Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Zidentyfikowano przeciwciało monoklonalne, które powstrzymuje koronawirusy SARS

Recommended Posts

Naukowcy z Uniwersytetu w Utrechcie, Erasmus Medical Center oraz Harbour BioMed zidentyfikowali ludzkie przeciwciało monoklonalne, które chroni komórki przez zainfekowaniem przez wirus SARS-CoV-2. Odkrycie tego przeciwciała, które jest skuteczne również przeciwko SARS-CoV, to ważny krok w kierunku opracowania metody leczenia lub ochrony przed COVID-19.

Niewykluczone, że stworzenie takiego leku zapobiegłoby w przyszłości epidemiom powodowanym przez podobne koronawirusy.
Odkrycie to kładzie podwaliny pod kolejne badania w kierunku dokładnego opisu tego przeciwciała i opracowania leku na COVID-19, mówi współautor badań, profesor Frank Grosveld. O szczegółach badań możemy przeczytać w Nature Communications.

SARS-CoV-2 i SARS-CoV należą do podgatunku Sarbecovirus z rodziny betakoronawirusów. Oba przeszły barierę międzygatunkową i zarażają ludzi, powodując zagrażające życiu objawy ze strony układu oddechowego.

Przeciwciała monoklonalne to bardzo obiecująca kategoria leków do walki z chorobami zakaźnymi. Wykazały one swoją przydatność przeciwko wielu wirusom. Przeciwciała neutralizujące koronawirusy atakują przede wszystkim glikoproteinę S, której celem jest umożliwienie wirusowi wniknięcia do komórki gospodarza. Proteina ta składa się z dwóch funkcjonalnych podjednostek. S1, w skład której wchodzą cztery domeny od S1A do S1D, odpowiada za przyłączenie się wirusa do komórki. Z kolei podjednostka S2 jest odpowiedzialna za łączenie się błon komórkowych wirusa i komórki.

Proteina S ma w 77,5% identyczną sekwencję aminokwasów w obu koronawirusach SARS. Zwykle łączy się ona z proteiną ACE2 na powierzchni komórki. Grosveld i jego koledzy poszukiwali przeciwciał biorących na cel SARS-CoV. W ten sposób zidentyfikowali przeciwciało monoklonalne 47D11, które działa przeciwko obu koronawirusom.

Okazało się, że przeciwciało to przyczepia się do S1B u obu koronawirusów, potencjalnie uniemożliwiając wirusowi zainfekowanie komórki gospodarza. Co ciekawe, naukowcy sugerują, że 47D11 neutralizuje wirusy za pośrednictwem nieznanego jeszcze mechanizmu. Przypominają, że już wcześniejsze badania wskazywały istnienie takich alternatywnych mechanizmów, jak np. destabilizacja struktury proteiny S. Być może mamy tutaj do czynienia z czymś podobnym.

To pierwsze doniesienia o ludzkim przeciwciele monoklonalnym, które neutralizuje SARS-CoV-2, stwierdzają autorzy badań w podsumowaniu. Przeciwciało to może być pomocne w opracowaniu testów antygenowych i serologicznych na SARS-CoV-2. Może też ono, samodzielnie lub w połączeniu z innymi środkami, zapobiegać lub leczyć COVID-19, a potencjalnie również przyszłe choroby powodowane przez wirusy z podgatunku Sarbecovirus.

Wcześniej informowaliśmy, że potencjał powstrzymania nowego koronawirusa ma też białko LY6E.


« powrót do artykułu

Share this post


Link to post
Share on other sites

I to jest jakaś pocieszająca wiadomość, a nie upieranie się przy znajdowaniu szczepionki dla tych, którzy nie zdążyli umrzeć, a na dodatek są zdrowi, a w części nawet odporni na wirusa, a nie koniecznie na szczepionkę. Trzeba leczyć chorych, a nie szczepić zdrowych, bo nigdy nie wiadomo co taka szczepionka przyniesie po dłuższym czasie jej stosowania. "Bezpieczna" antykoncepcja w Szwecji, generowała kalekie dzieci. Różnorodność genetyczna ludzi jest tak duża, że, jak się przekonały niektóre firmy testujące swe szczepionki (leki), te np. zabijały wszystkich Chińczyków. Należy zauważyć, że żadna z epidemii nie wyniszczyła wszystkich, bo zawsze jest jakiś procent ludzi odpornych.  To oni są wskazówką dla nauki. Przy całej tej zawierusze epidemicznej wychodzi na jaw, że żadne superkomputery czy sztuczne inteligencje na nic się zdają, a środki pomocne znajduje się przypadkiem, stosując lek na malarię czy zgagę. Chyba do projektowania leków jeszcze nam daleko. 

