Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Czy tak wyglądała molekuła, od której rozpoczęło się życie na Ziemi?

Recommended Posts

Naukowcy z laboratorium ENIGMA (Evolution of Nanomachinest In Geospheres and Microbial Ancestors) na Rutgers University sądzą, że odtworzyli kształt pierwszej molekuły będącej wspólnym przodkiem współczesnych enzymów, które dały początek życiu na Ziemi.

Życie to proces elektryczny. Obwód elektryczny jest katalizowany przez niewielki zestaw protein, które działają jak złożone nanomaszyny, czytamy na stronie laboratorium. ENIGMA jest współfinansowane przez NASA w ramach Astrobiology Program. Sądzimy, że życie powstało z bardzo małych klocków i pojawiło się zestaw Lego, z którego powstały komórki i bardziej złożone organizmy, jak my, mówi główny autor badań, biofizyk Paul G. Falkowski.

Naukowcy wykonali analizę porównawczą trójwymiarowych struktur białek, by sprawdzić, czy można na tej podstawie wysnuć wnioski, co do kształtu ich wspólnego przodka. Szczególnie skupili się na podobieństwach pomiędzy kształtami, jakie w trzech wymiarach przyjmują łańcuchy aminokwasów. Poszukiwali prostego topologicznego modelu, który powiedziałby, jak wyglądały pierwsze proteiny, zanim stały się bardziej złożone i zróżnicowane.

Odkryliśmy, że dwa powtarzające się wzorce zwijania są kluczowe dla pojawienia się metabolizmu. Prawdopodobnie te metody zawijania mają wspólnego przodka, który za pomocą duplikacji, specjalizacji i różnicowania ewoluował tak, by ułatwić transfer elektronów i katalizę na bardzo wczesnym etapie początków metabolizmu, wyjaśniają naukowcy.

Te dwa zidentyfikowane metody zwijania to zwijanie ferredoksyny oraz konformacja Rossmanna. Naukowcy sądzą, że te dwie podstawowe struktury, które mogą mieć wspólnego przodka, posłużyły jako wzorzec dla protein sprzed ponad 2,5 miliarda lat.

Przypuszczamy, że pierwszymi proteinami były małe, proste peptydy, któe pobierały elektrony z oceanu, atmosfery lub skał i przekazywały je innym molekułom akceptującym elektrony, mówi biolog molekularny Vikas Nanda. W reakcji transferu elektronu uwalnia się energia i energia ta napędza życie, dodaje.

Naukowcy przyznają, że to wszystko jest jedynie hipotezą. Porównywanie kształtu obecnie istniejących protein to metoda pełna ograniczeń, która nie pozwala na uzyskanie pewności co do prawdziwości wnioskowania. Domyślamy się co mogło się wydarzyć, a nie dowodzimy, co się wydarzyło, stwierdzają autorzy badań. Jednak, jak zauważają, można tego typu badania posunąć dalej.

Można spróbować odtworzyć w laboratorium hipotetyczne proteiny z przeszłości i sprawdzić, jak działają i jak mogą ewoluować. Naszym głównym celem jest dostarczenie NASA informacji, dzięki którym przyszłe misje naukowe będą wiedziały gdzie i jak poszukiwać życia na planetach pozasłonecznych.

Ze szczegółami badań można zapoznać się na łamach PNAS.


« powrót do artykułu

Share this post


Link to post
Share on other sites
Godzinę temu, KopalniaWiedzy.pl napisał:

ewoluował tak, by ułatwić transfer elektronów i katalizę

Tak mi to jakoś takoś teleologią jakąś albo i Inteligentnym Projektem jakimś... no tego... ;)

