Sign in to follow this
Followers
0
-
Similar Content
-
By KopalniaWiedzy.pl
Teleskop Hubble'a sfotografował protoplanetę podobną do Jowisza, która formuje się w wyniku „intensywnego i gwałtownego” procesu. Obserwacje Hubble'a wspierają mniej popularną z hipotez o tworzeniu się planet, tę mówiącą o niestabilności dysku protoplanetarnego.
Nowo tworząca się planeta krąży wokół gwiazdy, której wiek astronomowie szacują na zaledwie 2 miliony lat. Dla przypomnienia, Układ Słoneczny liczy sobie około 4,6 miliarda lat.
Wszystkie planety powstają z dysków protoplanetarnych, dysków materiału krążącego wokół gwiazd. Dominująca hipoteza dotycząca formowania się gazowych olbrzymów jak Jowisz mówi, że powstają one w wyniku stopniowego zlepiania się materiału krążącego w dysku protoplanetarnym. Materiał, od miniaturowych ziaren pyłu po wielkie bloki skalne, zderza się i zlepia. Z czasem powstaje jądro, wokół którego gromadzi się gaz z dysku. Zgodnie zaś z alternatywną, mniej popularną, hipotezą, gdy dysk protoplanetarny się ochładza, grawitacja powoduje jego gwałtowne rozpadnięcie się na fragmenty o masie planet.
Nowo odkryta planeta, AB Aurigae b, jest około 9-kronie bardziej masywna od Jowisza i krąży wokół gwiazdy w odległości dwukrotnie większej niż odległość między Plutonem a Słońcem. Przy tak wielkiej odległości uformowanie się planety ze zderzającego się i zlepiającego materiału musiałoby trwać niezwykle długo. O ile w ogóle by do tego doszło. Dlatego też naukowcy sądzą, AB Aurigae b powstaje w wyniku niestabilności dysku. Mamy więc tutaj do czynienia z potwierdzeniem mniej popularnego modelu tworzenia się planet.
Powyższe badania zostały wykonane za pomocą dwóch instrumentów znajdujących się na pokładzie Teleskopu Hubble'a, a uzyskane wyniki porównano z danymi z japońskiego Subaru Telescope na Mauna Kea na Hawajach. Zinterpretowanie zjawisk zachodzących w tym układzie jest niezwykle trudne. Dlatego między innymi potrzebowaliśmy Hubble'a. Dobrej jakości zdjęcie pozwala nam lepiej odróżnić światło z dysku i z planety, mówi główny autor badań, Thayne Currie. Uczony dodaje, że przejrzano archiwa zdjęć Hubble'a i znaleziono w nich liczne zdjęcia AB Aurigae b wykonane w różnych długościach fali. Tworzą one spójny obraz, dostarczając silnych dowodów.
Nowe odkrycie to silny dowód na poparcie hipotezy mówiącej, że niektóre gazowe olbrzymy powstają w wyniku niestabilności dysku. Tak naprawdę to grawitacja jest tym, co się ostatecznie liczy, a pozostałości po formowaniu się gwiazd w ten czy inny sposób – za pośrednictwem grawitacji – łączą się, tworząc planety, mówi Alan Boss z Carnegie Institution of Science w Waszyngtonie.
« powrót do artykułu -
By KopalniaWiedzy.pl
Teleskop Kosmiczny Hubble'a pobił wyjątkowy rekord – zaobserwował najdalej od Ziemi położoną indywidualną gwiazdę. Dotychczasowy rekord również należał do Teleskopu Hubble'a i został pobity w 2018 roku, kiedy to zaobserwowano MACS J1149+2223 Lensed Star 1 położoną w odległości 9 miliardów lat świetlnych od Ziemi. Rekord ten właśnie pobito i to od razu o miliardy lat świetlnych.
Nowo zaobserwowana gwiazda znajduje się w odległości 12,9 miliarda lat świetlnych od naszej planety. Współczynnik przesunięcia ku czerwieni (redshift) dla tej odległości wynosi 6,2. Niemal nie mogliśmy w to uwierzyć, bo gwiazda znajduje się znacznie dalej, niż poprzedni rekord, mówi Brian Welch z Uniwersytetu Johnsa Hhopkinsa, główy autor artykułu opisującego osiągnięcie.