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Co najmniej od początku bieżącego roku media ekscytują się doniesieniami o pojawieniu się nowych wariantów wirusa SAR-CoV-2. Nie od dzisiaj wiemy, że wirusy mutują, więc nowych wariantów należało się spodziewać. Jednak zmiany mogą niepokoić, szczególnie jeśli wpływają na naszą pamięć immunologiczną lub skuteczność szczepionek. Naukowcy postanowili zbadać jakiego rodzaju zmiany zachodzą wśród koronawirusów atakujących ludzi od dziesiątków lat i dowiedzieć się, w jaki sposób mutacje SARS-CoV-2 mogą wpłynąć na przyszłe interakcje wirusa z człowiekiem.
      Znamy setki koronawirusów krążących wśród nietoperzy, świń, wielbłądów czy kotów. Wiemy też, że 7 z nich atakuje ludzi. Cztery powodują objawy podobne do łagodnego przeziębienia i zarażają w sezonie grypowym kilkadziesiąt procent chorych. To sezonowe wirusy 229E, NL63, OC43 oraz HKU1. Trzy kolejne wirusy mogą powodować poważne zachorowania i prowadzić do zgonu: MERS-CoV, SARS-CoV oraz SARS-CoV-2.
      Wiemy, że niektóre koronawirusy ponownie zarażają ludzi. Nie jest jednak jasne, czy jest to spowodowane dryfem genetycznym [czyli powolnymi mutacjami wirusa – red.] czy też utratą pamięci immunologicznej przez ludzki organizm. Chcieliśmy sprawdzić, czy istnieją jakieś dowody na to, że koronawirusy podobne do SARS-CoV-2 zmieniają się, by uniknąć ludzkiego układu odpornościowego, mówi doktor Kathryn Kistler z Wydziału Szczepionek i Chorób Zakaźnych we Fred Hutchinson Cancer Research Center w Seattle.
      Naukowcy przyjrzeli się czterem koronawirusom wywołującym sezonowe przeziębienia. Wiemy, że wirusy te zidentyfikowano u ludzi 20–60 lat temu, wiemy, że ponownie infekują ludzi, nie wiemy jednak, czy przyczyną ponownych infekcji jest dryf genetyczny czy utrata przeciwciał.
      Uczeni użyli wielu różnych technik obliczeniowych, by przyjrzeć się ewolucji tych wirusów w czasie. Szczególnie interesowały ich zmiany, jakie mogły zajść w proteinach mogących zawierać antygeny, czyli np. w białku S, które znajduje się na powierzchni wirusa i jest tym samym wystawione na działanie układu odpornościowego.
      Okazało się, że u dwóch koronawirusów – OC43 i 229E – mamy do czynienia z szybkim tempem ewolucji białka S. Niemal wszystkie mutacje, które są korzystne dla tych wirusów, zaszły w regionie S1 tego białka. To właśnie ten region pomaga w infekowaniu komórek ludzkiego organizmu.
      Wyniki badań wskazują, że wirusy te ulegają szybkiemu dryfowi genetycznemu, by uniknąć układu odpornościowego. Co więcej, z przeprowadzonych szacunków wynika, że przydatne wirusowi mutacje białka S (białka kolca) OC43 i 229E pojawiają się raz na 2-3 lata. To mniej więcej dwu- a nawet trzykrotnie szybciej niż mutacje obserwowane w wirusie grypy H3N2.
      W związku z dużą złożonością i zróżnicowaniem sezonowych koronawirusów, nie jest do końca jasne, czy koronawirusy takie jak SARS-CoV-2 również ewoluują w ten sam sposób. Może się okazać, że co jakiś czas trzeba będzie zmieniać obecnie stosowane szczepionki przeciwko COVID-19 tak, by zwalczały nowe szczepy SARS-CoV-2. Kluczowym elementem walki z tą chorobą będzie więc ciągłe monitorowanie ewolucji antygenów wirusa, dodaje Trevor Bedford, główny autor badań.
      Ze szczegółami pracy uczonych z Seattle można zapoznać się na łamach eLife.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Grupa naukowców z nowojorskiej Icahn School of Medicine at Mount Sinai odkryła dowody sugerujące, że urządzenia smart watch mogą wykrywać objawy COVID-19 jeszcze zanim u chorego pojawią się objawy. Dane takie uzyskano na podstawie badań, w których wzięło udział 297 pracowników służby zdrowia.
      Jednym z wczesnych objawów COVID-19 jest pojawienie się stanu zapalnego w organizmie. Gdy tak się stanie, dochodzi do niewielkiej zmiany w przepływie krwi. Te zaś prowadzą do zmian rytmu serca, które smart watch może wykryć.
