Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Naukowcy z Uniwersytetu w Glasgow odkryli, że odpady z tworzyw sztucznych znajdują się nawet w 80% gniazd pewnych ptaków morskich. Po raz pierwszy zidentyfikowano również źródło plastiku; przynajmniej dla części badanych gatunków.

Analizy przeprowadzone w 2018 r. na niezamieszkałej wyspie u zachodnich wybrzeży Szkocji pokazały, że spośród 1597 zbadanych gniazd odpady tworzyw sztucznych znajdowały się aż w 625. W przypadku kormoranów czubatych (Phalacrocorax aristotelis) odsetek gniazd z plastikiem sięgał 80%. W przypadku gatunków, które co roku budują nowe gniazda - mew - czasem "tylko" 1/3 gniazd zawierała plastik.

Duże różnice międzygatunkowe w zakresie proporcji gniazd z odpadami tworzyw sztucznych wynikają zapewne po części z różnych zachowań związanych z ich budową. Kormorany czubate korzystają z tych samych gniazd rok po roku, a więc ilość plastiku rośnie w nich z czasem.

Co istotne, stwierdzono, że plastik w gniazdach to głównie odpady poużytkowe, wyrzucane w obszarach zabudowanych. Kończą one w gniazdach nie dlatego, że ptaki morskie aktywnie je zbierają i przenoszą do gniazda, ale dlatego, że podlegają biernemu transportowaniu przez prądy morskie - podkreśla dr Ruedi Nager.

Danni Thompson, która współpracowała z dr. Nagerem, przyglądała się bliżej mewom srebrzystym (Larus argentatus), najliczniejszemu gatunkowi na Lady Isle.

Ponieważ mewy srebrzyste często żerują na wysypiskach, chcieliśmy sprawdzić, czy połykają przy tym plastik i przynoszą go do gniazd - opowiada Thompson.

Bazując na zdjęciach gniazd i tworzyw znalezionych w zwróconych resztkach pokarmu w miejscu gniazdowania, naukowcy mogli porównać rodzaj i kolor plastiku pochodzącego z regurgitacji i wbudowanego w konstrukcję. Gdyby źródłem materiału w gnieździe były kawałki pochodzące z żerowania w obszarach zamieszkanych, można by się spodziewać sporych podobieństw między kawałkami ze zwróconej treści i gniazda.

Okazało się jednak, że rodzaj plastiku z diety różnił się od znalezionego w gnieździe, co pokazało nam, że plastik z gniazd dostał się tu w inny sposób - opowiada dr Nager.

Naukowcy sporządzili mapę wszystkich gniazd na wyspie i sprawdzili, czy gniazda z odpadami tworzyw sztucznych są równo rozmieszczone. Okazało się, że gniazda z północy Lady Isle, które znajdują się bliżej strefy pływów od strony stałego lądu, częściej zawierają plastik (o ile w południowej połowie wyspy plastik wchodził w skład 32,1% gniazd mew srebrzystych, o tyle na północy odsetek ten wynosił już 42,3%). To sugeruje, że plastik w gniazdach pochodzi z lądu i jest wymywany na brzeg. Jednym słowem, ptaki mogą go zbierać z bezpośredniego otoczenia gniazda.

Jak podali autorzy raportu z Marine Pollution Bulletin, plastik wykryto w 80% gniazd kormoranów czubatych, 53% gniazd mew siodłatych (Larus marinus), 35% gniazd mew srebrzystych, a także 25% gniazd mew żółtonogich (Larus fuscus) i kormoranów zwyczajnych (Phalacrocorax carbo).

Liczebność populacji ptaków morskich na świecie spada, dlatego tak ważne jest, by zrozumieć wszystkie działające na nie presje. Ptaki te stykają się z zanieczyszczeniem plastikiem, bo zjadają tworzywa sztuczne, zaplątują się w odpady (np. sieci czy torby) i wreszcie wbudowują tworzywa w swoje gniazda. Ostatnie z opisanych zjawisk może wpływać na jakość i właściwości gniazd, negatywnie oddziałując na jaja i pisklęta. Możliwe także, że dorosłe ptaki i pisklęta zaplątują się w resztki tworzyw i giną.

Wykorzystanie dokumentacji fotograficznej do monitorowania ilości/akumulacji plastiku, a także do identyfikacji jego pochodzenia pozwoli, wg biologów, lepiej zaplanować działania ochronne, np. wybrać plaże, które należałoby posprzątać w pierwszej kolejności.