Odkrycia dokonano w danych zebranych w ramach projektu Hubble's RELICS (Reionization Lensing Cluster Survey). Normalnie przy tych odległościach całe galaktyki wyglądają jak niewielkie smugi, w których światło milionów gwiazd zlewa się w jedno. Światło z galaktyki, w której znajduje się ta gwiazda zostało powiększone i rozproszone przez zjawisko soczewkowania grawitacyjnego w długi sierp, który nazwaliśmy Łukiem Wchodzącego Słońca, mówi Welch.
Podczas szczegółowego badania galaktyki naukowcy zauważyli, że jedno z obserwowanych zjawisk jest powodowane przez ekstremalnie powiększoną w soczewkowaniu grawitacyjnym gwiazdę. Została ona nazwana Earendel, co w języku staroangielskim oznacza gwiazdę poranną. Odkrycie daje nadzieję na otwarcie całkiem nowego pola badań nad formowaniem się wczesnych gwiazd.
Earendel powstała tak dawno, że może nie zawierać tych samych pierwiastków, co młodsze gwiazdy. Dzięki możliwości zbadania Earendel zyskamy okazję to przyjrzenia się wszechświatowi, jakiego nie znamy, ale który doprowadził do tego, co istnieje obecnie. To tak, jakbyśmy dotychczas czytali bardzo interesującą książkę, ale zaczęli od drugiego rozdziału, a teraz mieli okazję przeczytać, jak to wszystko się zaczęło, ekscytuje się Welch.
Badacze sądzą, że Earendel ma masę co najmniej 50 razy większą od masy Słońca i jest miliony razy jaśniejsza od naszej gwiazdy. Mimo tego, że jest tak olbrzymia i jasna, nie bylibyśmy w stanie jej dostrzec z odległości, w jakiej się znajduje. Widzimy ją dzięki olbrzymiej gromadzie galaktyk WHL0137-08, który znajduje się między gwiazdą a Ziemią. Masa gromady zagina przestrzeń, działając jak olbrzymie szkło powiększające, dzięki któremu możemy dostrzec światło emitowane przez obiekty znajdujące się poza WHL0137-08.
Szczęśliwie złożyło się, że Earendel znajduje się w takiej pozycji, iż jest maksymalnie powiększana przez soczewkę grawitacyjną tworzoną przez gromadę galaktyk. Dzięki temu „wystaje” z blasku milionów gwiazd swojej galaktyki macierzystej, a jej jasność jest wzmacniana przez soczewkę co najmniej tysiąckrotnie. Obecnie niw wiemy, czy Earendel jest częścią układu podwójnego, ale warto pamiętać, że większość masywnych gwiazd ma co najmniej jednego towarzysza.
Specjaliści uważają, że przez wiele kolejnych lat Earendel będzie znacząco powiększana w wyniku soczewkowania. Gwiazdę będzie obserwował Teleskop Kosmiczny Jamesa Webba (JWST), a dzięki temu, że pracuje on głównie w podczerwieni, pozwoli na zdobycie wielu cennych informacji na jej temat. Uczeni spodziewają się, że Webb potwierdzi, iż Earendel to gwiazda, pozwoli nam też zmierzyć jej jasność i temperaturę, to zaś pozwoli na określenie typu gwiazdy i etapu życia, na jakim się znajduje.
Astronomów szczególnie interesuje skład Earendel, gdyż gwiazda powstała zanim jeszcze wszechświat został wypełniony ciężkimi pierwiastkami wytworzonymi przez kolejne generacje gwiazd. Jeśli okaże się, że Earendel składa się wyłącznie w pierwotnego wodoru i helu, będzie to pierwszy dowód na istnienie gwiazd III populacji. To hipotetyczna populacja pierwszych bardzo masywnych gwiazd, które praktycznie nie zawierały metali. Składały się wyłącznie z wodoru i helu, z możliwą niewielką zawartością litu.
Odkrycie Earendel przez Hubble'a daje nadzieję, że Webb dojrzy jeszcze bardziej odległe gwiazdy.
« powrót do artykułu -
By KopalniaWiedzy.pl
Jacques Kluska i jego zespół z Katolickiego Uniwersytetu w Leuven (KU Leuven) znaleźli dowody wskazujące, że stare gwiazdy w układach podwójnych mogą tworzyć planety. Podczas prowadzonych w podczerwieni obserwacji naukowcy zauważyli 10 systemów, w których w dyskach protoplanetarnych prawdopodobnie uformowały się wielkie planety. Jeśli odkrycie się potwierdzi, będziemy musieli ponownie przemyśleć teorie dotyczące narodzin planet.