      Badanych proszono, by przez dłuższy czas nosili Apple Watch. Zegarek notował przez dłuższy czas rytm serca, dzięki czemu określił normę dla badanej osoby. Wczesnym sygnałem infekcji była zaś nagła długotrwała zmiana rytmu. Badani, oprócz tego, że nosili zegarki, zainstalowali w nich również specjalną aplikację, która poszukiwała takich długotrwałych zmian w rytmie serca. Analiza danych z urządzeń wykazała, że zegarki wykryły 2/3 zainfekowanych osób średnio na 7 dni przed pojawieniem się u nich objawów.
      To już kolejne badania wskazujące, że urządzenia smart watch mogą bardzo wcześnie wykrywać niepokojące zmiany w organizmie. Pozostaje więc stworzenie odpowiednich aplikacji, które będą w stanie śledzić i analizować takie dane oraz poinformują użytkownika o problemie.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Na Uniwersytecie w Umea udało się uzyskać niezwykle szczegółowy obraz adenowirusa jelitowego. Okazało się, że jest on jedną z najbardziej złożonych struktur biologicznych, jakie dotychczas obrazowano na poziomie atomowym. Dokładne określenie jego struktury pomoże w opracowaniu szczepionki przeciwko wirusowi, który każdego roku zabija ponad 50 000 dzieci w wieku poniżej 5. roku życia.
      Adenowirusy to przede wszystkim wirusy układu oddechowego. Te atakujące układ pokarmowy są mniej znane. Muszą być one wyposażone w mechanizmy umożliwiające im przetrwanie kwaśnego środowiska żołądka, by mogły przez niego przejść i zarazić jelita.
      Szwedzcy naukowcy, posługując się mikroskopem krioelektronowym byli w stanie stworzyć trójwymiarowy obraz ludzkiego adenowirusa jelitowego HAdV-F41 i zobrazować patogen do poziomu atomowego. Dowiedzieli się dzięki temu, że powłoka chroniąca wirusa przed kwasem żołądkowym składa się z dwóch tysięcy molekuł białek, zbudowanych w sumie z sześciu milionów atomów. Nasze prace pozwalają nam lepiej zrozumieć, w jaki sposób wirus przedostaje się przez żołądek i jelita. Dalsze prace dadzą odpowiedź na pytanie, czy wiedza te przyda się do opracowania szczepionki, która sobie z wirusem poradzi i będzie podawana doustnie, a nie za pomocą zastrzyku, mówi Lars-Anders Carlson.
      Badania wykazały, że adenowirus jelitowy nie zmieniaj struktury gdy trafia na kwaśne środowisko. Zauważono też inne różnice pomiędzy adenowirusem jelitowym, a oddechowymi. Na te drugie istnieje szczepionka. Wszystkie te informacje ułatwią zrozumienie, jak przebiega infekcja i jak prowadzi do śmierci.
      Badania nad adenowirusem jelitowym mogą pomóc też w walce z... COVID-19. Wiele opracowywanych szczepionek przeciwko tej chorobie bazuje na zmodyfikowanych adenowirusach. Jeśli udałoby się wykorzystać w tym celu adenowirusa jelitowego, to istnieje szansa na stworzenie szczepionki doustnej. To zaś znakomicie ułatwiłoby szczepienia.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Doktorzy Dagmara Biały i Adrian Zagrajek wraz z kolegami z Pirbright Institute oraz University of Cambridge zidentyfikowali kluczowe zmiany genetyczne, dzięki którym wirus SARS-CoV-2 mógł przejść z nietoperzy na ludzi. Naukowcy określili też, które gatunki zwierząt mogą być podatne na infekcję wspomnianym koronawirusem.
      Z przeprowadzonych badań wynika, że kluczowe adaptacje jakim uległ SARS-CoV-2 są podobne do tych zaobserwowanych w przypadku wirusa SARS-CoV. To sugeruje istnienie wspólnego mechanizmu, dzięki któremu koronawirus przenoszony przez nietoperze ulega zminom umożliwiającym infekowanie ludzi. Zrozumienie tego mechanizmu pomoże w przyszłych badaniach wirusów krążących u zwierząt oraz w określeniu, które z nich mogą potencjalnie zaadaptować się, by wywołać zoonozy.
