Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Polscy naukowcy: smartfony przyciągają... kleszcze. Szczególnie te, przenoszące groźne choroby

Recommended Posts

Nie chcąc złapać kleszcza, lepiej nie brać ze sobą telefonu na piknik w parku czy bieganie po lesie. Najnowsze badania polsko-słowackie pokazują, że kleszcze - zwłaszcza będące nosicielami groźnych patogenów - są przyciągane przez promieniowanie elektromagnetyczne o częstotliwości 900 MHz.

Od dziesięcioleci na obszarze Europy i nie tylko obserwuje się rozszerzanie zasięgu występowania wielu gatunków kleszczy. Spotyka się je nawet w samym środku dużych miast, gdzie na terenach zielonych czekają na ludzi i ich pupili.

Za zwiększenie liczebności kleszczy odpowiadają przede wszystkim zmiany klimatu i przekształcanie krajobrazu. Z najnowszych badań zespołu polsko-słowackiego wynika jednak, że za rozszerzanie zasięgu występowania kleszczy może być też odpowiedzialne coraz powszechniejsze w środowisku promieniowanie elektromagnetyczne (EMF), którego źródłem są stacje radiowe, telewizyjne, telefonii komórkowej i liczne urządzenia mobilne - informuje Uniwersytet Przyrodniczy w Poznaniu.

Wiele osób nie rozstaje się ze smartfonem i innymi urządzeniami elektronicznymi przez niemal całą dobę. Mało kto zdaje sobie jednak sprawę z tego, że emitowane przez nie EMF nie pozostaje obojętne dla organizmu - podkreślono w informacji przesłanej PAP.

Jak przypomniano, dotychczas naukowcy odkryli negatywny wpływ promieniowania elektromagnetycznego na dziesiątki gatunków bakterii, zwierząt i roślin. EMF oddziałuje na komórki, jak i całe organizmy zwierząt i ludzi, powodując m.in. aktywację stresu oksydacyjnego, zmianę metabolizmu komórkowego, zakłócanie aktywności niektórych enzymów, zmianę odpowiedzi immunologicznych, wpływanie na ekspresję DNA oraz zakłócanie funkcji układu nerwowego, sercowo-naczyniowego i rozrodczego. Utworzono nawet określenie „zanieczyszczenie elektromagnetyczne”, mające podkreślać wszechobecność tego czynnika w środowisku i jego wpływ na organizmy.

Najnowsze badania naukowe udowodniły, że pole elektromagnetyczne oddziałuje również na kleszcze, przyciągając je niczym magnes. Co ciekawsze, zakażenie niebezpiecznymi bakteriami sprawia, że EMF jest dla kleszczy jeszcze bardziej atrakcyjne. Wyniki badań na ten temat opublikowano właśnie w specjalistycznym czasopiśmie Ticks and Tick-borne Diseases. Pierwszą autorką pracy jest Martyna Frątczak, studentka weterynarii Uniwersytetu Przyrodniczego w Poznaniu. W jej powstanie było zaangażowanych osiem osób z sześciu instytucji naukowych (wspomniany Uniwersytet Przyrodniczy w Poznaniu, Uniwersytet Szczeciński i Uniwersytet Zielonogórski – po stronie polskiej, oraz Uniwersytet Szafarika, Uniwersytet Techniczny i Uniwersytet Weterynaryjny ze słowackich Koszyc).

Badane zagadnienie jest niezwykle interdyscyplinarne, stąd niezbędna była współpraca przedstawicieli wielu dyscyplin: lekarzy weterynarii, parazytologów, inżynierów – elektryków i wreszcie biologów znających się na zaawansowanych statystykach – podsumował prof. Piotr Tryjanowski z UPP.

