Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Sztuczna inteligencja może bardzo się mylić. Warto uważać na jej zastosowania w medycynie

Recommended Posts

Autorzy badań opublikowanych na łamach PNAS ostrzegają, że nie można ufać technikom obrazowania medycznego rekonstruowanym za pomocą sztucznej inteligencji. Międzynarodowy zespół naukowy pracujący pod kierunkiem Andersa Hansena z Uniwersytetu w Cambridge stwierdził, że narzędzia do głębokiego uczenia się, które rekonstruują obrazy wysokiej jakości na podstawie szybkich skanów, tworzą liczne przekłamania i artefakty, które mogą wpływać na diagnozę.

Jak niejednokrotnie informowaliśmy, systemy sztucznej inteligencji są już na tyle zaawansowane, że równie dobrze jak radiolodzy, a często i lepiej, potrafią opisywać zdjęcia RTG, obrazy tomografii komputerowej czy rezonansu magnetycznego. W związku z tym pojawił się pomysł, by SI zaprząc do rekonstrukcji obrazów.

Pomysł polega na tym, by wykonywać obrazowanie o niższej rozdzielczości, czyli pobierać dane z mniejszej liczby punktów, a następnie, by wytrenowane systemy algorytmy sztucznej inteligencji rekonstruowały na tej postawie obraz o wysokiej rozdzielczości. W ten sposób można by zaoszczędzić czas i pieniądze potrzebny na wykonanie badania. Wykorzystywane tutaj algorytmy były trenowana na dużej bazie danych obrazów wysokiej jakości, co stanowi znaczne odejście od klasycznych technik rekonstrukcji bazujących na teoriach matematycznych.

Okazuje się jednak, że takie systemy SI mają poważne problemy. Mogą one bowiem przegapić niewielkie zmiany strukturalne, takie jak małe guzy nowotworowe, podczas gdy niewielkie, niemal niewidoczne zakłócenia spowodowane np. poruszeniem się pacjenta, mogą zostać odtworzone jako poważne artefakty na obrazie wyjściowym.

Zespół w skład którego weszli Vegard Antun z Uniwersytetu w Oslo, Francesco Renna z Uniwersytetu w Porto, Clarice Poon z Uniwersytetu w Bath, Ben Adcock z Simon Fraser University oraz wspomniany już Anders Hansen, przetestował sześć sieci neuronowych, wykorzystywanych do rekonstrukcji obrazów tomografii i rezonansu. Sieciom zaprezentowano dane odpowiadają trzem potencjalnym problemom, które mogą się pojawić: niewielkim zakłóceniom, niewielkim zmianom strukturalnym oraz zmianom w próbkowaniu w porównaniu z danymi, na których system był trenowany.

Wykazaliśmy, że niewielkie zakłócenia, których nie widać gołym okiem, mogą nagle stać się poważnym artefaktem, który pojawia się na obrazie, albo coś zostaje przez nie usunięte. Dostajemy więc fałszywie pozytywne i fałszywie negatywne dane, wyjaśnia Hansen.

Uczeni, chcą sprawdzić zdolność systemu do wykrycia niewielkich zmian, dodali do skanów niewielkie litery i symbole z kart do gry. Tylko jedna z sieci była w stanie je prawidłowo zrekonstruować. Pozostałe sieci albo pokazały w tym miejscu niewyraźny obraz, albo usunęły te dodatki.

Okazało się też, że tylko jedna sieć neuronowa radziła sobie ze zwiększaniem tempa skanowania i tworzyła lepszej jakości obrazy niż wynikałoby to z otrzymanych przez nią danych wejściowych. Druga z sieci nie była w stanie poprawić jakości obrazów i pokazywała skany niskiej jakości, a trzy inne rekonstruowały obrazy w gorszej jakości niż otrzymały do obróbki. Ostatni z systemów nie pozwalał na zwiększenie szybkości skanowania.

