Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Ocean na Plutonie i jądro z serpentynitu? Nowatorska symulacja nadzieją zdalnej geologii planetarnej

Recommended Posts

Na powierzchni Plutona wyróżnia się Tombaugh Regio, wielka dobrze odbijająca światło struktura w kształcie serca, która zyskała rozgłos po tym, jak w 2015 roku sfotografowała ją sonda New Horizons. Uwagę specjalistów szybko przyciągnęła jej eliptyczna zachodnia część, Sputnik Planitia. Przypomina ona misę wyżłobioną w wyniku potężnego uderzenia.

New Horizons nie dostarczył nam zbyt wielu zdjęć z drugiej części Plutona, ale na tych, które mamy widać niezwykłą strukturę. Wygląda ona jak geologiczne puzzle składające się ze szczelin, kopców i jam. Co interesujące, znajduje się dokładnie naprzeciwko Sputnik Planitia.

Podczas tegorocznej 51th Lunar and Planetary Science Conference przedstawiono wyniki symulacji, z których wynika, że niezwykła skruktura powstała w wyniku uderzenia, które utworzyło Sputnik Planitia. W wyniku tego uderzenia pojawiły się potężne fale sejsmiczne, które doprowadziły do pojawienia się po drugiej stronie globu puzzli ze szczelin, kopców i jam. Co więcej, takie przemieszczenie się fal sejsmicznych i utworzenie wspomnianych struktur byłoby możliwe tylko wówczas, jeśli pod powierzchnią Plutona istnieje głęboki ocean.

Wyniki badań, przeprowadzonych przez doktorantkę Adeene Denton z Purdue University, już znalazły uznanie w oczach innych naukowców. To naprawdę nowatorski pomysł, mówi James Tuttle Keane z Jet Propulsion Laboratory.

Z kolei Paul Byrne z North Carolina State University zauważa, że jeśli ten sposób badania planetarnej sejsmologii pozwala na udowodnienie istnienia wody, to w ten sposób zbadać można będzie nie tylko Plutona, ale wszelkie lodowe światy z Pasa Kuipera.

Kluczowy dowód wskazujący na istnienie na Plutonie oceanu zdobyliśmy w 2016 roku. Gdy New Horizon dostarczył nam zdjęć Sputnik Planitia naukowcy zdali sobie sprawę, że struktura ta znajduje się w nietypowym miejscu. Jest na samym równiku, a jego pozycja jest na stałe powiązana z pozycją Charona, największego księżyca Plutona. Modele komputerowe sugerują, że gdy doszło do uderzenia, które utworzyło Sputnik Planitia, równik Plutona znajdował się w innym miejscu. Jednak po uderzeniu ocean pod powierzchnią planety zaczął gromadzić się w kraterze, na którego powierzchni uformowała się pokrywa lodowa. Doprowadziło to do przemieszczenia się Plutona i utworzenia nowego równika. to jednak wciąż tylko hipoteza.

Wróćmy jednak do badań Denton. Symulacja, która najlepiej oddaje rozmiary Sputnik Planitia oraz to, co stało się po drugiej stronie Plutona, pokazuje, że obiekt, który wywołał kataklizm miał 400 kilometrów średnicy i poruszał się z prędkością 7240 km/h. Analiza sposobu rozchodzenia się i prędkości fal sejsmicznych po uderzeniu sugeruje też, że jądro Plutona zbudowane jest z serpentynitu.

Hipoteza Denton jest interesująca i oparta na solidnych podstawach, jednak niczego nie przesądza. Jak bowiem zauważa Byrne, zdjęcia z drugiej półkuli Plutona, tej naprzeciwko Sputnik Planitia, są słabej jakości. Trudno jednoznacznie stwierdzić, co na nich widać. Nie można wykluczyć, że niezwykłe puzzle to skutek oddziaływania zamarzniętego metanu, dwutlenku węgla i azotu na powierzchni Plutona. Bardzo często przechodzą one z fazy stałej w gazową i mogą tworzyć niezwykłe krajobrazy.