 


« powrót do artykułu

Share this post


Link to post
Share on other sites

Dobrze, że nie zdetonował ten plastik. :)

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      NASA wybrała sześć niewielkich amerykańskich firm, które w sumie otrzymają 20 milionów dolarów na rozwój technologii usuwania odpadów z niskiej orbity okołoziemskiej oraz rozwiązania problemu pyłu osiadającego na urządzeniach pracujących poza Ziemią. Prowadzone przez nas misje wymagają innowacyjnych rozwiązań złożonych wyzwań pojawiających się podczas pobytu w kosmosie. Niewielkie firmy mogą mieć wielki wpływ na rozwiązanie problemów od dawna gnębiących przemysł kosmiczny, mówi Jenn Gustetic,  dyrektor ds. wstępnych innowacji i partnerstwa w NASA Space Technology Mission Directorate.
      Sześć wspomnianych firm współpracowało już z NASA w ramach programu Small Business Innovation Research. W jego ramach NASA przeznacza co roku 180 milionów USD na współpracę z amerykańskimi przedsiębiorstwami zatrudniającymi mniej niż 500 osób. Pieniądze od agencji kosmicznej pozwalają im na dalsze rozwijanie obiecujących technologii. Każda z firm wybranych do współpracy w bieżącym roku ma mniej niż 60 pracowników.
      Na niskiej orbicie okołoziemskiej ludzie pozostawiają coraz więcej śmieci. To zepsute satelity i ich fragmenty czy pozostałości po wystrzeliwaniu kolejnych misji. Odpady te zmuszają pojazdy kosmiczne do manewrowania, zagrażają bezpieczeństwu astronautów i satelitów. Z czasem cała orbita może stać się bezużyteczna. Cztery z wybranych przedsiębiorstw proponują technologie, które mają rozwiązać ten problem.
      Firma Busek otrzyma 3,4 miliona USD na rozwój technologii autonomicznego deorbitowania niewielkich satelitów przy użyciu nietoksycznego paliwa. Z kolei CU Aerospace ma za 2,6 miliona USD stworzyć napęd wielokrotnego użytku do niewielkich misji przechwytujących odpady na orbicie. Firmie Flight Works przyznano 4 miliony dolarów na rozwinięcie technologii tankowania na orbicie pojazdów zajmujących się usuwaniem odpadów, a Vestigo Aerospace ma zademonstrować działający żagiel Spinnaker, który – montowany za pomocą prostego połączenia mechanicznego i elektrycznego – będzie rozwijany po zakończeniu misji małych (do 180 kg) satelitów, zwiększając w ten sposób opór stwarzany przez atmosferę i pozwalając na szybsze, przewidywalne i całkowicie pasywne deorbitowanie takich pojazdów.
      Przyszłe misje NASA będą obejmowały roboty podróżujące po powierzchni Marsa i Księżyca. Osiadający na tych urządzeniach pył może znacząco skrócić czas ich pracy czy doprowadzić do awarii instrumentów naukowych. Pył jest też niebezpieczny dla urządzeń, które będą potrzebne podczas misji załogowych. Rozwiązaniem tego problemu mają zająć się dwa kolejne przedsiębiorstwa. Firma Applied Material System Engineering ma za 2,6 miliona USD zademonstrować system nakładania w przestrzeni kosmicznej swojej powłoki ograniczającej osadzanie pyłu, a ATSP Innovations otrzyma 3,2 miliona USD na stworzenie prototypowego materiału odpornego na ekstremalne temperatury, ciśnienia i pył obecne na powierzchni planet, księżyców, asteroid i komet.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Guoliang Liu z Wydziału Chemii Virginia Polytechnic Institute and State University (Virginia Tech), opracował metodę przetwarzania plastików – od „kartonowych” pojemników na napoje, poprzez pojemniki na żywność i foliowe torebki – na mydło. Jego tajemnica polega na podgrzewaniu długichł łańcuchów polimerowych i ich gwałtownym chłodzeniu. Mamy tutaj więc do czynienia z tzw. upcyclingiem, czyli uzyskiwaniem z przetwarzanego przedmiotu produktu o wysokiej wartości. W tym przypadku są do surfaktanty, które może zamienić w mydło czy detergent. Bardzo często recykling wiąże się z downcyklingiem, gdy poddany mu przedmiot można zamienić na produkt o niższej wartości.