Hansen stwierdza też, że badacze muszą zacząć testować stabilność takich systemów. Wówczas przekonają się, że wiele takich systemów jest niestabilnych. Jednak największym problemem jest fakt, że nie potrafimy w sposób matematyczny zrozumieć, jak działają tego typu systemy. Są one dla nas tajemnicą. Jeśli ich porządnie nie przetestujemy, możemy otrzymać katastrofalnie złe wyniki.

Na szczęście takie systemy nie są jeszcze wykorzystywane w praktyce klinicznej. Zespół Hansena stworzył odpowiednie testy do ich sprawdzenia. Uczeni mówią, że nie chcą, by takie systemy zostały dopuszczone do użycia jeśli nie przejdą szczegółowych testów.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Unia Europejska pracuje nad regulacjami dotyczącymi użycia sztucznej inteligencji. Regulacje takie mają na celu stworzenie przejrzystych reguł wykorzystania AI i zwiększenie zaufania do najnowocześniejszych technologii.
      Nowe zasady mają regulować nie tylko używanie sztucznej inteligencji na terenie UE, ale również prace nad nią. Unia chce bowiem stać się jednym z głównych centrów rozwoju bezpiecznej, godnej zaufania i nakierowanej na człowieka sztucznej inteligencji.
      Regulacje skupiają się przede wszystkim na tych zastosowania AI, które mogą nieść ze sobą ryzyko naruszania praw czy prywatności. Wchodzą tutaj w grę przepisy dotyczące identyfikacji biometrycznej i kategoryzowania ludzi, egzekwowania prawa, zarządzania kwestiami azylowymi i granicznymi, migracji, edukacji i innych pól, na których AI może znaleźć zastosowanie.
      Eurourzędnicy chcą zakazać stosowania technologii, które mogą stanowić potencjalne zagrożenie dla bezpieczeństwa i podstawowych praw człowieka. Przepisy mają np. zapobiegać społecznemu kategoryzowaniu ludzi przez sztuczną inteligencję, jak ma to miejsce w Chinach czy USA. Zakazane ma być np. stosowanie sztucznej inteligencji do tworzenia reklam nakierowanych na konkretnego odbiorcę. Unia Europejska chce również, by przedsiębiorstwa mały obowiązek informowania użytkowników, gdy AI będzie wykorzystywana do określania ludzkich emocji czy klasyfikowania ludzi ze względu na niektóre dane biometryczne.
      Wysunięte propozycje obejmują bardzo szeroki zakres działalności AI, do samochodów autonomicznych poprzez reklamę bo bankowe systemy decydujące o przyznaniu kredytu. To bardzo ważny globalny przekaz mówiący, że pewne zastosowania sztucznej inteligencji są niedopuszczalne w krajach demokratycznych, praworządnych, przestrzegających praw człowieka, mówi Daniel Leufer, analityk z organizacji Access Now.
      Na razie propozycje są dość ogólne, ale i pełne luk, pozwalające na sporą interpretację. Z pewnością jednak działaniom UE będą przyglądały się firmy z całego świata, gdyż proponowane przepisy będą bezpośrednio dotyczyły tego, w jaki sposób przedsiębiorstwa będą mogły wykorzystywać AI na terenie Unii.
      Avi Gesser, partner w amerykańskiej firmie Debevoise mówi, że unijne regulacje – mimo że do czasu ich wprowadzenia z pewnością miną całe lata – wpłyną na przepisy na całym świecie. Zwykle prawodawcy nie palą się do wprowadzania tego typu przepisów. Raz, że uważają, iż AI to kwestia ściśle techniczna, dwa, że boją się zablokować swoimi przepisami rozwój. Jeśli więc pojawią się przepisy unijne, prawdopodobnie będą się na nich wzorowali prawodawcy z innych krajów.