Jeśli jednak Denton ma rację, to jej badania stanowią silny argument za istnieniem na Plutonie wielkiego oceanu. Dają też nadzieję, na przeprowadzenie kolejnych zdalnych badań z dziedziny geologii planetarnej.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Po raz czwarty z rzędu światowe oceany pobiły rekordy ciepła. Kilkunastu naukowców z Chin, USA, Nowej Zelandii, Włoch opublikowało raport, z którego dowiadujemy się, że w 2022 roku światowe oceany – pod względem zawartego w nich ciepła – były najcieplejsze w historii i przekroczyły rekordowe maksimum z roku 2021. Poprzednie rekordy ciepła padały w 2021, 2020 i 2019 roku. Oceany pochłaniają nawet do 90% nadmiarowego ciepła zawartego w atmosferze, a jako że atmosfera jest coraz bardziej rozgrzana, coraz więcej ciepła trafia do oceanów.
      Lijing Cheng z Chińskiej Akademii Nauk, który stał na czele grupy badawczej, podkreślił, że od roku 1958, kiedy to zaczęto wykonywać wiarygodne pomiary temperatury oceanów, każda dekada była cieplejsza niż poprzednia, a ocieplenie przyspiesza. Od końca lat 80. tempo, w jakim do oceanów trafia dodatkowa energia, zwiększyło się nawet 4-krotnie.
      Z raportu dowiadujemy się, że niektóre obszary ocieplają się szybciej, niż pozostałe. Swoje własne rekordy pobiły Północny Pacyfik, Północny Atlantyk, Morze Śródziemne i Ocean Południowy. Co gorsza, naukowcy obserwują coraz większą stratyfikację oceanów, co oznacza, że wody ciepłe i zimne nie mieszają się tak łatwo, jak w przeszłości. Przez większą stratyfikację może pojawić się problem z transportem ciepła, tlenu i składników odżywczych w kolumnie wody, co zagraża ekosystemom morskim. Ponadto zamknięcie większej ilości ciepła w górnej części oceanów może dodatkowo ogrzać atmosferę. Kolejnym problemem jest wzrost poziomu wód oceanicznych. Jest on powodowany nie tylko topnieniem lodu, ale również zwiększaniem objętości wody wraz ze wzrostem jej temperatury.
      Ogrzewające się oceany przyczyniają się też do zmian wzorców pogodowych, napędzają cyklony i huragany. Musimy spodziewać się coraz bardziej gwałtownych zjawisk pogodowych i związanych z tym kosztów. Amerykańska Administracja Oceaniczna i Atmosferyczna prowadzi m.in. statystyki dotyczące gwałtownych zjawisk klimatycznych i pogodowych, z których każde przyniosło USA straty przekraczające miliard dolarów. Wyraźnie widać, że liczba takich zjawisk rośnie, a koszty są coraz większe. W latach 1980–1989 średnia liczba takich zjawisk to 3,1/rok, a straty to 20,5 miliarda USD/rok. Dla lat 1990–1999 było to już 5,5/rok, a straty wyniosły 31,4 miliarda USD rocznie. W ubiegłym roku zanotowano zaś 18 takich zjawisk, a straty sięgnęły 165 miliardów dolarów.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Największe zwierzę, jakie kiedykolwiek żyło na Ziemi, pochłania olbrzymią liczbę najmniejszych kawałków plastiku, donoszą naukowcy z Uniwersytetu Stanforda. Płetwal błękitny i inne walenie wchłaniają więcej mikroplastiku, niż dotychczas sądzono. I niemal cały mikroplastik, jaki trafia do ich organizmów, pochodzi z ich pokarmu, a nie z wody, którą filtrują.