      Zamiana plastiku na mydło może być zaskakująca, ale oba te produkty mają wiele wspólnego na poziomie molekularnym. Struktura chemiczna polietylenu, jednego z najpowszechniej używanych tworzyw sztucznych, ma niezwykle podoba do struktury kwasów tłuszczowych używanych do produkcji mydła. Oba te materiały mają długie łańcuchy węglowe, jednak kwasy tłuszczowe mają na końcu łańcucha dodatkową grupę atomów.
      Guoliang Liu od dłuższego czasu uważał, że dzięki temu podobieństwu powinno się udać zamienić polietylen w kwas tłuszczowy do produkcji mydła. Pytanie brzmiało, jak podzielić długie łańcuchy polimerowe na krótsze, ale nie za krótkie, i zrobić to efektywnie. Jeśli by się to udało, można by z plastikowych odpadów o niskiej wartości uzyskać produkt o wysokiej wartości.
      Inspiracją dla naukowca stało się dymu z palącego się w kominku drewna.
      Drewno kominkowe składa się głównie z polimerów, jak celuloza. Jego spalanie rozrywa polimery na mniejsze łańcuchy, następnie na małe gazowe molekuły, które w końcu utleniają się do tlenku węgla. Jeśli podobnie przerwiemy molekuły polietylenu, ale przerwiemy proces zanim staną się one molekułami gazowymi, powinniśmy otrzymać krótkie łańcuchy podobne do molekuł polimerów, stwierdził. W swoim laboratorium wykorzystał termolizę z gradientem temperatury. Na dole urządzenia do termolizy panuje wystarczająco wysoka temperatura, by poprzerywać łańcuchy polimerowe, a na górze jest ono na tyle schłodzone, że proces przerywania łańcuchów nie zachodzi. Po termolizie naukowcy zebrali sadzę z góry pieca i okazało się, że zawiera ona woski. Potrzebnych było jeszcze kilka etapów obróbki chemicznej, w tym zmydlanie, by otrzymać pierwsze w historii mydło z plastiku.
      Cała procedura została przeanalizowana przez ekspertów od modelowania komputerowego, analiz ekonomicznych i innych dziedzin. Efektem prac jest artykuł opublikowany w Science. Nasze badania pokazują nowy sposób upcyclingu plastiku bez konieczności stosowania nowych katalizatorów czy złożonych procedur. To powinno zachęcić innych do opracowania kolejnych metod zamiany plastikowych odpadów na cenne produkty, mówi główny autor artykułu, Zhen Xu.
      Co więcej, analizy wykazały, że tę samą metodę można wykorzystać podczas pracy z polipropylenem. Wraz z polietylenem stanowi od większość plastiku, z jakim mamy do czynienia w codziennym życiu. Dodatkową zaletą jest fakt, że metodę Liu można wykorzystać bez potrzeby oddzielania polietylenu od polipropylenu. Można je jednocześnie przetwarzać.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy opisali nową jednostkę chorobową u ptaków. Plastikoza jest powodowana przez niewielkie kawałki plastiku, które wywołują stan zapalny w przewodzie pokarmowym. Została opisana u ptaków morskich, ale odkrywcy nie wykluczają, że to tylko wierzchołek góry lodowej. Na zewnątrz ptaki te wyglądają na zdrowe, jednak nie jest z nimi dobrze, mówi doktor Alex Bond z Muzeum Historii Naturalnej w Londynie. Ciągły stan zapalny prowadzi do bliznowacenia i deformacji tkanki, co negatywnie wpływa na rozwój i szanse przeżycia ptaków.
      To pierwsze przeprowadzone w ten sposób badania. Wykazały one, że spożywanie plastiku może poważnie uszkodzić przewód pokarmowy ptaków, dodaje uczony. Chorobę zidentyfikowano dotychczas u jednego gatunku, burzyka bladodziobego. Biorąc jednak pod uwagę stopień zanieczyszczenia środowiska naturalnego plastikiem, nie można wykluczyć, że dotyka ona też innych gatunków.
      Autorzy badań opisanych na łamach Journal of Hazardous Materials przez ponad 10 lat badali ptaki na wyspie Lord Howe. Zauważyli, że przebywające tam burzyki są najbardziej zanieczyszczonymi plastikiem ptakami na planecie. Zjadają plastik unoszący się na powierzchni wody, myląc go z pożywieniem. Naukowcy postanowili bliżej się temu przyjrzeć. W ten sposób odkryli nową jednostkę chorobową powodującą zwłóknienia tkanki i na wzór podobnych chorób – jak azbestoza – nadali jej nazwę plastikozy.