Autorzy badań sprawdzali, jak EMF wpływa na zachowania kleszcza pospolitego Ixodes ricinus, znanego przede wszystkim z przenoszenia boreliozy (za co odpowiadają bakterie z rodzaju Borrelia), ale także riketsjozy (powodowana przez bakterie z rodzaju Rickettsia), czy odkleszczowego zapalenie mózgu (powodowane przez wirusy). Przeprowadzone analizy wykazały, że kleszcze są wręcz przyciągane przez promieniowanie o częstotliwości 900 MHz. To długość promieniowania standardowo wykorzystywana w większości urządzeń mobilnych, w tym smartfonach.

Co jeszcze bardziej zaskakujące, w kierunku promieniowania EMF podążają chętniej kleszcze zainfekowane bakteriami z rodzajów Borrelia oraz Rickettsia – donoszą naukowcy.

Dlaczego kleszcze w ogóle reagują na promieniowanie elektromagnetyczne? Najprawdopodobniej związane jest to z posiadaniem przez nie zmysłu magnetycznego – powszechnego w świecie zwierząt szóstego zmysłu, który wyewoluował w odpowiedzi na ziemskie siły pola geomagnetycznego. Sztuczne promieniowanie elektromagnetyczne może ten zmysł zaburzać i zwiększać ruchliwość kleszczy. Ponadto podejrzewa się, że naturalne promieniowanie elektromagnetyczne – które jest w pewnym, drobnym stopniu wytwarzane przez każdy żywy organizm – pomaga kleszczom wykrywać odpowiednich żywicieli – sugerują naukowcy. Nie wiadomo jednak, na ile mogłaby być to przydatna funkcja, kleszcze opierają się bowiem w wyborze żywiciela głównie na wskazówkach węchowych, wykrywając również wilgoć, ciepło i dwutlenek węgla nadchodzącego potencjalnego gospodarza.

Sami autorzy badania przyznają, że kolejną zagadką jest wpływ bakterii, których nosicielami są kleszcze, na reakcję na promieniowanie elektromagnetyczne. Początkowo może się to wydawać absurdalne, warto jednak zauważyć, że kleszcze ko-ewoluują ze swoimi patogenami od tysięcy lat. Wiele patogenów kleszczy potrafi swoimi gospodarzami odpowiednio manipulować, zmieniając ich metabolizm, płodność, a nawet wpływać na preferencje środowiskowe. Najwidoczniej więc niektóre z nich wpływają na odpowiedź kleszczy na bodźce elektromagnetyczne - sprawiając, że kierują się do nich jeszcze chętniej, niż zazwyczaj – napisali.

To z pewnością zła wiadomość dla osób nie rozstających się z telefonem nawet na łonie natury. Ale dobra dla tych, którzy twierdzą, że dla pełnego wypoczynku warto pozostawić telefon w domu czy samochodzie, a w lesie cieszyć się szumem drzew i śpiewem ptaków, nie zaś dźwiękiem przychodzących wiadomości – podsumowują autorzy badania.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Widziałem kilkanaście badań o korelacji pola EM (szczególnie mikrofalowego) z organizmami żywymi (w znaczeniu uszkadzania ich lub modyfikowania zachowania). Podejrzewam jednak, że za tydzień znów przeczytam wypowiedź jakiegoś profesora lub eksperta "że brak jakichkolwiek dowodow na negatywny wpływ 'tu wstaw co zechcesz z zakresu EM' na organizmy żywe".

Share this post


Link to post
Share on other sites

Nie rozumiem. To w końcu palić te maszty 5G czy nie ;)?

  • Haha 1

Share this post


Link to post
Share on other sites
Posted (edited)
1 godzinę temu, KopalniaWiedzy.pl napisał:

 

Dlaczego kleszcze w ogóle reagują na promieniowanie elektromagnetyczne? Najprawdopodobniej związane jest to z posiadaniem przez nie zmysłu magnetycznego – powszechnego w świecie zwierząt szóstego zmysłu, który wyewoluował w odpowiedzi na ziemskie siły pola geomagnetycznego.