      Do rozwiązania zaś pozostają tak poważne kwestie, jak np. problem manipulacji ludzkimi zachowaniami. Cała reklama polega na manipulacji. Prawdziwym wyzwaniem jest więc określenie, jakie manipulacje są dopuszczalne, a jakie niedopuszczalne, zauważa Gesser.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Narodowe Centrum Badań Jądrowych od wielu lat jest wiodącym producentem promieniotwórczego jodu, stosowanego w terapii i diagnostyce medycznej. Naukowcy z Zakładu Badań Reaktorowych nieustannie badają i optymalizują procesy tej produkcji. Najnowszy sposób napromieniania pozwoli na zwiększenie aktywności uzyskanego materiału, ograniczy ilość ciepła wydzielanego podczas produkcji i zmniejszy ilość odpadów promieniotwórczych.
      Jod-131 jest powszechnie stosowanym radioizotopem, który rozpada się poprzez emisję cząstki beta. Stosowany jest w leczeniu nadczynności tarczycy oraz jej niektórych nowotworów, które wykazują zdolność pochłaniania tego pierwiastka. Jod-131 jest stosowany również jako znacznik w radioterapii np. jako metajodobenzyloguanina -131I (131I-MIBG) w terapii guzów chromochłonnych i nerwiaka płodowego.
      Obecnie dwutlenek telluru używany jako materiał tarczowy przy produkcji jodu-131 jest najczęściej napromienianym materiałem w reaktorze MARIA – wyjaśnia inż. Anna Talarowska z Zakładu Badań Reaktorowych. Przed każdym cyklem pracy reaktora, do jego kanałów załadowywanych jest średnio około stu czterdziestu zasobników z TeO2. Rocznie napromienianych jest ponad 3000 zasobników w kanałach pionowych reaktora MARIA. Po przetworzeniu w naszym OR POLATOM jod w postaci radiofarmaceutyków lub roztworów radiochemicznych trafia do odbiorców na całym świecie. Modernizacja procesu napromieniania telluru pozwoli na bardziej wydajną produkcję.
      Jod–131 powstaje w wyniku przemiany β- niestabilnego izotopu 131mTe. Ten ostatni powstaje w wyniku wychwytu neutronu przez atom telluru–130. Warunki pozwalające na wychwyt neutronu przez 130Te panują w reaktorach badawczych takich jak reaktor MARIA. Rdzenie tych reaktorów są projektowane w taki sposób, aby możliwe było umieszczenie zasobników z materiałem tarczowym na określony, optymalny czas napromienienia. Do reaktora MARIA jako tarcza trafia tzw. tellur naturalny, czyli taki, jaki występuje naturalnie w przyrodzie – tłumaczy uczona. Składa się on z ośmiu stabilnych izotopów. Izotop 130Te stanowi jedynie ok. 34 % naturalnego telluru. Pozostałe stabilne izotopy telluru mają większy od 130Te przekrój czynny na wychwyt neutronów. Dzięki dużym wartościom przekrojów czynnych w tellurze znajdującym się w polu neutronów termicznych, a szczególnie epitermicznych, ma miejsce duża generacja ciepła, będącego rezultatem intensywnie zachodzących reakcji jądrowych. Dotyczy to szczególnie izotopu 123Te (stanowiącego 0,9 % naturalnego telluru), którego przekrój czynny na wychwyt neutronów to jest ponad 1000 razy większy, niż w przypadku 130Te. Oznacza to, że dużo łatwiej zachodzi reakcja neutronów z 123Te niż 130Te i jest to efekt niepożądany.
      Istotą proponowanej zmiany w sposobie produkcji jest napromieniowanie tarcz z naturalnym tellurem o wzbogaceniu w 130Te do 95% (zamiast dotychczasowych 33,8%). Dzięki czemu zmniejszy się liczba reakcji neutronów z innymi izotopami telluru, które stanowią nieużyteczną część końcowego produktu, a znaczącą podwyższy się wydajność napromieniania. Nowy sposób napromieniania tarcz pozwoli na uzyskanie większej aktywności 131I, przy jednoczesnym zmniejszeniu ilość odpadów produkcyjnych i bardziej efektywnym wykorzystaniu kanałów pionowych reaktora. Zwiększenie aktywności końcowego produktu, zmniejszenie ilości odpadów i optymalizacja wykorzystania kanałów, to krok ku wydajniejszej produkcji, a więc też szerszemu dostępowi tego radioizotopu. Cały czas analizujemy procesy napromieniania tak aby możliwie najlepiej zmaksymalizować ich efekty – podkreśla inż. Talarowska.