      Wykorzystaliśmy nieinfekcyjną bezpieczną platformę, by sprawdzić, jak zmiany białka kolca (białka S) zmieniają sposób wnikania wirusa do komórek różnych gatunków zwierząt dzikich, hodowlanych oraz zwierząt domowych. Musimy to monitorować, gdyż można spodziewać się pojawiania kolejnych wariantów wirusa SARS-CoV-2, mówi doktor Stephen Graham z Wydziału Patologii University of Cambridge.
      W latach 2002–2003 mieliśmy do czynienia z epidemią SARS. Wówczas naukowcy zidentyfikowali blisko spokrewnione ze sobą odmiany SARS-CoV u nietoperzy i cywet. To pozwoliło stwierdził, że najprawdopodobniej wirus najpierw przeszedł na cywety, a później na ludzi.
      Jednak dotychczas nie udało się znaleźć takiego zwierzęcego pośrednika pomiędzy nietoperzami a ludźmi w przypadku SARS-CoV-2. Już w lutym 2020 roku informowaliśmy o podobieństwie SARS-CoV-2 do obecnego u nietoperzy koronawirusa RaTG13. Oba patogeny są podobne pod względem genetycznym w 96%. Wtedy też wspominaliśmy o wyjątkowym układzie odpornościowym nietoperzy, który powoduje, że są one dobrymi gospodarzami dla licznych wirusów.
      Autorzy najnowszych badań porównali białko S obu wirusów i określili ich główne różnice.
      SARS-CoV-2 i inne koronawirusy wykorzystują biało szczytowe (białko S) do przyłączania się do receptorów na powierzchni komórek. To pierwszy etap prowadzący do infekcji. Receptorem takim jest np. ACE2. Jednak białko S musi pasować do receptora jak klucz do zamka. Musi mieć odpowiedni kształt. U każdego gatunku zwierząt receptory mają nieco inny kształt, zatem białko wirusa będzie się z jednymi łączyło lepiej, z innymi gorzej.
      Naukowcy, chcąc sprawdzić, czy różnice pomiędzy SARS-CoV-2 a RaTG13 wynikają z zaadaptowania się pierwszego z nich do ludzi, zamienili białka S obu wirusów i sprawdzili, jak dobrze lączą się one z ludzkim receptorem ACE2.
      Okazało się, że gdy do białka S wirusa SARS-CoV-2 dodano regiony RaTG13 to tak zmienione białko nie było w stanie połaczyć się efektywnie z ludzkim ACE2. Tymczasem gdy do białka S wirusa RaTG13 dodano regiony typowe dla SARS-CoV-2, łączenie z ludzkim ACE2 przebiegało znacznie bardziej efektywnie, choć nie było tak dobre, jak łączenie się niezmienionego SARS-CoV-2. Zdaniem naukowców, wskazuje to, że już wcześniej w wirusie SARS-CoV-2 dochodziło do zmian, które w końcu pozwoliły mu na pokonanie bariery międzygatunkowej.
      Uczeni sprawdzili też, na ile efektywnie białko S wirusa SARS-CoV-2 łączy się z receptorem ACe2 u 22 różnych gatunków zwierząt. Pod uwagę wzięto psy, koty, króliki, świnki morsie, chomiki, konie, szczury, fretki, szynszyle, kurczaki, krowy, owce, kozy, świnie, indyki i bawoły, 4 gatunki nietoperzy oraz 2 gatunki, które mogą być powiązane z epidemiami koronawirusów – cywety i łuskowce. W ten sposób chcieli sprawdzić, czy któryś z nich jest potencjalnie podatny na infekcję. Wykazali, że receptory ACE2 nietoperzy i ptaków najsłabiej łączą się z SARS-CoV-2. To potwierdza, że białko S tego wirusa dostosowało się do ludzkich receptorów ACE2 już po przejściu na ludzi, najprawdopodobniej za pośrednictwem jakiegoś innego gatunku.
      Z kolei najsilniej białko S łączyło się z ACE2 u psów, kotów i krów. Nie oznacza to jednak, że mogą one chorować czy przenosić wirusa, gdyż przyłączenie się wirusa do receptora to dopiero pierwszy etap. Zdolność do zainfekowania organizmu i dalszego roznoszenia patogenu zależy bowiem od zdolności wirusa do namnażania się w komórkach danego gatunku i zdolności układu odpornościowego gospodarza do zwalczenia infekcji. Dotychczas zaś brak doniesień, by domowi pupile chorowali czy przenosili wirusa na ludzi.
      Ze szczegółami badań można zapoznać się w artykule The SARS-CoV-2 Spike protein has a broad tropism for mammalian ACE2 proteins opublikowanym na łamach PLOS Biology.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...