Na pewno jest to powszechne? U mnie chyba nie występuje ;-)

EDIT: Czekam na nobla z fizyki za odkrycie nowego pola, ziemskiego pola geomagnetycznego ;-)

Edited by krzysiek

Share this post


Link to post
Share on other sites
49 minut temu, Eco_PL napisał:

Nie rozumiem. To w końcu palić te maszty 5G czy nie ;)?

Palić, ale się nie zaciągać.

  • Haha 1

Share this post


Link to post
Share on other sites
6 godzin temu, KopalniaWiedzy.pl napisał:

kleszcze - zwłaszcza będące nosicielami groźnych patogenów - są przyciągane przez promieniowanie elektromagnetyczne o częstotliwości 900 MHz

Rozumiem że to jakiś laboratoryjny eksperyment? Tak jak badanie średniego spalania na hamowni.

Ostatnie 2 kleszcze złapałem w weekend zbierając tyki jeleni. Kleszcze są bardzo oszczędne w marnowaniu energii. Nie biegają,nie skaczą, nie kręcą się bez sensu w kółko. Zajmują pozycję na wierzchołkach traw i czekają. Tylko dzięki temu potrafią wytrzymać 7 lat! Bez jedzenia. I nie zmieniają miejscówek, tam gdzie je zaniesie zwierzyna jest najwieksza szansa że jest to szlak którym przemieszcza się więcej ofiar które można zaatakować. Kilkadziesiąt metrów w bok i kleszcz może już nigdy nie mieć okazji na posiłek. Człowiek jest x razy szybszy i praktyczne ciągle w ruchu. Dla zdeterminowanego kleszcza dotarcie w terenie do człowieka z telefonem oddalonego o 1 metr to pewnie z 30min marszu i wspinaczki przez przeszkody. Ja bym odpuścił taki maraton i dalej cierpliwie czekał na bezpośredni kontakt

Ale było by fajnie, wszystkie kleszcze skupiły by się wokół masztów przekaźników i problemu z kleszczami by nie było

Share this post


Link to post
Share on other sites
18 minutes ago, tempik said:

 "Nie biegają,nie skaczą, nie kręcą się bez sensu w kółko. Zajmują pozycję na wierzchołkach traw i czekają."   Z wyjątkiem kleszczy afrykańskich, które przebiegają 100m w 10 minut. I obsiadają śpiącą ofiarę w kilkaset sztuk.

"Tylko dzięki temu potrafią wytrzymać 7 lat! Bez jedzenia."   W jednym z badań 16 lat  także i  bez wody. Eksperyment przerwano, bo się znudził.

"Dla zdeterminowanego kleszcza dotarcie w terenie do człowieka z telefonem oddalonego o 1 metr to pewnie z 30min marszu"     Jak jesteś na kocyku to uwija się w 5 min bez zadyszki - sprawdzone na Leskowcu - ok 20 sztuk wlazło na jeden koc i szybkim marszem zmierzało do celu. 

Nawet nimfa potrafi dość szybko iść po ubraniu. Duży kleszcz ma tempo prawie jak biedronka.

Osobiście za bardziej wredne uważam strzyżaki. Roznosza to samo co kleszcze, a są dziesiątki razy dokuczniejsze i piekielnie szybkie, bo latają. A jak sie złapie tymi pazurami, to nozem trzeba odrywać.

 

Z innych chorób, które zmieniają funkcje mózgu:

1. pasożyt atakujący ślimaki,

2. pasożyt atakujący mrówki,

3. cytomegalia atakująca gryzonie, drapieżniki i ludzi.  Człowiek z cytomegalią gorzej rozpoznaje ryzyko i potrafi sie na nie eksponować.

Share this post


Link to post
Share on other sites
Godzinę temu, Jarosław Bakalarz napisał:

Nawet nimfa potrafi dość szybko iść po ubraniu. Duży kleszcz ma tempo prawie jak biedronka.

Tak, po płaskim czyli po ubraniu powiedzmy że szybko.

