisał:

Nie będziesz tak mówił, jak za 10 lat będą uczyli o tym w szkołach.

Rozumiem, że zażartowałeś, ale jak będą tego uczyli, to odszczekam to wszytko na czworaka.

A tak na poważnie, to to, czego obecnie uczą w szkołach, także czasami woła o litość

Chociaż pamiętam, że w moich czasach szkoły podstawowej miałem nauczycielkę fizyki, która już wtedy załamywała mnie poziomem swojej wiedzy. Znała oczywiście wszystkie wzory, ale jej tłumaczenie niektórych zjawisk fizycznych wskazywało, że nie rozumiała o czym, tak naprawdę mówiła.

Share this post


Link to post
Share on other sites
5 minut temu, Sławko napisał:

Rozumiem, że zażartowałeś, ale jak będą tego uczyli, to odszczekam to wszytko na czworaka.

Byłbym ostrożny. To nie tylko fizycy dokonują wyborów np. szefa MEN czy MNiSW. Niekoniecznie fizycy odpowiadają za powstanie np. takiego Ministerstwa Klimatu. No taki mamy klimat...

8 minut temu, Sławko napisał:

także czasami woła o litość

Zdecydowanie nie czasami...

9 minut temu, Sławko napisał:

le jej tłumaczenie niektórych zjawisk fizycznych wskazywało, że nie rozumiała o czym, tak naprawdę mówiła.

Kolego. Dziś matematyki uczą już katecheci, bo zwyczajnie nie ma matematyków w szkołach (i nie chodzi o "dobrych"). Taki mamy klimat, czyli "odpowiednią" motywację do zawodu.

Share this post


Link to post
Share on other sites
2 godziny temu, Astro napisał:

Dziś matematyki uczą już katecheci, bo zwyczajnie nie ma matematyków w szkołach (i nie chodzi o "dobrych"). Taki mamy klimat, czyli "odpowiednią" motywację do zawodu.


Potwierdza to moją obserwację że wszystkich sensownych ludzi wsysa branża IT.
Jeśli ktoś jest w stanie studiować matematykę, to poradzi sobie jako programista i zarobi minimum 5x więcej.

 