      Uczeni ze Stanforda opublikowali na łamach Nature Communications wyniki badań, w czasie których skupili się na płetwalach błękitnych, płetwalach zwyczajnych oraz humbakach i ilości mikroplastiku, który trafia do ich organizmów. Naukowcy stwierdzili, że zwierzęta żerujące u wybrzeży Kalifornii pożywiają się głównie na głębokościach od 50 do 250 metrów. To jednocześnie ten obszar wód oceanicznych, w którym występuje najwięcej mikroplastiku. Na podstawie badań uczeni oszacowali, że każdego dnia przeciętny płetwal błękitny pochłania około 10 milionów kawałków mikroplastiku.
      Płetwale błękitne znajdują się niżej w łańcuchu pokarmowym, niż można by wnioskować z rozmiarów ich ciała. To oznacza, że są bliżej oceanicznego plastiku. Łączy je z nim jedno kryl. Kryl pochłania plastik, płetwale zjadają kryl, mówi współautor badań Matthew Savoca.
      Humbaki żywią się głównie rybami i pochłaniają codziennie około 200 000 kawałków mikroplastiku, chociaż te osobniki, które jedzą głównie kryl, spożywają dziennie do 1 miliona fragmentów. Z kolei płetwale zwyczajne, których dietę stanowi i kryl i ryby, mogą codziennie wchłaniać od 3 do 10 milionów kawałków mikroplastiku. Savoca zauważa, że w jeszcze gorszej sytuacji są te zwierzęta, które żerują w bardziej zanieczyszczonych wodach, jak np. Morze Śródziemne.
      Co więcej, mikroplastik trafia do organizmów waleni głównie z pożywieniem, a nie z filtrowaną przez nie wodą. A to dodatkowy powód do zmartwień. Specjaliści obawiają się, że przez mikroplastik walenie mogą nie otrzymywać odpowiedniej ilości składników spożywczych. Musimy przeprowadzić dodatkowe badania, by dowiedzieć się, czy kryl, który wchłonął mikroplastik, nie ma przypadkiem mniej tłuszczu, podobnie zresztą nie wiemy, czy mikroplastik zjadany przez ryby nie powoduje, że są one mniej pożywne. Pochłaniając mikroplastik zwierzęta te mogą bowiem otrzymywać sygnał, że już się najadły, stwierdza główna autorka badań, Shirel Kahane-Rapport. Jeśli ryby i kryl są mniej tłuste, oznacza to, że każde polowanie – które związane jest z dużym wydatkiem energetycznym – przynosi waleniom mniej kalorii, co może być dla nich szkodliwe. Jeśli obszar, w którym polują, jest pełen żywności, ale jest to żywność uboga w składniki odżywcze, to polowanie jest marnowaniem energii, zjadają śmieci. To tak, jakby trenować do maratonu, odżywiając się w tym czasie żelkami, dodaje Kahane-Rapport.
      Goldbogen Lab, w którym prowadzono badania, od ponad dekady zbiera i analizuje dane dotyczące waleni. Naukowcy badają jak wiele walenie jedzą, w jaki sposób się odżywiają, dlaczego są tak duże, jak pracują ich serca. Teraz zakres badań rozszerzono o mikroplastik, który jest coraz poważniejszym problemem w morzach i oceanach. Mamy tutaj zwierzęta, których populacja z olbrzymim trudem odradza się po okresie polowań, a które muszą mierzyć się z wieloma innymi problemami wywoływanymi przez człowieka, piszą autorzy badań.
      Problem plastiku w morskim łańcuchu pokarmowym znany jest od 50 lat. Dotychczas mikroplastik został znaleziony w organizmach co najmniej 1000 morskich gatunków. Jego wpływ na walenie jest szczególnie niepokojący, gdyż zwierzęta ta pochłaniają jego olbrzymie ilości.