Ale pokonanie kilku metrów łąki czy leśnego runa to jak pokonanie całego łańcucha Himalajów.

Godzinę temu, Jarosław Bakalarz napisał:

Osobiście za bardziej wredne uważam strzyżaki.

Fakt, są niedoceniane i nie badane a są sygnały że mogą przenosić bolerie i inne dziadostwo. No i pchają się na bezczelnego do uszu itp :) a jak wlezą we włosy to ekspedycje poszukiwawczą trzeba robić :) do tej pory nigdy mnie nie gryzły, ale zeszłym latem to się zmieniło. Jak ktoś jest uczulony na meszki to powinien uważać bo reakcja alergiczna jest bardzo podoba

 

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Nowa elektroda, opracowana na MIT, pozwoli na zbudowanie akumulatorów, które przechowują więcej energii i pracują dłużej. Litowa anoda to efekt współpracy naukowców z MIT ze specjalistami z Hongkongu, Florydy i Teksasu.
      Jednym z największych problemów ze współczesnymi akumulatorami wynika z faktu, że w miarę ładowania akumulatora lit się rozszerza, a podczas rozładowywania kurczy się. Te ciągłe zmiany rozmiarów prowadzą do pękania lub odłączania się elektrolitu. Inny problem stanowi fakt, że żaden z używanych stałych elektrolitów nie jest tak naprawdę chemicznie stabilny w kontakcie z wysoko reaktywnym litem, ulega więc degradacji.
      Większość badań, mających na celu rozwiązanie tych problemów, poszukuje stabilnego elektrolitu. To jednak jest trudne.
      Naukowcy z MIT podeszli do problemu inaczej. Wykorzystali dwa dodatkowe materiały. Jeden nazwali „zmieszanymi przewodnikami jonowo-elektronicznymi” (MIEC), a drugi to „izolatory elektronu i jonu litowego” (ELI).
      Uczeni stworzyli trójwymiarową nanostrukturę przypominająca plaster miodu. Została ona zbudowana z heksagonalnych rurek MIEC częściowo wypełnionych litem. W każdej z rurek pozostawiono nieco wolnego miejsca. Gdy lit się rozszerza podczas ładowania, wypełnia puste miejsca w rurkach, poruszając się jak ciecz, mimo że zachowuje przy tym krystaliczną strukturę ciala stałego. Przepływ ten łagodzi naprężenia powstające podczas rozszerzania się litu, ale jednocześnie nie powoduje ani zmiany zewnętrznych rozmiarów elektrody, ani zmiany jej styku z elektrolitem. Drugi zaś ze wspomnianych materiałów, ELI, jest kluczowym mechanicznym łączem pomiędzy ściankami MIEC a stałym elektrolitem.
      Rozszerzający się i kurczący lit przemieszcza się tak, że nie wywiera nacisku na elektrolit, więc go nie niszczy. Twórcy anody porównują to do tłoków poruszających się w cylindrach. Jako, że całość jest jest zbudowana w skali nano, a każda z rurek ma średnicę 100-300 nanometrów, całość jest jak silnik z 10 miliardami tłoków, mówi główny autor badań, profesor Ju Li.
      Jako, że ścianki całej struktury wykonano z chemicznie stabilnego MIEC, lit nigdy nie traci kontaktu z materiałem. Cały akumulator pozostaje więc mechanicznie i chemiczne stabilny, dodaje Li. Naukowcy przetestowali swoją anodę podczas 100 cykli ładowania/rozładowywania i wykazali, że w elektrolicie nie powstały żadne pęknięcia.
      Naukowcy twierdzą, że ich projekt pozwoli na stworzenie akumulatorów litowych, w których anoda będzie 4-krotnie lżejsza na jednostkę pojemności niż obecnie. Jeśli dodamy do tego nowe pomysły na lżejszą katodę, całość może prowadzić do znaczącego obniżenia wagi akumulatora. Dzięki nowemu akumulatorowi nowoczesne smartfony można by ładować raz na 3 dni.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Ultracienkie elastyczne ekrany dotykowe, które można zwijać jak papier, stały się rzeczywistością. Są one dziełem australijskich naukowców z RMIT University. Nanopłachty są 100-krotnie cieńsze niż materiały obecnie stosowane do produkcji ekranów dotykowych.