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Rozpoczyna się rozruch najbardziej czułego wykrywacza ciemnej materii LUX-ZEPLIN. W ubiegłym miesiącu amerykański Departament Energii oficjalnie uznał, że budowa instalacji została ukończona. Teraz pozostaje ją uruchomić i rozpocząć eksperymenty.
      LUX-ZEPLIN (LZ) wykorzysta 10 ton ciekłego ksenonu do poszukiwania sygnałów pochodzących ze słabo oddziałujących masywnych cząstek (WIMP). WIMP to hipotetyczne – ich istnienia nie udowodniono – cząstki tworzące ciemną materię. LZ ma wykrywać obecność WIMP poprzez rejestrowanie rozbłysków światła, jakie mają się pojawiać, gdy WIMP wejdzie w interakcję z atomem ksenonu.
      Kończymy odbiór LZ. Jesteśmy obecnie w fazie testów. W przyszłym roku chcemy uzyskać pierwsze dane z LZ, mówi Simon Fiorucci, fizyk z Lawrence Berkeley National Laboratory, który jest menedżerem ds. operacyjnych LZ.
      LUX-ZEPLIN to następca opisywanego przez nas urządzenia LUX (Large Underground Xenon). LUX zakończył poszukiwania ciemnej materii w 2016 roku, a w roku 2017 rozpoczęto budowę LUX-ZEPLIN. Urządzenie umieszczono w tym samym miejscu, w którym znajdował się LUX, czyli w znajdującym się 1,5 kilometra pod ziemią Sanford Underground Research Facility w Południowej Dakocie.
      LUX nie znalazł ciemnej materii. Jednak naukowcy się nie poddają, stąd pomysł na LUX-ZEPLIN. Nowe urządzenie jest 100-krotnie bardziej czułe od LUX, między innymi dlatego, że używa 10 ton ksenonu. W LUX wykorzystywano 300 kg ksenonu. Ponadto rozbłyski, do jakich ma dochodzić przy zderzeniu WIMP z jądrami ksenonu będą rejestrowane przez 500 czujników. To 4-krotnie więcej niż w LUX.
      W pracach nad LZ brali udział specjaliści ze SLAC National Accelerator Laboratory, których zadaniem było usunięcie kryptonu z ksenonu. Jego śladowe ilości pozostają bowiem po standardowych procedurach oczyszczających. Za budowę systemu oczyszczającego i schładzającego ksenon byli z kolei odpowiedzialni eksperci z Fermilab, których zadaniem było też stworzenie narzędzi do analizy danych. Z kolei wspomniane czujniki to wspólne dzieło uczonych ze SLAC i Berkeley lab.
      W budowie LZ brali też udział eksperci spoza Stanów Zjedoczonych. Brytyjczycy i Włosi zbudowali pojemnik na ksenon. Powstał on z ultra czystego tytanu, co pozwoliło na dalszą redukcję szumów tła. To jednak nie jedyna osłona przed niekorzystnym wpływem czynników zewnętrznych. Tytanowy pojemnik z 10 tonami ksenonu znajduje się w drugim, większym pojemniku. To zbiornik osłonowy wypełniony scyntylatorem, którego zadaniem jest dodatkowa osłona przed promieniowaniem.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W czerwcu informowaliśmy, że najczulszy detektor ciemnej materii – XENON1T – zarejestrował niezwykłe sygnały. Jak wówczas pisaliśmy, możliwe są trzy interpretacje tego, co zauważono. Najmniej interesująca z nich to zanieczyszczenie urządzenia. Drugim możliwym wyjaśnieniem jest zarejestrowanie aksjonu, hipotetycznej cząstki tworzącej ciemną materię, a trzecim – równie interesująca możliwość wchodzenia neutrin w niezwykłe interakcje z wypełniającym detektor ksenonem.
      Na łamach Physical Review D i Physical Review Letters ukazało się właśnie 5 artykułów, których autorzy dokonują niezwykle interesujących interpretacji sygnałów.
      Fuminotu Takahashi, Masaki Yamada i Wen Yin uważają, że zarejestrowane sygnały świadczą o zauważeniu cząstek podobnych do aksjonów. Mają mieć one masę kilku keV/c2 i wchodzić w interakcje z elektronami. Ich zdaniem cząstki o takich właściwościach tłumaczą zarejestrowany sygnał, stanowią ciemną materię i wyjaśniają pewne anomalie obserwowane w białych karłach i czerwonych olbrzymach.
      Z kolei niemiecki zespół naukowy, Andreas Bally, Sudip Jana i Andreas Trautner, pisze, że sygnał może pochodzić od nieznanego bozonu cechowania, który pośredniczy w interakcjach pomiędzy pochodzącymi ze Słońca neutrinami a elektronami.
      Jeszcze inny pomysł ma Nicole F. Bell z University of Melbourne i jej koledzy z USA. Uważają oni, że źródłem sygnału jest cząstka ciemnej materii o relatywnie niskiej masie. Ich zdaniem cząstka taka można trafiać do detektora w "lekkim stanie" i rozpraszać się do "stanu ciężkiego", który rozpada się z towarzyszącą emisją fotonu. I to właśnie ten foton wchodzi w reakcje z elektronem, dając obserwowany sygnał.
