Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Uczeni zbadali czas przetrwania koronawirusa SARS-CoV-2 w powietrzu i na różnych powierzchniach

Recommended Posts

Naukowcy z amerykańskiego Laboratorium Wirusologii Narodowego Instytutu Alergii i Chorób Zakaźnych, Uniwersytetu Kalifornijskiego w Los Angeles, Uniwersytetu Princeton, Centrów Zapobiegania i Kontroli Chorób (CDC) oraz Narodowych Instytutów Zdrowia, określili czas przetrwania koronawirusa SARS-CoV-2 na różnych powierzchniach i w aerozolach. Z ich badań wynika, że jest on podobny, co czas przetrwania SARS-CoV-1, który wywołał epidemię SARS przed kilkunastu laty.

Ogólnie rzecz biorąc, stabilność SARS-CoV-2 i SARS-CoV-1 jest bardzo podobna. Stwierdziliśmy, że aktywny wirus może być obecny w aerozolach do 3 godzin po aerozolizacji, do 4 godzin na miedzi, do 24 godzin na kartonie i do 2-3 dni na plastiku i stali nierdzewnej. Oba wirusy wykazywały podobny okres półtrwania w aerozolach, gdzie mediana wynosiła około 2,7 godziny. Oba wykazują dość długi czas przetrwania na stali nierdzewnej i polipropylenie w porównaniu z miedzią i kartonem. Mediana okresu półtrwania SARS-CoV-2 wynosi 13 godzin na stali i 16 godzin na polipropylenie. Wyniki naszych badań wskazują, że droga transmisji przez aerozole i powierzchnie jest możliwa, gdyż wirus pozostaje aktywny w aerozolach przez wiele godzin, a na powierzchniach przez wiele dni – czytamy w artykule Aerosol and surface stability of HCoV-19 (SARS-CoV-2) compared to SARS-CoV-1 [PDF]

Naukowcy zauważają, że stabilność wirusa w aerozolach i na powierzchniach ma bezpośredni wpływ na ryzyko zarażenia. Obie te drogi zarażenia odegrały główną rolę podczas dwóch poprzednich epidemii koronawirusów, SARS i MERS, z tym, że w przypadku SARS prawdopodobnie główną drogą zarażenia były aerozole.

Przeprowadzone właśnie szczegółowe analizy aktywności najnowszego koronawirusa wykazały, że w ciągu trzech godzin po aerozolizacji liczba zdolnych do zarażania wirusów spada z 103,5 do 102,7. Najnowszy koronawirus jest zaś najbardziej stabilny na polipropylenie, gdzie po 72 godzinach liczba aktywnych wirusów spadła z 103,7 do 100,6, oraz na stali nierdzewnej, gdzie do takiego samego spadku dochodzi w ciągu 48 godzin. Z kolei po nałożeniu wirusa na powierzchnię miedzianą obecności aktywnych wirusów nie wykrywano po 4 godzinach, a po nałożeniu na karton wirusów nie stwierdzono tam po 24 godzinach.

Uczeni stwierdzili, że nie ma statystycznie istotnej różnicy pomiędzy okresem przetrwania SARS-CoV-2 i SARS-CoV-1 na różnych powierzchniach i w aerozolach. Skoro tak, to do wyjaśnienia pozostaje zagadka, dlaczego obecny koronawirus (SARS-CoV-2) wywołał epidemię na znacznie większą skalę. Wiele różnych czynników może wchodzić tutaj w grę. Prawdopodobnie najnowszym koronawirusem możemy zarazić się od osób niewykazujących objawów, co ogranicza skuteczność kwarantanny. Mogą istnieć też różnice w ilości wirusów potrzebnych do wywołania zakażenia. Inne możliwe czynniki to stabilność wirusa w śluzie i jego odporność na takie czynniki jak temperatura i wilgotność.

Autorzy obecnych badań właśnie zaczynają eksperymenty, które pozwolą określić, jak SARS-CoV-2 radzi sobie w różnych warunkach atmosferycznych i różnych środowiskach, takich jak w wydzielinie z nosa, ślinie czy kale.