      Otrzymane wyniki dotychczasowych analiz pozwalają na wyciągnięcie dwóch zasadniczych wniosków: zastosowanie wzbogaconego telluru znacznie zwiększa wydajność produkcji oraz zmniejsza generację ciepła w zasobnikach. Obecnie trwają prace eksperymentalne, których wyniki pozwolą dokonać końcowej oceny. Z punktu widzenia reaktora MARIA niezbędne jest przygotowanie dokumentacji – m.in. instrukcji i procedur.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Wg raportu Światowej Organizacji Zdrowia (WHO) spontaniczny przedwczesny poród dotyczy 15 milionów noworodków rocznie. Aż milion z nich umiera. Wiele przez całe życie mierzy się z niepełnosprawnością.
      Wykorzystywana powszechnie manualna analiza obrazów ultrasonograficznych umożliwia wykrycie ewentualnych problemów, ale nie jest to metoda doskonała.
      Problem ten dostrzegają lekarze. W 2017 roku Nicole Sochacki-Wójcicka (w trakcie specjalizacji z ginekologii) oraz Jakub Wójcicki zgłosili się do dr. Tomasza Trzcińskiego z Wydziału Elektroniki i Technik Informacyjnych PW z pytaniem, czy jest możliwość zrealizowania projektu predykcji spontanicznego przedwczesnego porodu z wykorzystaniem sieci neuronowych.
      Wtedy powstał zespół badawczy i zaczęły się prace. Pierwsze efekty już znamy.
      Nasze rozwiązanie może wspomóc diagnostykę komputerową i pozwolić z większą dokładnością przewidywać spontaniczne przedwczesne porody – wyjaśnia Szymon Płotka, absolwent Politechniki Warszawskiej i jeden z członków zespołu pracującego nad projektem.
      Wytrenować sieć neuronową
      Przed rozpoczęciem projektu, współpracujący z nami lekarze przygotowali zestaw danych uczących, walidacyjnych oraz adnotacji w formie obrysu kształtu szyjek macicy na obrazach ultrasonograficznych oraz numerycznych (0 i 1), odpowiadającymi kolejno: poród w terminie, poród przedwczesny – wyjaśnia Szymon Płotka.
      Po wstępnym oczyszczeniu takie dane są wykorzystywane jako dane „uczące” sieć neuronową – w tym przypadku konwolucyjną (splotową).
      Analizuje ona każde zdjęcie piksel po pikselu, wyodrębniając z nich niezbędne cechy, które posłużą do zadania segmentacji interesującego nas fragmentu obrazu (w tym przypadku szyjki macicy) oraz klasyfikacji (czy mamy do czynienia z porodem przedwczesnym, czy nie) – tłumaczy dalej Szymon Płotka.W trakcie treningu sieć neuronowa testuje swoje predykcje na zbiorze walidacyjnym. Po zakończeniu trenowania sieci neuronowej, jest ona sprawdzana na danych testowych, które nie zostały wykorzystane w ramach treningu. W ten sposób weryfikuje się poprawność wytrenowanego modelu.
      W ramach projektu powstały dwie publikacje naukowe.
      Efektem prac opisanych w „Estimation of preterm birth markers with U-Net segmentation network” (publikacja dostępna tutaj i tutaj) jest m.in. redukcja błędu predykcji spontanicznych przedwczesnych porodów z 30% (manualnie przez lekarzy) do 18% przez sieć neuronową.
      W „Spontaneous preterm birth prediction using convolutional neural networks” (szczegóły tutaj i tutaj) naukowcy zaprezentowali poprawę jakości segmentacji w stosunku do pierwszej publikacji i uzyskali lepsze wyniki klasyfikacji.
      Zgodnie z naszą najlepszą wiedzą, są to jedyne istniejące prace podejmujące się zadania predykcji spontanicznego przedwczesnego porodu w oparciu o transwaginalne obrazy ultrasonograficzne – mówi Szymon Płotka.