      Nowa technologia jest kompatybilna z istniejącymi technikami produkcji, a naukowcy mają nadzieję, że dzięki niezwykłej elastyczności ekrany dotykowe będzie można produkować w rolkach, podobnie jak wytwarza się gazety. O szczegółach badań, w których brali udział również naukowcy z Uniwersytetu Nowej Południowej Walii, Monash Univeristy oraz ARC Centre of Excellence in Future Low-Energy Electronic Technologies, poinformowano na lamach Nature Electronic.
      Jak zauważa główny autor badań, doktor Torben Daeneke, obecnie większość wyświetlaczy dotykowych w smartfonach wytwarza się z przezroczystego tlenku indowo-cynowego. To dobrze przewodzący, ale bardzo kruchy, materiał. Wzięliśmy ten stary materiał i przetworzyliśmy go od wewnątrz tak, że uzyskaliśmy nową wersję, która jest niezwykle cienka i elastyczna, mówi Daeneke. Teraz można go zginać, skręcać i wytwarzać znacznie taniej i bardziej efektywnie niż materiał, którego obecnie używamy do ekranów dotykowych. Jest też bardziej przezroczysty, zatem przepuszcza więcej światła. To wszystko oznacza, że telefony komórkowe wyposażone w nasz materiał będą zużywały mniej energii, co wydłuży czas pracy na bateriach o około 10%, stwierdza uczony.
      Nowa powłoka powstała dzięki podgrzaniu stopu indu i cyny do temperatury 200 stopni, dzięki czemu stał się płynny. Następnie materiał wylano ultracienką warstwą na płaską powierzchnię, uzyskując powłokę 2D. Powłoka ta ma taki sam skład chemiczny jak standardowe wyświetlacze, jednak inną strukturę krystaliczną, która nadaje jej nowe właściwości mechaniczne i optyczne. Jest w pełni elastyczna i absorbuje jedynie 0,7% światła, podczas gdy standardowy wyświetlacz pochłania nawet 10% światła.
      Przewodnictwem nowej powłoki można manipulować dodając kolejne warstwy.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Apple sprzeciwia się pomysłowi, by w Unii Europejskiej wprowadzić jeden typ ładowarki dla wszystkich urządzeń. Rozwiązanie takie zmniejszyłoby ilość elektronicznych odpadów i ułatwiło życie konsumentom, jednak nie wszystkim się ono podoba.
      W przeszłości firmy takie jak Apple, Samsung, Nokia, LG czy Huawei podpisały wspólną deklarację, w której zobowiązały się do rozpoczęcia prac nad ujednoliceniem standardu ładowarek. Jednak porozumienie nie dotyczy wszystkich producentów elektroniki i nie obejmuje wszystkich urządzeń. Dlatego też europejscy prawodawcy chcą, by jeden standard ładowarek stał się obowiązkiem na terenie Unii Europejskiej.
      Nowe przepisy, jeśli zostaną przyjęte, najbardziej uderzą właśnie w Apple'a. Firma ta bowiem od czasu rozpoczęcia sprzedaży iPhone'a woli stosować własne ładowarki, a nie standardowe rozwiązania. Ostatnio takim standardem stał się USB Type-C. Nawet Apple stosuje to rozwiązanie w swoich laptopach i tabletach. Ale odmawia stosowania go w smartfonach.