Dyski protoplanetarne do olbrzymie struktury z gazu i pyłu otaczające rodzące się gwiazdy. Dzięki ich obserwacjom wiemy, w jaki sposób powstają planety. Wszystko rozpoczyna się od stopniowego łącznia się materii w dyskach. Z czasem zlepia się jej coraz więcej, powstaje coraz większy obiekt, który dosłownie rzeźbi w dysku. Z czasem rodzi się planeta, a tam, gdzie krąży wokół gwiazdy, widać wyraźnie mniej materiału w dysku protoplanetarnym. Ten brakujący materiał utworzył planetę. Obserwując więc dyski protoplanetarne z takimi wyraźnymi przerwami w materiale, możemy odnajdować tworzące się wokół nich planety. Z obserwacji dysków protoplanetarnych wokół młodych gwiazd wiemy, że emisja w podczerwieni z tych dysków spada w miarę formowania się w nich planet.
Jednak dyski protoplanetarne istnieją nie tylko wokół młodych gwiazd. Zaobserwowano je też wokół starych układów podwójnych, w skład których wchodzi biały karzeł. To pozostałość gwiazdy, która odrzuciła swoje zewnętrzne warstwy. I to właśnie te warstwy tworzą „dysk protoplanetarny drugiej generacji” wokół takich systemów.
Kluska i jego zespół obserwowali emisję z 85 starych układów podwójnych w Drodze Mlecznej. Zauważyli, że w przypadku 10 z nich emisja w podczerwieni była niższa niż powinna. To zaś sugeruje, że mogą się tam tworzyć planety. To jednak nie wszystkie wskazówki. Okazało się bowiem, że na powierzchni białych karłów w tych systemach występuje mniejszy odsetek metali trudnotopliwych – m.in. niobu, molibdenu, wolframu, tantalu i renu – niż zwykle. To wskazuje, że metale te mogły wejść w skład tworzącej się planety, zamiast opaść na powierzchnię gwiazdy.
Belgijscy uczeni chcą teraz wykorzystać teleskopy Europejskiego Obserwatorium Południowego, za pomocą których spróbują dojrzeć ewentualne planety tworzące się w dyskach protoplanetarnych starych układów podwójnych. Jeśli im się to uda, będą mogli badać tworzenie się „planet drugiej generacji”.
« powrót do artykułu -
By KopalniaWiedzy.pl
Teleskop Webba zbliża się do końca pierwsze fazy ustawiania zwierciadła głównego za pomocą NIRCam. Najpierw przysłał nam swoje selfie, a niedawno na Ziemię dotarło pierwsze zdjęcie HD 84406, gwiazdy, która będzie wykorzystywana do ustawiania zwierciadła. Obraz, który uzyskał teleskop jest bardzo podobny do tego, jaki otrzymywano podczas symulacji naziemnych.
Tak, jak zapowiadano, HD 84406 zobaczyliśmy 18 razy, po jednym z każdego segmentu. Następnie obsługa naziemna poruszała poszczególnymi segmentami, by określić, z którego z nich pochodzi które zdjęcie. Obecnie trwa etap tworzenia „macierzy obrazów”, czyli takiego ustawiania segmentów, by wszystkie z uzyskanych obrazów miały wspólny punkt.
Przeprowadzenie pierwszego etapu nie było proste. Najpierw trzeba było upewnić się, że NIRCam działa jak należy, a następnie zidentyfikować na wszystkich obrazach gwiazdę, która stanowi punkt odniesienia do ustawiania teleskopu. Przez kolejny miesiąc obsługa naziemna będzie ustawiała poszczególne segmenty zwierciadła oraz zwierciadło wtórne tak, byśmy w końcu otrzymali pojedynczy wyraźny obraz.
Jesteśmy niezwykle zadowoleni z postępu prac nad ustawianiem zwierciadła. Naprawdę jesteśmy szczęśliwi widząc, jak światło trafia do NIRCam, mówi Marcia Rieke, profesor astronomii z University of Arizona, odpowiedzialna z instrument NIRCam.
Proces wykonywania zdjęć rozpoczął się od ustawienia Teleskopu Webb w 156 różnych pozycjach, z których powinien zobaczyć HD 84406. Za pomocą 10 czujników NIRCam wykonano 1560 fotografii o łącznej pojemności 54 gigabajtów. Cały proces trwał niemal 25 godzin. Teleskop już w ciągu pierwszych 6 godzin zlokalizował gwiazdę i wykonał jej zdjęcia z pomocą każdego z segmentów zwierciadła. Fotografia połączono następnie w jedną. Przedstawione tutaj zdjęcie to centralny fragment olbrzymiej fotografii złożonej z 2 miliardów pikseli.