      Bartosz Fornal z University of Utah oraz naukowcy z Pekinu i Hongkongu również uważają, że mamy do czyeniania z cząstką ciemnej materii. Ma ona pochodzić z centrum galaktyki. Sygnał zaś bierze się z jej interakcji z elektronami w XENON1T.
      Autorami ostatniego artykułu są Joseph Bramante i Ningqiang Song z Kanady. Naukowcy sądzą, że źródłem sygnału są rozpraszające się cząstki ciemnej materii będącej termicznym reliktem wczesnego wszechświata.
      Na ostateczne rozstrzygnięcie zagadki będziemy musieli jeszcze poczekać. Uda się to pod warunkiem, że podobny sygnał zostanie zarejestrowany w kolejnych eksperymentach związanych z poszukiwaniem ciemnej materii.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Wśród wielu niezwykłych idei Stephena Hawkinga jest i taka, zgodnie z którą ciemną materię stanowią czarne dziury, które powstały krótko po Wielkim Wybuchu. Pomysł taki jednak odrzucono, jednak nowe badania wskazują, że hipoteza taka może być prawdziwa.
      Pierwotne czarne dziury miałyby powstać nie w wyniku zapadania się gwiazd, a bezpośrednio z gęstej materii powstałej tuż po Wielkim Wybuchu. Tym samym ich masa mogłaby być znacznie mniejsza od masy Słońca.
      Obecnie znamy olbrzymie czarne dziury w centrach galaktyk oraz czarne dziury o masie gwiazdowej. Te drugie powstają w wyniku kolapsu grawitacyjnego gwiazd. Przed uruchomieniem wykrywacza fal grawitacyjnych LIGO znaliśmy czarne dziury o masie gwiazdowej nie przekraczającej około 20 mas Słońca. Jednak dzięki LIGO i europejskiemu VIRGO zaczęliśmy wykrywać bardziej masywne czarne dziury. Okazało się, że istnieją takie obiekty o masach od ponad 20 do nawet 85 mas Słońca. Udało się też zidentyfikować dziury o znacznie mniejszej masie. A najmniej masywna znana czarna dziura miała zaledwie 2,59 masy Słońca.
      Jeśli uda się wykryć czarne dziury o mniejszych niż masy gwiazd, z których obiekty takie mogą powstawać, może to oznaczać, że mamy do czynienia właśnie z pierwotnymi czarnymi dziurami. Zresztą już same prace tandemu LIGO/Virgo pokazały, że zakres mas czarnych dziur jest znacznie większy niż dotychczas przypuszczano, więc i samych czarnych dziur jest znacznie więcej, niż nam się wydaje.
      Jednak w 2017 roku Yacine Ali-Haïmoud, astrofizyk z New York University, opublikował pracę, w której wyliczał, że gdyby zaraz po Wielkim Wybuchu powstało tyle czarnych dziur, iż wyjaśniałyby one istnienie ciemnej materii, to z czasem dziury takie tworzyłyby pary, zaczynały wokół siebie krążyć, a w końcu łączyłyby się emitując fale grawitacyjne. Wydarzeń takich, wyliczał uczony, powinno być tak wiele, że LIGO/Virgo wykrywałyby tysiące razy więcej fal grawitacyjnych niż obecnie. Argumenty naukowca z Nowego Jorku były tak przekonujące, że wielu entuzjastów hipotezy pierwotnych czarnych dziur straciło dla niej serce.
      W ubiegłym tygodniu na łamach Cosmology and Astroparticle Physics Karsten Jedamzik z Uniwersytetu w Monpellier opublikował obliczenia, z których wynika, że w wielkiej populacji pierwotnych czarnych dziur zachodziłoby dokładnie tyle zderzeń ile obecnie obserwują wykrywacze fal grawitacyjnych. Jeśli jego obliczenia są prawidłowe, a wydaje się, że przeprowadził je skrupulatnie, to pogrzebał nasze własne wyliczenia, przyznaje Ali-Haïmoud. To by oznaczało, że czarne dziury rzeczywiście mogą stanowić całą ciemną materię.
      W latach 70. Stephen Hawking i Bernard Carr wysunęli hipotezę, że w czasie pierwszych ułamków sekundy po Wielkim Wybuchu, w rozszerzającym się wszechświecie pojawiały się niewielkie fluktuacje materii, które zamieniały się w czarne dziury. Hawking przeprowadził nawet zgrubne obliczenia, z których wynikało, że jeśli te czarne dziury miały rozmiar większy od małych asteroid, to istnieją do dzisiaj. W latach 90. zarysowano nieco bardziej szczegółowy obraz wydarzeń. Produkcję takich czarnych dziur przyspieszało ochładzanie się materii. Gdy po tysięcznych częściach sekundy od Wielkiego Wybuchu wszechświat nieco się ochłodził, kwarki i gluony z pierwotnej zupy zaczęły łączyć się w cięższe cząstki. Spadło ciśnienie, co spowodowało, że jeszcze więcej regionów zapadło się do czarnych dziur.