      Naukowcy pracują obecnie nad serwisem w formie aplikacji internetowej. Chcą tam udostępnić przygotowane modele sieci neuronowej. Ma to pomóc ginekologom analizować obrazy ultrasonograficzne i tym samym wesprzeć diagnostykę spontanicznego przedwczesnego porodu. A to może uratować życie i zdrowie milionów noworodków.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W medycynie nuklearnej sztuczna inteligencja wkroczyła już na III i IV poziom w pięciostopniowej skali. Oznacza ona oszczędność czasu, szansę uniknięcia błędów ludzkich i skuteczniejsze terapie dla pacjentów – ocenia prof. Janusz Braziewicz z Polskiego Towarzystwa Medycyny Nuklearnej.
      Wkraczająca do nowoczesnej medycyny sztuczna inteligencja budzi skrajne emocje: w środowisku medycznym jak i w społeczeństwie jedni wiążą z nią duże nadzieje, inni mają obawy i wątpliwości. Tak jest np. z medycyną nuklearną, w której wykorzystywane są nowoczesne technologie.
      Prof. Janusz Braziewicz, kierownik Zakładu Medycyny Nuklearnej z Ośrodkiem PET w Świętokrzyskim Centrum Onkologii twierdzi, że zaawansowanie automatyzacji i sztucznej inteligencji w medycynie nuklearnej jest już na tyle duże, ze wkroczyło na III i IV poziom w pięciostopniowej skali.
      Pierwszy poziom oznacza jedynie działania manualne, drugi – maszynowo-manualne, a trzeci – zautomatyzowane działania maszynowo-manualne. Na czwartym poziomie pojawia się automatyzacja, ale „z ludzką ręką”, piąty oznacza pełną automatyzację.
      W diagnostyce obrazowej wygląda to w ten sposób, że na poziomie III (warunkowej automatyzacji) skaner czy system opisowy pod wpływem operatora dostosowuje się do narzucanych mu warunków i wykonuje zlecone zadanie.
      Obecnie obserwujemy duże przyspieszenie technologiczne i wejście na poziom IV (wysokiej automatyzacji), kiedy to system automatycznie przetwarza samodzielnie pozyskane dane i dostarcza specjaliście wstępnie przeanalizowane informacje. Ma to miejsce na przykład wówczas, kiedy system zeskanuje ułożonego na stole skanera PET/TK pacjenta i na podstawie swego rodzaju skanu topogramowego, w oparciu o analizę danych anatomicznych chorego zaproponuje wykonanie skanu PET i tomografu komputerowego z uwzględnieniem wskazania klinicznego i sylwetki pacjenta – wyjaśnia w informacji przekazanej PAP prof. Braziewicz, członek Zarządu Polskiego Towarzystwa Medycyny Nuklearnej.
      Odbywa się to z użyciem automatycznie dostosowanych parametrów akwizycji, z minimum wymaganej dawki promieniowania ze strony tomografu komputerowego. Algorytm po stronie PET ustala: szybkość przesuwu łóżka podczas płynnego skanowania różnych części ciała pacjenta, zastosowanie różnych matryc rekonstrukcyjnych, zastosowanie bramkowania oddechowego dla odpowiedniego obszaru klatki piersiowej i tułowia.
      Według prof. Braziewicza bezzasadne są zatem obawy, że komputery zastąpią lekarzy. W przypadku diagnostyki obrazowej stają się one wręcz niezbędne. Powodem jest choćby lawinowy wzrost diagnostycznych badań obrazowych, w tym również z zakresu medycyny nuklearnej. Jedynie w latach 2000-2010 liczba badań tomografii komputerowej i rezonansu magnetycznego wzrosła dziesięciokrotnie. Z kolei w medycynie nuklearnej taki gwałtowny wzrost liczby badań SPECT i PET przypada na okres po 2010 r.
      W ślad za tym nie następuje niestety proporcjonalny wzrost liczby dostępnych lekarzy specjalistów, którzy mogliby je szybko i rzetelnie przeprowadzić. Brakuje także wyszkolonych techników, korzystających z zaawansowanych metod akwizycji z zastosowaniem narzędzi, jakie oferuje dany skaner. Efektem jest przeciążenie ilością pracy poszczególnych grup specjalistów i często coraz dłuższy czas oczekiwania na opisanie badań. Co istotne, presja obniża jakość pracy. Jak pokazują badania, jeśli skróci się o 50 proc. czas na interpretację badania radiologicznego, to stosunek błędów interpretacyjnych wzrośnie o niemal 17 proc. – zaznacza prof. Janusz Braziewicz.