Podczas wstępnego ustawiania prześledziliśmy fragment nieboskłonu o powierzchni niemal Księżyca w pełni. Zgromadzenie tak dużej ilości danych wymagało zarówno od instrumentów Webba, jak i urządzeń na Ziemi, by działały bez najmniejszych zakłóceń od samego początku. Okazało się, że światło z każdego z 18 segmentów jest skupione bardzo blisko centrum obszaru poszukiwań. To świetny punkt wyjścia do ustawiania zwierciadła, cieszy się Marshall Perrin ze Space Telescope Science Institute, zastępca głównego naukowca Webba.
Zwierciadło główne ustawiane jest za pomocą urządzenia NIRCam. Dysponuje ono bowiem czujnikiem o bardzo szerokim polu widzenia, który bezpiecznie może pracować w temperaturach wyższych niż inne instrumenty naukowe teleskopu. Warto tutaj wspomnieć, że prace nad optyką Webba zaowocowały opracowaniem technologii COAS (Complete Ophthalmic Analysis System), która jest wykorzystywana w okulistyce i systemach korekcji wzroku iLASIK.
NIRCam będzie wykorzystywany przez niemal cały czas ustawiania zwierciadła głównego. Trzeba jednak wiedzieć, że instrument pracuje w temperaturach znacznie wyższych niż idealne dlatego na rejestrowanych przezeń obrazach pojawiają się artefakty. Będzie ich coraz mniej w miarę schładzania instrumentu.
« powrót do artykułu -
By KopalniaWiedzy.pl
Trzy nowo odkryte egzoplanety znajdują się na krawędzi zagłady – informują naukowcy z Instytutu Astronomii University of Hawai'i. Gazowe olbrzymy, zauważone po raz pierwszy przez teleskop kosmiczny TESS, znajdują się na jednych z najbardziej ciasnych znanych nam orbit. Jedna z nich, TOI-2337b, jest tak blisko swojej gwiazdy, że zostanie przez nią zniszczona za mniej niż milion lat. Żadnej innej znanej nam egzoplanety nie czeka tak szybka zagłada.
Takie badania są kluczowe dla zrozumienia ewolucji układów planetarnych. Dają nam one nowy wgląd na planety zbliżające się do kresu życia, bezpośrednio przed pochłonięciem ich przez gwiazdę, mówi główny autor badań, Samuel Grunblatt z Amerykańskiego Muzeum Historii Naturalnej.
Naukowcy szacują, że masa wspomnianych egzoplanet wynosi od 0,5 do 1,7 masy Jowisza, a ich średnice to od nieco mniejszej od średnicy Jowisza, po 1,6 jego średnicy. Istnieją też znaczne różnice w gęstości planet, a wszystko to wskazuje na różne ich pochodzenie.
Uczeni sądzą, że ich odkrycie to dopiero czubek góry lodowej. Dzięki takim systemom jak TESS spodziewamy się znaleźć setki, a nawet tysiące takich systemów planetarnych, co pozwoli nam poznać nowe szczegóły na temat interakcji planet pomiędzy sobą czy ich migracji w kierunku gwiazdy macierzystej, dodaje jeden z autorów badań, Nick Saunders.
Wspomniane trzy planety zostały zaobserwowane przez teleskop TESS w roku 2018 i 2019. Grunblatt i jego zespół wykorzystali następnie Obserwatorium Keck na Hawajach, by potwierdzić istnienie egzoplanet i poznać szczegóły na ich temat.
Obecnie obowiązujące modele przewidują, że planety powinny zbliżać się do swoich gwiazd, szczególnie w ciągu ostatnich 10% czasu życia gwiazdy. W miarę zbliżania się planety coraz bardziej powinny się nagrzewać, co spowoduje rozszerzanie się ich atmosfer. Z tych samych modeli wynika, że zbliżające się do gwiazdy planety będą jednocześnie zbliżały się do siebie, co zwiększa i ryzyko kolizji i ryzyko zdestabilizowania całego układu planetarnego.
Autorzy odkrycia sugerują jednocześnie, że jednej z planet – TOI-4329 – powinien przyjrzeć się Teleskop Kosmiczny Jamesa Webba (JWST). Może on zauważyć w jej atmosferze ewentualne ślady wody lub dwutlenku węgla. Jeśli by je znalazł, specjaliści mogliby więcej powiedzieć na temat ewolucji tej planety.
« powrót do artykułu
-
-
Recently Browsing 0 members
No registered users viewing this page.