« powrót do artykułu

Share this post


Link to post
Share on other sites
3 godziny temu, KopalniaWiedzy.pl napisał:

określili czas przeżycia koronawirusa SARS-CoV-2 na różnych powierzchniach i w aerozolach

Z tym określeniem mam problem. Jakie czynności życiowe wykazuje wirus poza organizmami które mimowolnie go powielają? Nie chodzi, nie oddycha,nie ma żadnego metabolizmu, nie starzeje się. Ot kawałek dna w białkowej otoczce

Share this post


Link to post
Share on other sites
4 minuty temu, tempik napisał:

Ot kawałek dna w białkowej otoczce

Zdecydowanie RNA. :)
Przeżycie różne rzeczy może znaczyć. Ot, możliwość powielenia. Patrz... Jednak nie podpowiem. ;)

Share this post


Link to post
Share on other sites
Posted (edited)
1 godzinę temu, tempik napisał:
4 godziny temu, KopalniaWiedzy.pl napisał:

określili czas przeżycia koronawirusa SARS-CoV-2 na różnych powierzchniach i w aerozolach

Z tym określeniem mam problem.

Lepsze by było "przetrwania" niż "przeżycia", jeśli "życie" zdefiniujemy jako zdolność do aktywnego minimalizowania/stabilizacji własnej entropii (+ ew. możliwość powielenia).

Edited by ex nihilo

Share this post


Link to post
Share on other sites
14 godzin temu, ex nihilo napisał:

Lepsze by było "przetrwania" niż "przeżycia",

Zdecydowanie tak, i to nawet bez definiowania życia, bo przetrwać może ludź, bakteria, wirus i napis na kamieniu...
Choć z drugiej strony nie każdy wirus, który przetrwał podejmie jakąkolwiek działalność. Czyli jak zwykle, chyba rozbijamy się o definicję, której nie ma. ;)

Share this post


Link to post
Share on other sites
19 godzin temu, Astro napisał:

Zdecydowanie RNA. :)
Przeżycie różne rzeczy może znaczyć. Ot, możliwość powielenia. Patrz... Jednak nie podpowiem. ;)

Tak, myślę, że zdecydowanie zdolność do replikacji, ale jakby co, to nie wiem, zarobiony jestem ......... ;)