      Uczeni będą chcieli zbadać, co dzieje się z mikroplastikiem trafiającym do organizmów waleni. Może on podrażniać żołądek. Może trafiać do krwioobiegu. A może jest w całości wydalany. Tego wciąż nie wiemy, przyznaje Kahane-Rapport. Naukowcy zbadają też, jak mikroplastik wpływa na wartość odżywczą gatunków kluczowych nie tylko dla waleni, ale i innych zwierząt ważnych z ekologicznego punktu widzenia.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Super-ziemia TOI-1452 b może być w całości pokryta oceanem, uważa międzynarodowy zespół astronomów. Na łamach The Astronomical Journal uczeni poinformowali o odkryciu planety krążącej wokół czerwonego karła TOI-1452 znajdującego się w układzie podwójnym w Gwiazdozbiorze Smoka. Układ ten jest odległy od Ziemi o 99,5 lat świetlnych.
      TOI-1452 b jest nieco większa i bardziej masywna od naszej planety. Obiega swoją gwiazdę w ciągu 11 dni. Mimo że jej gwiazda jest mniejsza i chłodniejsza od Słońca, to planeta otrzymuje mniej więcej dwukrotnie więcej promieniowania niż Ziemia. Jest go tyle, że odpowiada ono temperaturze 52,85 stopni Celsjusza na powierzchni planety.
      Woda stanowi mniej niż 1% masy Ziemi. Gęstość niektórych egzoplanet wskazuje, że w większym stopniu zbudowane są z lżejszych materiałów niż nasza planeta. Najprawdopodobniej znaczy to, że zawierają więcej wody.
      TOI-1452 to jedna z najlepszych znanych nam kandydatek na wodny świat. Jej średnica i masa wskazują, że ma ona znacznie mniejszą gęstość niż planeta zbudowana ze skał i metali, jak Ziemia, stwierdził główny autor badań, Charles Cadieux. Analizy wykazały, że planeta może aż w 30% składać się z wody.
      TOI-1452 b z pewnością będzie badana za pomocą Teleskopu Webba. Znajduje się bowiem stosunkowo blisko Ziemi, co ułatwia badanie jej atmosfery, ponadto jest w takim miejscu nieboskłonu, który jest widoczny dla Webba przez większą część roku. Jak tylko zarezerwujemy sobie czas obserwacyjny na JWST rozpoczniemy pracę nad lepszym zrozumieniem tej planety, dodaje profesor René Doyon z Uniwersytetu w Montrealu.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Komety to jedna z najstarszych obiektów w Układzie Słonecznym. Te lodowe pozostałości po formowaniu się planet zostały wyrzucone przez grawitację na obrzeża Układu Słonecznego. Ich rezerwuarem jest Obłok Oorta, hipotetyczny obłok materiału znajdującego się w odległości od kilku tysięcy do 100 000 jednostek astronomicznych od Słońca.
      Tym, co najbardziej przyciąga naszą uwagę w kometach jest ich spektakularny warkocz ciągnący się na wiele milionów kilometrów. Jego źródłem jest jądro komety, składające się z lodu, pyłu i okruchów skalnych. Jądra większości znanych komet liczą kilka lub kilkanaście kilometrów średnicy. Teleskop Hubble'a odkrył właśnie prawdziwego giganta wśród jąder komet – olbrzyma o średnicy około 140 kilometrów.
      Cometa C/2014 UN271 (Bernardinelli-Bernstein) została odkryta przez Pedro Bernardinellego i Gary'ego Bernsteina w archiwalnych zdjęciach z Dark Energy Survey w Cerro Tololo Inter-American Observatory w Chile. Po raz pierwszy zaobserwowano ją w 2010 roku. A w bieżącym roku naukowcy wykorzystali Teleskop Hubble'a oraz radioteleskopy, by odróżnić jej stałe jądro od otaczającej je chmury pyłu. Okazało się, że mają do czynienia z największym znanym jądrem komety. Obecnie C/2014 UN271znajduje się w odległości mniejszej niż 3,2 miliarda kilometrów od Słońca, a za klika milionów lat ponownie trafi do Obłoku Oorta.