      Sztuczna inteligencja w coraz bardziej skomplikowanej i wymagającej diagnostyce obrazowej może zatem usprawnić i wspomóc pracę lekarza. Wdrożenia algorytmów opartych na Artificial Intelligence (AI) przynoszą oszczędność czasu i szansę na pełną standaryzację procedur, ale także na uniknięcie błędów ludzkich i skuteczniejsze, spersonalizowane terapie dla pacjentów – twierdzi specjalista.
      Obecnie medycy nuklearni rozwijają nowy trend teranostyki, który wydaje się być przyszłością personalizowanej medycyny poprzez ścisłe połączenie diagnostyki i terapii w celu dobrania do potrzeb konkretnego pacjenta celowanego leczenia. W obszarze sztucznej inteligencji medycy nuklearni coraz częściej wspierają proces terapii, pomagając w ocenie trafności i zasadności zaleconego leczenia już w początkowej jego fazie. Nie bez znaczenia jest w tym kontekście wykorzystywanie hybrydowych badań PET/CT na przykład w planowaniu radioterapii – tłumaczy prof. Janusz Braziewicz.
      Sztuczna inteligencja określa proces, w którym maszyna, czyli komputer, uczy się i naśladuje funkcje poznawcze specyficzne dla człowieka, aby wykonywać zadania, jakie zwyczajowo wykonywane są przez ludzki umysł: rozpoznawanie obrazów, identyfikacja różnic czy stawianie logicznych wniosków i prognozowanie. W procesie deep learning komputer już nie organizuje danych i nie wykonuje wcześniej zdefiniowanych ciągów równań, ale zbiera podstawowe parametry dotyczące tych danych i jest tak zaprogramowany, że przygotowuje się do samodzielnego uczenia się przez rozpoznawanie wzorców przy użyciu wielu kolejnych warstw przetwarzania.
      Trzeba mieć zatem świadomość, że algorytmy AI będą tak dobre, jak dane, na których były trenowane. Wyzwaniem będzie zatem zgromadzenie odpowiednio opracowanych dużych zestawów danych oraz odpowiednio wydajnych centrów obliczeniowych – uważa przedstawiciel Polskiego Towarzystwa Medycyny Nuklearnej.
      Jego zdaniem szanse zastosowania sztucznej inteligencji w medycynie to przede wszystkim digitalizacja wszystkich danych dotyczących konkretnego pacjenta, z uwzględnieniem takich aspektów, jak miejsce zamieszkania, historia chorób w rodzinie, dotychczasowe hospitalizacje, podejmowane wcześniej terapie lekowe i obecnie przyjmowane leki, styl życia, rodzaj wykonywanej pracy, kondycja psychofizyczna.
      Ta ilość danych może być przetworzona przez wydajne komputery. Jeśli maszyny będą miały zaimplementowane algorytmy deep learning, jest szansa, że wesprą specjalistów w szybszej i trafniejszej diagnostyce oraz lepszej opiece farmakologicznej. Korzyści z wdrożeń sztucznej inteligencji może odnieść zatem cały system opieki zdrowotnej, w tym: świadczeniodawca, lekarz, ale przede wszystkim – sam pacjent – uważa specjalista.
      Podkreśla, że lekarze, którzy będą używać z dużą rozwagą i odpowiedzialnością systemów opartych na sztucznej inteligencji zastąpią tych, którzy ich nie będą używać. Tym bardziej, że w nowoczesnych rozwiązaniach nie mówimy już o wielkości danych generowanych przy badaniach i dalej poddawanych processingowi w gigabajtach, terabajtach czy nawet petabajtach. Bardzo szybko nadchodzi era eksabajtów danych – dodaje prof. Janusz Braziewicz.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Każdy chromosom ludzkiego organizmu jest zakończony sekwencjami telomerowymi. Ponieważ skracają się one przy każdym podziale komórki, przyciągały od lat wyobraźnię badaczy. Stawiali oni sobie pytanie: co stanie się, kiedy telomery skrócą się tak bardzo, że podział będzie niemożliwy? W istocie, związek między skracaniem telomerów a maksymalną liczbą podziałów komórki (limitem Hayflicka) został potwierdzony. Istnieje zatem związek między długością telomerów a starzeniem się.