      Jednak przed 30 laty nie rozumiano dobrze fizyki plazmy kwarkowo-gluonowej, więc nikt nie potrafił precyzyjnie obliczyć, jak pojawienie się innych cząstek wpłynęło na tworzenie się czarnych dziur, jak masywne były to dziury, ani jak wiele mogło ich powstać. Ponadto zbytnio się tym tematem nie zajmowano. Pierwotne dziury nie były potrzebne, gdyż panował szeroko rozpowszechniony pogląd, że ciemną materię tworzą WIMPy (słabo oddziałujące masywne cząstki). Pierwotne czarne dziury odeszły w zapomnienie, stawały się przedmiotem kpin.
      Jednak WIMP-ów nie odkryto, za to coraz więcej wiemy od warunkach, jakie mogły panować na samym początku wszechświata.
      Od kilku lat niektórzy naukowcy bardziej intensywnie zajmują się pierwotnymi czarnymi dziurami. Publikowane prace pokazują, w jaki sposób mogły one powstać. Pierwsza generacja czarnych dziur mogła pojawić się po spadku temperatury wszechświata i utworzeniu przez kwarki i gluony pierwszych protonów i neutronów. Spowodowany tym spadek ciśnienia wywołał tworzenie się czarnych dziur, z których każda mogła wchłonąć ze swojej okolicy materię o masie około 1 masy Słońca. Oddziaływanie czarnej dziury było ograniczone horyzontem.
      Jednak wszechświat nadal się ochładzał. Zaczęły formować się kolejne cząstki, jak piony. To znowu spowodowało spadek ciśnienia i masowe pojawianie się kolejnych pierwotnych czarnych dziur. Jako, że wszechświat ciągle się rozszerzał, dziury należące do tej drugiej generacji mogły wchłaniać już więcej materii. Z obliczeń wynika, że było to około 30 mas Słońca. Dokładnie tyle, ile czarne dziury wykrywane przez LIGO/Virgo.
      Po uruchomieniu LIGO zainteresowanie koncepcją pierwotnych czarnych dziur wzrosło. Jednak Ali-Haïmoud przedstawił wspomnianą wcześniej pracę, w której odrzucił tę koncepcję. Obliczył bowiem, że dziur powinno być tak dużo, że rejestrowalibyśmy obecnie tysiące razy więcej fal grawitacyjnych niż rejestrujemy.
      Z zagadnieniem tym postanowił zmierzyć się Karsten Jedamzik, kosmolog z Montpellier. Gdy stworzył numeryczną symulację wszechświata pełnego obecnie czarnych dziur, odkrył zjawisko, którego Ali-Haimoud nie zauważył. Stwierdził otóż, że we wszechświecie pełnym czarnych dziur rzeczywiście dochodziłoby do bardzo częstego tworzenia się układów podwójnych takich obiektów. Jednak równie często do takiego układu podwójnego zbliżyłaby się trzecia czarna dziura i zamieniłaby się miejscami z jedną z dziur układu. Taki proces ciągle by się powtarzał. Z czasem, jak wylicza Jedamzik, takie ciągle zmieniające partnera czarne dziury tworzyłyby układy podwójne o niemal kołowych orbitach. W takich układach do zderzeń dochodziłoby bardzo rzadko. Z obliczeń Jedamzika wynika, że z powodu opisanego zjawiska nawet we wszechświecie pełnym czarnych dziur, notowalibyśmy fale grawitacyjne równie rzadko co obecnie.
      Co więcej Jedamzik oblicza, że pierwotne czarne dziury tworzą gromady o średnicy niemal 4 lat świetlnych. W takich gromadach może znajdować się około 1000 czarnych dziur. W centrum gromady skupiają się dziury o masie około 30 mas Słońca, na jej obrzeżach krążą mniej masywne czarne dziury. Takie gromady mogą znajdować się dosłownie wszędzie.
      Prace Jedamzika niczego jeszcze nie przesądzają. One wypełniają luki w nieistniejącej teorii, mówi Carl Rodriguez, astrofizyk z Carnegie Mellon Univeristy. Zwolennicy hipotezy pierwotnych czarnych dziur mają jeszcze wiele do zrobienia. W sygnałach z LIGO obserwujemy pewne dziwne zjawiska, jednak wszystko, co dotychczas zarejestrowaliśmy, można wytłumaczyć istnieniem standardowego procesu ewolucji gwiazd.
      Wygląda jednak na to, że istnienie bądź nieistnienie pierwotnych czarnych dziur zostanie dość szybko rozstrzygnięte. To nie jest nic w rodzaju teorii strun, gdzie dekadę czy trzy dekady później wciąż trwa dyskusja, stwierdza Chrisitan Byrnes z University of Sussex. Rosnąca czułość LIGO już wkrótce powinna pozwolić albo na wykrycie czarnej dziury o masie poniżej masy gwiazdowej, albo też na znalezienie ścisłego limitu minimalnej masy dla czarnych dziur.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Fizycy z Niemiec i Ameryki Północnej poinformowali o planach wybudowania u wybrzeży Kanady największego na świecie obserwatorium neutrin. The Pacific Ocean Neutrino Experiment (P-ONE) ma rejestrować najbardziej energetyczne neutrina pochodzące z ekstremalnych zjawisk w Drodze Mlecznej.