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Zwykle zastanawiamy się, ile pozasłonecznych planet zawierających życie jesteśmy w stanie zaobserwować z Ziemi. Jednak pytanie to można odwrócić. I właśnie to zrobili profesorowie Lisa Kaltenegger z Cornell University i Joshua Pepper z Lehigh University. Postanowili oni zbadać, z ilu układów planetarnych można bezpośrednio obserwować Ziemię. Innymi słowy, ile potencjalnych cywilizacji pozaziemskich, znajdujących się na podobnym etapie rozwoju, może nas badać.
      Uczeni zidentyfikowali 1004 gwiazdy ciągu głównego, czyli dość podobne do Słońca, które mogą posiadać podobne do Ziemi planety w ekosferze. Wszystkie wspomniane gwiazdy znajdują się w promieniu 300 lat świetlnych od Ziemi, zatem w odległości, z której obca cywilizacja powinna być w stanie wykryć chemiczne sygnatury życia w ziemskiej atmosferze.
      Odwróćmy nasz punkt widzenia. Przenieśmy się na inne planety i zapytajmy, z których układów planetarnych można obserwować tranzyty Ziemi na tle Słońca, mówi Kaltenegger. Uczona przypomina, że obserwowanie tranzytów to kluczowy sposób obserwowania planet pozasłoneczych i określania ich cech charakterystycznych. Już wkrótce, dzięki Teleskopowi Kosmicznemu Jamesa Webba (JWST), będziemy w stanie – badając tranzyty – określać skład chemiczny atmosfer planet spoza Układu Słonecznego. Jeśli z naszego punktu widzenia jakaś planeta przechodzi na tle swojej gwiazdy, zatem znajduje się w linii prostej pomiędzy swoją gwiazdą a Ziemią, to już teraz – badając zmianę jasności gwiazdy przesłoniętej przez planetę – próbujemy określać np. wielkość planety. Instrument taki jak JWST pozwoli badać światło gwiazdy przechodzące przez atmosferę planety i określić skład chemiczny tej planety. Będziemy więc mogli wykrywać w niej molekuły i inne elementy wskazujące na istnienie życia. To samo jednak mogą robić potencjalne cywilizacje pozaziemskie.
      Jedynie niewielki ułamek egzoplanet przechodzi na tle swojej gwiazdy z naszego punktu widzenia. Z punktu widzenia wszystkich zidentyfikowanych przez nas układów Ziemia przechodzi na tle Słońca. A to powinno przyciągnąć uwagę potencjalnych obserwatorów. Jeśli poszukujemy inteligentnego życia, które może nas znaleźć i zechcieć nawiązać kontakt, to właśnie stworzyliśmy mapę, gdzie należy szukać, dodaje Kaltenegger.
       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Astronomowie korzystający z Very Long Baseline Array (VLBA) dokonali pierwszego w historii bezpośredniego geometrycznego pomiaru odległości do magnetara znajdującego się w Drodze Mlecznej. Pomiar ten pomoże stwierdzić, czy magnetary są źródłem tajemniczych szybkich błysków radiowych (FRB).
      Magnetary to odmiana gwiazd neutronowych. Te bardzo gęste obiekty charakteryzują się niezwykle silnym polem magnetycznym. Pole magnetyczne typowego magnetara może być bilion razy silniejsze niż pole magnetyczne Ziemi. Wiadomo też, że magnetary emitują silne impulsy promieniowania rentgenowskiego i gamma, przez co od pewnego czasu podejrzewa się, że to właśnie one mogą być źródłami FRB.
      Odkryty w 2003 roku magnetar XTE J1810-197 jest jednym z zaledwie sześciu takich obiektów, o których wiadomo, że emitują impulsy w paśmie radiowym. Emisję taką notowano w latach 2003–2008, później magnetar ucichł, a w grudniu 2018 roku znowu zaczął emitować sygnał.
      Grupa naukowców wykorzystała VLBA do obserwacji XTE J1810-197 najpierw od stycznia do listopada 2019, a później w marcu i kwietniu bieżącego roku. Dzięki temu możliwe było obserwowanie obiektu z dwóch przeciwległych stron orbity Ziemi wokół Słońca. To zaś pozwoliło na zarejestrowanie paralaksy, czyli niewielkiej pozornej zmiany położenia obiektu względem tła.