      Wiele chorób ma cechy przyspieszonego starzenia – dezorganizacji procesów, które normalnie utrzymują równowagę niezbędną dla funkcjonowania organizmu. Wobec tego można też postulować, że długość telomerów mogłaby okazać się przydatna w medycynie, służąc jako marker stanu zdrowia.
      Krótsze telomery leukocytarne to eksperymentalny biomarker ryzyka sercowo-naczyniowego [1], w znacznym stopniu niezależny od typowych czynników ryzyka ocenianych w wywiadzie i analizach biochemicznych. Może to być pośrednio związane z czynnikami dietetycznymi, jako że większa długość telomerów koreluje ze spożyciem warzyw i owoców [2], większą aktywnością fizyczną [3] i czystością powietrza [4]. Jednak liczba chorób, w których wykazano zmiany długości telomerów, jest obszerna.
      Większa długość telomerów w tkance raka piersi jest związana z lepszą prognozą niezależnie od szeregu innych czynników zazwyczaj branych przy takiej ocenie pod uwagę [5]. Wykazano również zależność między długością telomerów a ryzykiem raka żołądka, chorobą Alzheimera i cukrzycą [10]. Telomery są krótsze u palaczy, proporcjonalnie do liczby paczkolat, a efekt ten zdaje się w jakimś stopniu utrzymywać nawet po zaprzestaniu palenia [6]. Zaburzenia wzrastania wewnątrzmacicznego korelują ze skróceniem telomerów łożyska [7]. Wiadomo także, że kobiety mają dłuższe telomery niż mężczyźni [8]. Osoby z krótszymi telomerami zdają się reagować silniejszą produkcją kortyzolu na czynniki stresowe [9].
      Temat długości telomerów jest również aktywnie zgłębiany w Polsce. W Klinice Gastroenterologii Dziecięcej i Chorób Metabolicznych Uniwersytetu Medycznego w Poznaniu realizowany jest projekt Narodowego Centrum Nauki „Preludium” dotyczący długości telomerów w mukowiscydozie (2017/25/N/NZ5/02126). Mukowiscydoza jest najczęstszą poważną chorobą genetyczną w populacji osób białych.
      Polski program badań przesiewowych w kierunku mukowiscydozy należy do najlepszych na świecie (ok. 99% skuteczność). Dodatni wynik stwierdza się u ok. 1 na 5000 nowo urodzonych dzieci. Łącznie w Polsce na mukowiscydozę choruje ponad 2000 osób. Dzięki postępom w intensywnym leczeniu, jakie jest wymagane w tej chorobie, przeciętna długość życia polskich chorych wydłużyła się z ok. 20 lat dekadę temu do niemal 30 lat dziś. U znaczącej większości chorych można dokładnie poznać mutacje genu CFTR, którego mutacje są odpowiedzialne za chorobę. Niemniej, zależności między tymi mutacjami a przebiegiem choroby nie są ścisłe, co stanowi jedną z wielkich zagadek biomedycyny w ogóle. Z tego powodu potrzebne są dokładne narzędzia pozwalające charakteryzować chorych i przewidywać u nich przebieg choroby, a także uprzedzająco stosować odpowiednie interwencje.
      Prowadzone w Poznaniu badania mają na celu scharakteryzowanie długości telomerów oraz przebiegu klinicznego choroby w grupie dzieci i osób dorosłych z mukowiscydozą. Długość telomerów oznaczana jest metodą ilościowej reakcji polimerazy (qPCR), co wymaga znacznego stopnia precyzji. Publikacji wyników badań można spodziewać się w przyszłym roku. Tymczasem coraz wyraźniej widać, że telomery budzą szerokie zainteresowanie w środowisku naukowym i przyciągają uwagę jako potencjalne biomarkery. Ich wprowadzenie do praktyki będzie jednak wymagało licznych badań i weryfikacji przydatności w dużych grupach.
      Bibliografia
      1.     Haycock PC, Heydon EE, Kaptoge S, Butterworth AS, Thompson A, Willeit P. Leucocyte telomere length and risk of cardiovascular disease: systematic review and meta-analysis. BMJ. 8 lipiec 2014;349:g4227.