      Aby uświadomić sobie, z jakim gigantem mamy do czynienia, musimy wiedzieć, że średnica jądra C/2014 UN271 jest około 50-krotnie większa niż średnica typowej komety. Słynna kometa Halleya ma jądro o średnicy 11 kilometrów, zaś jądro komety Hale-Boppa ma 74 km średnicy. Dotychczasową rekordzistką była kometa C/2002 z jądrem o średnicy 96 kilometrów. Teraz zaś mówimy o 140-kilometrowym jądrze.
      Profesor David Jewitt Uniwersytetu Kalifornijskiego w Los Angeles, współautor badań nad C/2014 UN271 mówi, że ta kometa to wierzchołek góry lodowej olbrzymiego zbioru tysięcy komet znajdujących się w odległych obszarach Układu Słonecznego, które odbijają zbyt mało światła, byśmy mogli je dostrzec. Zawsze podejrzewaliśmy, że ta kometa ma wielkie jądro, gdyż widzimy ją tak jasną z tak dużej odległości. Teraz mamy potwierdzenie.
      "To niezwykły obiekt, biorąc pod uwagę fakt, jak bardzo jest aktywny w tak dużej odległości od Słońca. Domyślaliśmy się, że jądro może być całkiem duże, ale musieliśmy to potwierdzić, dodaje główny autor artykułu naukowego, Man-To Hui z Uniwersytetu Nauki i Technologii w Taipa w Macau. Naukowcy wykorzystali więc pięć zdjęć wykonanych w styczniu bieżącego roku przez Hubble'a.
      Głównym problemem było odróżnienie jądra od otaczającego go gazu i pyłu. Kometa jest obecnie zbyt daleko od Ziemi, by można było ten problem rozwiązać wizualnie. Jednak w danych z Hubble'a widać pojaśnienia w miejscu, gdzie znajduje się jądro. Hui i jego zespół stworzyli komputerowy model warkocza komety, który pasował do obrazów z Hubble'a. Następnie poświatę z warkocza odjęto od całości, pozostawiając samo tylko światło odbijane przez jądro.
      Uzyskane w ten sposób wyniki porównano z wcześniejszymi pomiarami dokonanymi za pomocą radioteleskopu ALMA (Atacama Large Millimeter/submilimeter Array). Wszystkie te dane łącznie pozwoliły na określenie średnicy jądra i jego współczynnika odbicia. Okazało się, że dane z Hubble'a odnośnie wielkości jądra komety są zgodne z wcześniejszymi danymi z ALMA, jednak jądro jest ciemniejsze niż sądzono. Jest wielkie i ciemniejsze od węgla, mówi Jewitt.
      Kometa C/2014 UN271 od ponad miliona lat podąża w kierunku Słońca. Pochodzi prawdopodobnie z Obłoku Oorta, ale – podobnie jak inne komety – nie narodziła się w nim, ale została tam wypchnięta przez oddziaływania grawitacyjne olbrzymich planet w czasach, gdy orbity Jowisza i Saturna wciąż ewoluowały.
      Kometa Bernardinelli-Bernstein znajduje się na eliptycznej orbicie, a jej podróż wokół Słońca trwa około 3 milionów lat.  Obecnie znajduje się w odległości około 3 godzin świetlnych od Słońca, a w najdalszym punkcie orbity od naszej gwiazdy dzieli ją około pół roku świetlnego.
      Obłok Oorta to hipotetyczna struktura, której istnienie jako pierwszy postulował holenderski astronom Jan Oort. Masa Obłoku może sięgać nawet 20-krotności masy Ziemi. Jednak samego obłoku nie możemy zaobserwować, gdyż tworzący go materiał, w tym olbrzymia liczba komet, jest zbyt słabo widoczny, byśmy mogli go bezpośrednio obserwować. Jeśli Obłok istnieje, to jest największą strukturą w Układzie Słonecznym i jest – przynajmniej przy obecnym stanie techniki – całkowicie dla nas niewidzialny.