      Po raz pierwszy udało się wykorzystać paralaksę do pomiaru odległości od magnetara. Okazało się, że to jeden z najbliższych magnetarów. Znajduje się w odległości około 8100 lat świetlnych dzięki czemu jest świetnym obiektem dla przyszłych badań, mówi Hao Ding, student z australijskiego Swinburne University of Technology.
      Niedawno, 28 kwietnia, inny magnetar – SGR 1935+2154 – wyemitował najsilniejszy sygnał radiowy, jaki kiedykolwiek zarejestrowano w Drodze Mlecznej. Co prawda nie był on tak silny jak FRB pochodzące z innych galaktyk, jednak wydarzenie to tym bardziej sugeruje, że magnetary mogą być źródłem FRB.
      Większość znanych nam FRB pochodzi spoza Drogi Mlecznej. To niezwykle silne, trwające milisekundy sygnały o nieznanym źródle. Są na tyle niezwykłe, że muszą powstawać w bardzo ekstremalnych środowiskach. Takich jak np. magnetary.
      Dzięki dokładnemu poznaniu odległości do magnetara, możemy precyzyjnie obliczyć siłę sygnału radiowego, który emituje. Jeśli pojawi się coś podobnego do FRB pochodzącego XTE J1810-197, będziemy wiedzieli, jak silny to był impuls. FRB bardzo różnią się intensywnością, więc badania magnetara XTE J1810-197 pozwolą nam stwierdzić, czy jego emisja jest zbliżona do zakresu FRB, wyjaśnia Adam Deller ze Swinburne.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Za cztery dni w pobliżu Ziemi pojawi się asteroida 2011 ES4. Może przelecieć bardzo blisko naszej planety. Znacznie bliżej niż odległość pomiędzy Księżycem a Ziemią. Obecnie jej przelot przewidywany jest na 1 września. Wtedy to może się ona znaleźć w odległości od 0,32 do 0,19 odległości Księżyca. Może zatem minąć Ziemię w odległości zaledwie ok. 120–72 tysięcy kilometrów. Wielkość obiektu to 22–49 metrów.
      2011 ES już wielokrotnie zbliżała się do Ziemi. Po raz pierwszy wykryto ją w 2011 roku, gdy znajdowała się w odległości około 5 milionów kilometrów od planety. Przez cztery dni prowadzono jej obserwacje i na tej podstawie określono ówczesną oraz przeszłe i przyszłe jej orbity. Z przeprowadzonych obliczeń wynika, że od 1987 roku asteroida nigdy nie była tak blisko Ziemi, jak ma się znaleźć obecnie.
      Wiemy, że 2011 ES okrąża Słońce w ciągu około 415 dni. Jej peryhelium to 0,83 j.a., a aphelium wynosi 1,35 j.a. Przez większość zbliżania się do Ziemi asteroida będzie znajdowała się blisko Słońca, więc będzie niewidoczna. Sytuacja poprawi się w ostatnich dniach, więc niewykluczone że już można ją obserwować na nocnym niebie.
      Niepewność co do czasu przelotu i orbity asteroidy jest na tyle duża, że nie można wykluczyć, że już niezauważenie minęła ona Ziemię i to w znacznie większej odległości, niż przewidywano.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Do jutra ludzkość zużyje tyle zasobów, ile Ziemia wyprodukuje do końca bieżącego roku. Earth Overshoot Day, to dzień, w którym w danym roku ludzie zużywają całość zasobów, jakie planeta jest w stanie w tym roku zastąpić. Od lat 70. ubiegłego wieku dzień ten zwykle następuje coraz wcześniej. Tym razem, z powodu pandemii, Earth Overshoot Day nastąpił później niż w roku ubiegłym.
      Organizacja Global Footprint Network, która wylicza, kiedy nastąpi Earth Overshoot Day stwierdziła, że w bieżącym roku nastąpi on 22 sierpnia. W ubiegłym roku przypadł on na 29 lipca. To zaś oznacza, że ludzkość zużyła o 9,3% zasobów mniej, niż w roku ubiegłym.
      Jednak, jak mówi prezydent Global Footprint Network Mathis Wackernagel, nie mamy czego świętować. Taki stan rzeczy osiągnęliśmy nie dlatego, że tak zaplanowaliśmy, ale dlatego, iż wydarzyła się katastrofa.