      2.     Rafie N, Golpour Hamedani S, Barak F, Safavi SM, Miraghajani M. Dietary patterns, food groups and telomere length: a systematic review of current studies. Eur J Clin Nutr. 2017;71(2):151–8.

      3.     Lin X, Zhou J, Dong B. Effect of different levels of exercise on telomere length: A systematic review and meta-analysis. J Rehabil Med. 8 lipiec 2019;51(7):473–8.

      4.     Miri M, Nazarzadeh M, Alahabadi A, Ehrampoush MH, Rad A, Lotfi MH, i in. Air pollution and telomere length in adults: A systematic review and meta-analysis of observational studies. Environ Pollut. styczeń 2019;244:636–47.

      5.     Ennour-Idrissi K, Maunsell E, Diorio C. Telomere Length and Breast Cancer Prognosis: A Systematic Review. Cancer Epidemiol Biomarkers Prev. 2017;26(1):3–10.

      6.     Astuti Y, Wardhana A, Watkins J, Wulaningsih W, PILAR Research Network. Cigarette smoking and telomere length: A systematic review of 84 studies and meta-analysis. Environ Res. 2017;158:480–9.

      7.     Niu Z, Li K, Xie C, Wen X. Adverse Birth Outcomes and Birth Telomere Length: A Systematic Review and Meta-Analysis. J Pediatr. 2019;215:64-74.e6.

      8.     Gardner M, Bann D, Wiley L, Cooper R, Hardy R, Nitsch D, i in. Gender and telomere length: systematic review and meta-analysis. Exp Gerontol. marzec 2014;51:15–27.

      9.     Jiang Y, Da W, Qiao S, Zhang Q, Li X, Ivey G, i in. Basal cortisol, cortisol reactivity, and telomere length: A systematic review and meta-analysis. Psychoneuroendocrinology. 2019;103:163–72.

      10.     Smith L, Luchini C, Demurtas J, Soysal P, Stubbs B, Hamer M, i in. Telomere length and health outcomes: An umbrella review of systematic reviews and meta-analyses of observational studies. Ageing Res Rev. 2019;51:1–10.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...