      Choroba ta, wywoływana przez ciągły stan zapalny spowodowany obecnością kawałków plastiku, prowadzi do formowania nadmiernego bliznowacenia i włóknienia tkanki, co zmniejsza jej elastyczność i prowadzi do zmiany struktury. Okazało się, że wśród burzyków na Lord Howe takie zwłóknienie żołądka gruczołowego jest czymś powszechnym. Dlatego też uznano to za nową jednostkę chorobową.
      Bliznowacenie tkanki narusza strukturę fizyczną żołądka gruczołowego. W miarę zwiększania się ekspozycji na plastik, tkanka poddana jest coraz poważniejszemu stanowi zapalnemu, aż do wystąpienia poważnych uszkodzeń. Dobrym przykładem plastikozy jest jej wpływ na gruczoły wydzielające soki trawienne. W miarę, jak ptak połyka kolejne kawałki plastiku, funkcje tych gruczołów ulegają coraz większemu upośledzeniu, aż w końcu dochodzi do całkowitej utraty struktury tkanki, mówi Bond. W wyniku utraty tych gruczołów, ptaki są bardziej podatne na infekcje oraz pasożyty, dochodzi również do zmniejszenie wchłaniania witamin.
      Bliznowacenie powoduje też, że żołądek staje się twardszy i sztywniejszy, co upośledza trawienie. Jest to szczególnie niebezpieczne dla piskląt i młodych ptaków, które mają mniejsze żołądki. Obecność plastiku zauważono w odchodach aż 90% młodych karmionych jeszcze przez rodziców. W ekstremalnych przypadkach prowadzi to do śmierci głodowej ptaka, którego żołądek zostaje całkowicie zapchany plastikiem. Plastikoza może mieć też wpływ na rozwój ptaków. Zauważono bowiem, że długość skrzydeł ptaków oraz waga zwierząt jest skorelowana z ilością plastiku w organizmach.
      Ptaki w sposób naturalny spożywają materię nieorganiczną, na przykład kamyki. Jednak naukowcy nie zauważyli, by prowadziło to do bliznowacenia w układzie pokarmowym. Za to obecnie w żołądku kamyki mogą rozbijać plastik na mniejsze kawałki, przez co jest on jeszcze bardziej niebezpieczny dla ptaków.
      Bond i jego zespół już wcześniej znaleźli mikroplastik w nerkach i śledzionie ptaków, gdzie również wywoływał stany zapalne, włóknienie i utratę struktury tkanki. Nie można wykluczyć, że w podobny sposób plastik wpływa na wiele innych gatunków zwierząt.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Plastikowe słomki są niebezpieczne dla ekosystemów morskich, mogą łatwo ranić zwierzęta, nie są biodegradowalne, są rzadko zbierane i poddawane recyklingowi. Jednak ich alternatywy również sprawiają wiele problemów. Papierowe słomki w kontakcie z płynem łatwo rozmiękają, więc są pokrywane plastikiem. To nie do końca chroni przed rozmiękaniem gdyż plastik nie łączy się dobrze z papierem, powierzchnia takich słomek wzmaga musowanie napojów gazowanych, używany w nich plastik również nie jest biodegradowalny, a jako że słomki są wykonane z połączenia dwóch materiałów, są bardzo trudne w recyklingu.
      Naukowcy z Koreańskiego Instytutu Badawczego Technologii Chemicznych (KRICT) wykorzystali dobrze znany w pełni biodegradowalny poli(bursztynian butylenu) – PBS – do którego dodali nieco nanokryształów celulozy. Powstał materiał do pokrywania papierowych słomek. Jako że zawiera on nanokryształy celulozy, które są głównym składnikiem papieru, powstał w pełni biodegradowalny plastik, który ściśle przylega do papierowych rurek. Pokryte nim rurki nie rozmiękają, ani nie wzmagają musowania. Eksperymenty wykazały, że takie słomki dobrze sprawują się w napojach zimnych i gorących, sprawdzają się zarówno w wodzie, herbacie, napojach gazowanych, mleku i innych płynach.
      Koreańczycy badali też stopień rozmiękania ich produktu w porównaniu ze standardowymi rurkami papierowymi. Gdy standardową papierową rurkę zanurzyli na 1 minutę w wodzie o temperaturze 5 stopni Celsjusza, a następnie obciążyli ją masą 25 gramów, doszło do jej znacznego wygięcia. Nowa rurka niemal się nie wygięła, nawet po obciążeniu masą 50 gramów.
      Sprawdzono też tempo, w jakim nowe rurki ulegają biodegradacji. Badania prowadzono zanurzając próbki na głębokość 1,5–2 metrów w morzu w pobliżu miasta Pohang. Standardowe plastikowe rurki oraz rurki wykonane z kukurydzy nie uległy żadnej biodegradacji po 120 dniach. Konwencjonalne papierowe rurki straciły w tym czasie jedynie 5% wagi. Tymczasem rurki opracowane przez KRICT uległy całkowitemu rozkładowi.