      Wiemy jednak, że komety przybywają do wewnętrznych obszarów Układu Słonecznego z każdej strony, a to sugeruje, że Obłok Oorta ma kształt sfery. Jeśli on rzeczywiście istnieje, to sondy Voyager mogą do niego dotrzeć za około 300 lat, a kolejnych 30 000 lat zajmie im przelot przez Obłok.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Historia naszej planety, to historia 4,5 miliarda lat schładzania się. Dzięki temu, że Ziemia stygnie, uformowała się jej sztywna skorupa i mogło powstać życie. Jednocześnie dzięki temu, że nie wystygła, istnieją takie procesy jak tektonika płyt i wulkanizm. Gdy wnętrze planety wystygnie, te kluczowe procesy zatrzymają się. Nie wiemy jednak, jak szybko nasza planeta się wychładza i kiedy procesy przebiegające w jej wnętrzu zatrzymają się.
      Odpowiedzią na te pytania może dać zbadanie przewodnictwa cieplnego minerałów znajdujących się na granicy między jądrem a płaszczem Ziemi. To bardzo ważne miejsce, w którym lepkie skały mają bezpośredni kontakt z płynnym zbudowanym głównie z niklu i żelaza zewnętrznym jądrem. Gradient temperatury pomiędzy jądrem zewnętrznym a płaszczem jest bardzo duży, zatem potencjalnie może tam przepływać sporo ciepła. Warstwa graniczna zbudowana jest głownie z bridgmanitu.
      Profesor Motohiko Murakami ze Szwajcarskiego Instytutu Technologicznego w Zurichuy (ETH Zurich) wraz z naukowcami z Carnegie Institute for Science opracowali złożony system pomiarowy, który pozwolił im na wykonanie w laboratorium oceny przewodnictwa cieplnego bridgmanitu w warunkach ciśnienia i temperatury, jakie panują we wnętrzu Ziemi. Wykorzystali przy tym niedawno opracowaną technikę optycznego pomiaru absorpcji diamentu podgrzewanego impulsami laserowymi.
      Dzięki tej nowej technice wykazaliśmy, że przewodnictwo cieplne bridgmanitu jest około 1,5-razy większe niż się przyjmuje, mówi profesor Murakami. To zaś wskazuje, że przepływ ciepła pomiędzy jądrem a płaszczem jest większy. A większy przepływ ciepła oznacza, że konwekcja w płaszczu zachodzi szybciej i Ziemia szybciej się ochładza. Tektonika płyt może więc w rzeczywistości spowalniać szybciej, niż się obecnie przyjmuje.
      Grupa Murakami wykazała jednocześnie, że szybsze wychładzanie się płaszcza zmieni fazy minerałów na granicy jądra i płaszcza. Schładzający się bridgmanit zmieni się w minerał, który będzie jeszcze efektywniej przewodził ciepło, zatem stygnięcie Ziemi jeszcze bardziej przyspieszy.
      Wyniki naszych badań rzucają nowe światło na ewolucję dynamiki Ziemi. Wskazują, że Ziemia, podobnie jak Merkury czy Mars, schładza się szybciej i stanie się szybciej nieaktywna, wyjaśnia Murakami.
      Trudno jednak powiedzieć, ile czasu minie zanim ruchy konwekcyjne w płaszczu ustaną. Wciąż wiemy zbyt mało, by określić, kiedy do tego dojdzie, przyznają naukowcy. Żeby się tego dowiedzieć, uczeni muszą najpierw lepiej rozpoznać w czasie i przestrzeni procesy konwekcyjne w płaszczu. Ponadto muszą wiedzieć, jak rozpad pierwiastków radioaktywnych we wnętrzu Ziemi, który jest jednym z głównych źródeł ciepła, wpływa na dynamikę procesów płaszcza.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...