      Uważamy, że rozwiązania wymuszające unifikację ładowarek wbudowanych we wszystkie smartfony będą blokowały innowacyjność, zaszkodza konsumentom w Europie i całej gospodarce, oświadczyli przedstawiciele Apple'a. Zauważyli przy tym, że standard USB-C szeroko się rozpowszechnił, zatem wymuszanie unifikacji nie jest potrzebne. Koncern zamówił nawet specjalne badania, z których wynika, że wymuszenie na Apple'u stosowania takiej ładowarki jak inni kosztowałoby co najmniej 1,5 miliarda euro, podczas gdy korzyści środowiskowe z takiego działania oceniono na 13 milionów euro.
      Na przełomie stycznia i lutego mają się z kolei ukazać badania zamówione przez Komisję Europejską. Ich celem jest oszacowanie korzyści i kosztów związanych z wprowadzeniem zunifikowanego standardu ładowarek na europejskim rynku.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Wyobraźmy sobie, że każdą powierzchnię – stół, drzwiczki do piekarnika, deskę rozdzielczą samochodu – można by zamienić w dotykowy interfejs użytkownika. Zniknęła by konieczność stosowania mechanicznych przycisków, a urządzenia elektroniczne stałyby się wodoodporne. Taki jest właśnie cel firmy UltraSense Systems, która zaprezentowała najmniejszy podobno czujnik ultradźwiękowy typu sensor-on-chip. Pozwala on na odbieranie dotyku i gestu niezależnie od rodzaju i grubości materiału. Dwa firmowe produkty, TouchPoint oraz TouchPointZ, mają już w przyszłym roku trafić do pierwszych urządzeń.
      UltraSense zostało założone przez dwóch byłych menedżerów InvenSense. Gdy w 2017 roku TDK przejęło InvenSense Dan Goehl został w firmie przez kolejnych 15 miesięcy, a Mo Maghsoudnia odszedł, by zająć się technologiami ultradźwiękowymi w medycynie. Z czasem Maghsoudnia stwierdził, że ze względu na specyfikę rynku medycznego jego pomysły będą wdrażane powoli, zainteresował się więc rynkiem konsumenckim.
      Na pierwszy ogień pójdzie rynek smartfonów. Nowe technologie trafiają tutaj dość szybko, a my rozpoczynamy pracę we właściwym momencie, wraz z początkiem epoki 5G, mówi Goehl. Producenci smartfonów są wstępnie zainteresowani nową technologią, gdyż chcieliby się pozbyć fizycznych przycisków z urządzeń. Tymczasem czujniki UltraSense działają, jak twierdzą ich twórcy, nawet gdy na powierzchni znajduje się wilgoć, brud czy tłuszcz. Współpracują z każdym materiałem o każdej grubości.
      Goehl pytany, czy istnieją dla nich jakieś ograniczenia fizyczne, mówi, że jedynymi są odległość i moc. Pierwsze produkty zaprojektowaliśmy tak, by były wydajne pod względem energetycznym. Skupiliśmy się na rynku urządzeń mobilnych zatem działają przez 5-milimetrowej grubości aluminium, 5-milimetrowe szkło i 2-milimetrową warstwę stali. Teoretycznie, biorąc pod uwagę technologię którą dysponujemy i produkty, do jakich trafi ona w przyszłym roku, zasilanie nie jest problemem. Nasz czujnik może bez przeszkód działać przez 20-milimetrową płytę z aluminium.
      Goehl wyjaśnia, jak działa technologia oferowana przez firmę. Wysyłamy ultradźwięki przez materiał i mierzymy zmiany impedancji akustycznej na powierzchni. Informacje na ten temat wracają do czujnika, który na tej podstawie interpretuje siłę nacisku. Gdy lekko dotkniemy powierzchni, pomiędzy liniami papilarnymi wciąż znajduje się powietrze. Im mocnej naciskamy, tym większa deformacja linii papilarnych i powietrze jest wypychane. Wraz z tym rośnie kontrast, który nasze urządzenie rejestruje i interpretuje.