      Obserwatoria neutrin rejestrują promieniowanie Czerenkowa, które pojawia się, gdy neutrino przechodzące przez Ziemię trafi w jądro atomu, co powoduje powstanie szybko poruszających się cząstek. Obecnie największym tego typu urządzeniem jest opisywane przez nas IceCube, które korzysta z licznych fotodetektorów zawieszonych na linach, które są opuszczone głęboko w lód na Biegunie Południowym. Całość zajmuje 1 km3. W 2013 roku to właśnie IceCube zarejestrował pierwsze neutrino pochodzące spoza naszej galaktyki. Niedawno informowaliśmy o wykryciu tajemniczych sygnałów, które mogą doprowadzić do rewolucji w Modelu Standardowym.
      Jak mówi Elisa Resconi w Uniwersytetu w Monachium, która stoi na czele P-ONE, wyniki uzyskane dotychczas przez IceCube dowodzą, że potrzebne są dodatkowe obserwatoria neutrin oraz rozbudowa samego IceCube. Stoimy w przededniu istnienia astronomii opartej o neutrino. Jeśli jednak będzie się ona opierała o jedno obserwatorium, to jej rozwój potrwa bardzo długo, być może całe dekady.
      P-ONE ma składać się z 7 grup po 10 lin z czujnikami. Całość ma mieć objętość 3 km3. Dzięki temu, że będzie większe, obserwatorium będzie w stanie wyłapać rzadsze neutrina o większej energii. Będzie najbardziej czułe w zakresie dziesiątku teraelektronowoltów, podczas gdy IceCube jest w stanie zarejestrować neutrina o energiach rzędu pojedynczych TeV. P-ONE będzie obserwowało też inną część nieboskłonu, wyłapując głównie neutrina z południowej hemisfery. Częściowo jednak zakres prac obu obserwatoriów będzie się nakładał, zatem możliwa będzie niezależna weryfikacja obserwacji.
      Nowe obserwatorium zostanie umieszczone na głębokości około 2,6 km, w Cascadia Basin około 200 kilometrów od wybrzeży Kolumbii Brytyjskiej. Jego budowniczowie chcą wykorzystać już istniejącą infrastrukturę. Znajduje się tam bowiem 800-kilometrowe okablowanie używane przez Ocean Networks Canada, które zasila i przesyła dane ze znajdujących się na dnie oceanu urządzeń badawczych.
      Pierwsze eksperymenty w tym miejscu rozpoczęto w 2018 roku, kiedy to opuszczono dwie liny z czujnikami i stwierdzono, że wybrane miejsce ma odpowiednie właściwości optyczne do wykrywania neutrin. Obecnie P-ONE planuje opuszczenie dodatkowej stalowej liny zawierającej spektrometry, lidary i wykrywacze mionów. Pod koniec 2023 roku ma zostać zainstalowana pierwsza część obserwatorium, pierścień z 7 linami o długości kilometra każda. Jeśli to się uda, naukowcy zwrócą się z wnioskiem o grant w wysokości 50–100 milionów USD na dokończenie budowy obserwatorium. Koszty osobowe pochłoną kolejne 100 milionów USD.
      Resconi ma nadzieję, że prace nad budową P-ONE zakończą się przed rokiem 2030, jednak przyznaje, że jest to plan bardzo ambitny. Główną niewiadomą jest działanie czujników w warunkach dużego ciśnienia, obecności soli i stworzeń morskich.
      To nie pierwszy pomysł, by umieścić obserwatorium neutrin w morzu. Już w 2014 roku pracę miał rozpocząć umieszczony w Morzu Śródziemnym KM3NeT. Dotychczas udało się zainstalować jedynie 2 z 230 lin. Obecnie planuje się, że rozpocznie on pracę w 2026 roku. Z kolei u wybrzeży Francji powstaje jeszcze inny wykrywacz. Z planowanych 115 lin umieszczono dotychczas jedynie 6. Uruchomienie planowane jest na rok 2024.
      Jak mówi Resconi, jedną z największych trudności w budowie obserwatoriów neutrin jest brak odpowiednio przeszkolonych fachowców. Fizycy wiele rzeczy robią samodzielnie. Na przykład zbudowane przez nich skrzynki, które służą do łączenia kabli na dnie morza, zawiodły. Uczona ma nadzieję, że dzięki doświadczeniu pracowników Ocean Networks Canada uda się uniknąć kolejnych błędów. Dzięki zespołowi 30–40 osób zajmujących się budową infrastruktury, fizycy mogą zająć się stroną naukową przedsięwzięcia.

      « powrót do artykułu
×
×
  • Create New...