      Oczywiście zastąpienie plastikowych słomek ich w pełni biodegradowalnymi alternatywami nie doprowadzi do natychmiastowej zmiany stanu środowiska. Jednak pozytywne skutki będą kumulowały się w czasie, a jeśli będziemy stopniowo zastępowali plastik jego równie dobrymi, ale bezpiecznymi dla ludzi i środowiska alternatywami, przyszły ekosystem Ziemi będzie miał się znacznie lepiej.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy z University of Chicago opracowali sposób na wytwarzanie materiału, który można produkować równie łatwo jak plastik, ale który przewodzi elektryczność tak dobrze, jak metale. Na łamach Nature uczeni opisali, w jaki sposób stworzyć dobrze przewodzący materiał, którego molekuły są nieuporządkowane. Jego istnienie przeczy temu, co wiemy o elektryczności.
      Nasze odkrycie pozwala na stworzenie nowej klasy materiałów, które przewodzą elektryczność, są łatwe w kształtowaniu i bardzo odporne na warunki zewnętrzne, mówi jeden z głównych autorów badań, profesor John Anderson. To sugeruje możliwość istnienia nowej grupy materiałów, niezwykle ważnej z technologicznego punktu widzenia, dodaje doktor Jiaze Xie.
      Materiały przewodzące są nam niezbędne w codziennym życiu. To dzięki nim funkcjonują urządzenia napędzane prądem elektrycznym. Najstarszą i największa grupą takich materiałów są metale, jak miedź czy złoto. Około 50 lat temu stworzono przewodniki organiczne, w których materiał wzbogacany jest o dodatkowe atomy. Takie przewodniki są bardziej elastyczne i łatwiej jest je przetwarzać niż metale, jednak są mało stabilne i w niekorzystnych warunkach – przy zbyt wysokiej temperaturze czy wilgotności – mogą tracić swoje właściwości.
      I metale i przewodniki organiczne mają pewną cechę wspólną – są zbudowane z uporządkowanych molekuł. Dzięki temu elektrony mogą z łatwością się w nich przemieszczać. Naukowcy sądzili więc, że warunkiem efektywnego przewodnictwa jest uporządkowana struktura przewodnika.
      Jiaze Xie zaczął jakiś czas temu eksperymentować z wcześniej odkrytymi, jednak w dużej mierze pomijanymi, materiałami. Długie łańcuchy węgla i siarki poprzeplatał atomami niklu. Ku zdumieniu jego i jego kolegów okazało się, że taka nieuporządkowana struktura świetnie przewodzi prąd. Co więcej, okazała się bardzo stabilna. Podgrzewaliśmy nasz materiał, schładzaliśmy, wystawialiśmy na działanie powietrza i wilgoci, nawet zamoczyliśmy w kwasie i nic się nie stało, mówi Xie. Najbardziej jednak zdumiewający był fakt, że struktura materiału była nieuporządkowana. On nie powinien tak dobrze przewodzić prądu. Nie mamy dobrej teorii, która by to wyjaśniała, przyznaje profesor Anderson.
      Andreson i Xie poprosili o pomoc innych naukowców ze swojej uczelni, by wspólnie zrozumieć, dlaczego materiał tak dobrze przewodzi elektryczność. Obecnie naukowcy sądzą, że tworzy on warstwy. I pomimo, że poszczególne warstwy nie są uporządkowane, to tak długo, jak się ze sobą stykają, elektrony mogą pomiędzy nimi swobodnie przepływać.
      Jedną z olbrzymich zalet nowego materiału jest możliwość łatwego formowania. Metale zwykle trzeba stopić, by uzyskać odpowiedni kształt. To proces nie tylko energochłonny, ale i poważnie ograniczający ich zastosowanie, gdyż oznacza, że inne elementu budowanego układu czy urządzenia muszą wytrzymać wysokie temperatury podczas produkcji. Nowy materiał pozbawiony jest tej wady. Można go uzyskiwać w temperaturze pokojowej i używać tam, gdzie występują wysokie temperatury, środowisko kwasowe, zasadowe czy wysoka wilgotność. Dotychczas wszystkie tego typu zjawiska poważnie ograniczały zastosowanie nowoczesnych technologii.
      Badania nad nowym materiałem są finansowane przez Pentagon, Departament Energii oraz Narodową Fundację Nauki.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...