      Uspokaja, że nie ma ryzyka, iż znajdujący się w kieszeni telefon zostanie przypadkiem włączony. Czujnik został zaprojektowany tak, by sygnał rozpraszał się w powietrzu, jeśli więc smartfon jest w kieszeni i ociera się o niego materiał spodni, urządzenie jest w stanie rozpoznać, co się dzieje i nie przyjmuje takiego sygnału. TouchPoint potrafi rozpoznać wiele takich wzorców dotyku.
      Urządzenie ma wymiary 1,4x2,4x0,49 mm. W trybie czuwania potrzebuje 20 µA mocy. Działa niezależnie od procesora producenta, gdyż wszystkie algorytmy zostały wbudowane w sam czujnik. Może być on używany zarówno do prostych zadań, jako włącznik i wyłącznik smartfonu, lub też do sterowania całym urządzeniem, wówczas jest w stanie obsłużyć wielofunkcyjny interfejs z różnymi rodzajami gestów i dotyków.
      TouchPoint został już przetestowany przez producentów smartfonów i jest gotowy do masowej produkcji.
      UltraSense chce w ciągu najbliższych 2-3 lat rozpocząć podbój rynku motoryzacyjnego. Tam na przykład TouchPoint mógłby zamieniać deskę rozdzielczą w jeden wielki interfejs.
      Firma nie wchodzi na dziewicze terytorium, działają na nim bowiem już inne przedsiębiorstwa. Firma Sentons oferuje tensometry (czujniki naprężenia), a New Degree Technology czujniki nacisku. UltraSense zapewnia, że ich technologia to coś zupełnie innego. Inne technologie mają poważne ograniczenia dotyczące np. grubości materiału, w którym mogą być stosowane, złożoności procesu integracji w urządzenie czy czasu kalibracji. TouchPoint ograniczeń tych nie ma. Łatwo go umieścić w urządzeniu, a kalibracja zajmuje sekundy. Obecnie rynek dojrzał do takiej technologii. Być może kilka lat temu byłoby na nią zbyt wcześnie, mówi Goehl.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Na hiszpańskim Uniwersytecie w Maladze powstał tani t-shirt, który generuje energię elektryczną z różnic temperatur pomiędzy ludzkim ciałem a otoczeniem. Prototypowe e-tekstylia powstały z wykorzystaniem skórki z pomidorów, a opracowano je przy współpracy z Włoskim Instytutem Technologii w Genui.
      Dotychczas w urządzeniach elektronicznych zwykle używa się metali. Nasz projekt poszedł o krok dalej i jesteśmy w stanie generować elektryczność za pomocą lżejszego, tańszego i mniej toksycznego materiału mówi jeden z autorów badań, Jose Alejandro Heredia.
      Uczeni z wody, etanolu pozyskanego ze skórek pomidorów oraz nanocząstek węgla stworzyli roztwór, który po podgrzaniu głęboko penetruje bawełnę i do niej przywiera, nadając jej właściwości elektryczne. Jeśli ktoś spaceruje czy biegnie, rozgrzewa się. Jeśli taka osoba ma na sobie naszą koszulkę, wytwarza elektryczność dzięki różnicy temperatury pomiędzy swoim ciałem a otoczeniem, wyjaśnia Susana Guzman.
      W tej chwili naukowcy pracują nad rozwiązaniem, dzięki któremu koszulka wygeneruje światło lub też pozwoli na ładowanie smartfona. W ramach naszych wcześniejszych badań ze skórki pomidorowej i grafenu stworzyliśmy antenę Wi-Fi. Pracujemy nad jej zintegrowaniem z t-shirtem, dodaje Guzman.
      W niedalekiej przyszłości mogą więc powstać t-shirty, które pozwolą na ładowanie smartfona i innych urządzeń, będą się świeciły, dzięki czemu będziemy lepiej widoczni dla kierowców. Fakt, że będą generowały prąd daje spore pole do popisu. W takich ubraniach możliwe będzie zintegrowanie np. czujników monitorujących stan zdrowia czy też dokonujących zapisu i analizy funkcji organizmu biegacza.

      « powrót do artykułu
×
×
  • Create New...