      Earth Overshoot Day jest wyliczany z uwzględnieniem całego ludzkiego zapotrzebowania na żywność, energię, domy i drogi. Na tej podstawie specjaliści wyliczają, że obecnie ludzkość zużywa o 60% więcej zasobów, niż Ziemia jest w stanie odnowić. To jest tak, jak z pieniędzmi. Możemy wydawać więcej, niż mamy, ale nie może to trwać wiecznie, mówi Wackemagel.
      Przedstawiciele Global Footprint Network mówią, że pandemia pokazała, iż ludzkość jest w stanie w krótkim czasie zmienić swoje zwyczaje dotyczące konsumpcji. To bezprecedensowa okazja, by zastanowić się nad naszą przyszłością.
      Jak zauważył szef WWF International, pandemia pokazała, jak bardzo marnotrawny, niszczący i niemożliwy do utrzymania jest nasz stosunek do natury. Wezwał do podjęcia działań, które spowodują, że rozwój gospodarczy nie będzie wiązał się z degradacją środowiska. Możemy się rozwijać, ale nie kosztem planety, gdyż wiemy, że kryzys planety oznacza kryzys społeczeństwa, a zatem i kryzys gospodarczy.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Międzynarodowy zespół naukowy, na czele którego stali specjaliści z University of Edinburgh, zidentyfikował geny powiązane ze starzeniem się i wyjaśnia, dlaczego proces starzenia się przebiega tak różnie u różnych ludzi. Wyniki badań sugerują, że utrzymywanie odpowiedniego poziomu żelaza we krwi pomaga starzeć się lepiej i żyć dłużej.
      Naukowcy oparli swoje badania na na analizie danych genetycznych ponad miliona osób. Jesteśmy bardzo podekscytowani tymi wynikami. Mamy tutaj silną sugestię, że zbyt wysoki poziom żelaza we krwi zmniejsza liczbę zdrowo przeżytych lat oraz że utrzymywanie odpowiedniego poziomu żelaza pozwala kontrolować proces starzenia się. Sądzimy, że nasze odkrycia dotyczące metabolizmu żelaza pozwoli wyjaśnić, dlaczego spożywanie bogatego w żelazo czerwone mięso wiąże się z różnymi schorzeniami wieku starszego, jak na przykład z chorobami serca, mówi główny badać doktor Paul Timmers.
      Wraz z wiekiem nasz organizm powoli traci zdolność do homeostazy, czyli utrzymywania równowagi pomiędzy poszczególnymi parametrami. Brak tej równowagi jest przyczyną wielu chorób, a w końcu śmierci. Jednak przebieg procesu starzenia się jest bardzo różny u różnych ludzi. U niektórych pojawiają się poważne chroniczne schorzenia już w dość młodym wieku i ludzie ci szybko umierają, inni z kolei żyją w zdrowiu przez bardzo długi czas i do końca swoich dni są w dobrej kondycji.
      Autorzy najnowszych badań przyjrzeli się genom i odkryli dziesięć regionów odpowiedzialnych za długość życia, długość życia w zdrowiu oraz długość życia w idealnych warunkach. Naukowcy zauważyli, że istnieje silna korelacja pomiędzy tymi trzema czynnikami, a poziomem żelaza we krwi. Badania statystyczne przeprowadzone metodą randomizacji Mendla potwierdziły, że poziom żelaza ma najbardziej istotny wpływ na długość życia w zdrowiu.
      Na poziom żelaza we krwi wpływ ma nasza dieta. Zbyt wysoki lub zbyt niski jego poziom jest powiązany z chorobami wątroby, chorobą Parkinsona, a w starszym wieku wiąże się z obniżeniem zdolności organizmu do zwalczania infekcji. "Możliwości syntezy hemu spadają wraz z wiekiem. Jego niedobory prowadzą do akumulacji żelaza, stresu oksydacyjnego i dysfunkcji mitochondriów.
      Akumulacja żelaza pomaga patogenom w podtrzymaniu infekcji, co jest zgodne z obserwowaną u osób starszych podatnością na infekcje. Z kolei nieprawidłowa homeostaza żelaza w mózgu wiąże się z chorobami neurodegeneracyjnymi, jak choroba Alzheimera, Parkinsona czy stwardnienie rozsiane, piszą autorzy badań.
      Naukowcy zastrzegają, że kwestie te wymagają dalszych badań, ale już przewidują, że ich odkrycie może doprowadzić do opracowania leków, które zmniejszą niekorzystny wpływ starzenia się na zdrowie, wydłużą nie tylko ludzkie życie, ale też okres życia w zdrowiu.

      « powrót do artykułu
×
×
  • Create New...