  • Upvote (+1) 1

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      U osoby, która przed 17 laty chorowała na SARS znaleziono przeciwciała, które wydają się blokować koronawirusa SARS-CoV-2. Jeśli wstępne badania się potwierdzą, może to pomóc w walce z nowym patogenem. Głównymi autorami odkrycia są profesor David Veesler z Wydziału Medycyny University of Washington oraz Davide Corti z firmy Humabs Biomed SA, która należy do Vir Biotechnology.
      Obecnie w Vir Biotechnology trwają intensywne badania nad wspomnianym przeciwciałem, nazwanym S309, których celem ma być dopuszczenie go do testów klinicznych. Na razie, o czym dowiadujemy się z opublikowanego w Nature artykułu Cross-neutralization of SARS-CoV and SARS-CoV-2 by a human monoclonal antibody, wiadomo jedynie, że podczas testów laboratoryjnych S309 wiąże się z proteiną S koronawirusa i w ten sposób uniemożliwia mu zainfekowanie komórki. Wciąż musimy wykazać, że to przeciwciało chroni żywy organizm, czego jeszcze nie zrobiliśmy, mówi profesor Veesler.
      Wyjątkowość prac laboratorium Veeslera polega na tym, że nie pracuje ono na materiale od osób chorych na COVID-19, a na materiale od osoby, która była chora w 2003 roku. To pozwoliło nam na bardzo szybki postęp w porównaniu z innymi grupami naukowymi, wyjaśnia uczony. U badanego pacjenta w limfocytach pamięci, które powstają podczas zakażenia patogenem, znaleziono wiele przeciwciał monoklonalnych. Limfocyty pamięci zapamiętują patogen, z którym się już w przeszłości zetknęły i bronią organizmu przed powtórnym zarażeniem. Czasami taka pamięć działa przez całe życie. Fakt, że organizm zapamiętał SARS przez 17 lat daje nadzieję, że po zetknięciu się z nowym koronawirusem lub po zaszczepieniu, będziemy przez długi czas chronieni przed chorobą.
      Dzięki szczegółowym badaniom wiemy już, że S309 neutralizuje SARS-CoV-2 łącząc się z tym regionem proteiny S, który jest identyczny u patogenów z podrodzaju sarbecovirus, do którego należą koronawirusy SARS.
      W zidentyfikowania nowego przeciwciała brali też udział naukowcy z Instytutu Pasteura i Uniwersytetu w Lugano.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Na łamach pisma Geophysical Letters, wydawanego przez Amerykańską Unię Geofizyczną, ukazały się wyniki dwóch badań nad zanieczyszczeniami powietrza w czasie epidemii koronawirusa. Dowiadujemy się z nich że nad Chinami, USA i Europą Zachodnią znacząco spadł poziom dwóch głównych zanieczyszczeń, ale wzrósł poziom jednego z drugoplanowych form zanieczyszczeń.
      Okazało się, że w pierwszej części bieżącego roku doszło do 60-procentowego spadku zanieczyszczeń dwutlenkiem azotu. To bardzo reaktywny gaz, który niszczy płuca. Pochodzi on głównie z silników spalinowych, elektrowni oraz przemysłu.
      Z drugiego ze studiów, którego autorzy skupili się na północnych Chinach, dowiadujemy się, że doszło również do 35-procentowego spadku zanieczyszczeń pyłami zawieszonymi PM2.5. To najmniejsza z frakcji pyłów, której cząstki są tak małe, iż głęboko penetrują płuca i prowadzą do ich uszkodzeń.
      Jak mówi Jenny Stavrakou z Królewskiego Belgijskiego Instytutu Aeronomii Kosmicznej, tak wielkich spadków nie obserwowano nigdy od roku 1990, kiedy to zaczęto badać zanieczyszczenia powietrza za pomocą satelitów. Dochodziło jedynie do miejscowych krótkotrwałych porównywalnych spadków zanieczyszczeń np. ograniczeń nałożonych na czas Igrzysk Olimpijskich w Pekinie w 2008 roku.
      Naukowcy zdają sobie sprawę, że obserwowana obecnie lepsza jakość powietrza to zjawisko przejściowe, jednak daje im ono wgląd w to, jaka mogłaby być jakość powietrza przy wprowadzeniu ściślejszych regulacji.
      Jednocześnie autorzy jednego ze studiów informują, że spadek zanieczyszczeń dwutlenkiem azotu doprowadził do zwiększenia zanieczyszczeń przygruntowym ozonem w Chinach. Ozon to drugoplanowa forma zanieczyszczeń. Postaje on gdy światło słoneczne i wysoka temperatura działają w niskich warstwach atmosfery jak katalizatory reakcji chemicznych. Ozon jest szkodliwy dla układu oddechowego i krwionośnego. W bardzo zanieczyszczonych obszarach, szczególnie w zimie, ozon ten może być niszczony przez tlenki azotu. Zatem gdy w atmosferze jest mniej tlenków azotu to w bardzo zanieczyszczonych obszarach rośnie poziom ozonu. To oznacza, że sama redukcja zanieczyszczeń dwutlenkiem azotu i pyłami nie rozwiązuje problemu zanieczyszczenia ozonem, mówi Guy Brasseur z Instytutu Meteorologii im. Maxa Plancka w Hamburgu.
      Stavrakou i jej zespół wykorzystał satelity do zbadania zmian poziomu dwutlenku azotu w krajach szczególnie mocno dotkniętych epidemią. Badania przeprowadzono w Chinach, Korei Południowej, Włoszech, Hiszpanii, Francji, Niemczech, Iranie oraz USA. Okazało się, że nad dużymi chińskimi miastami poziom dwutlenku azotu zmniejszył się średnio o 40%, a nad miastami Europy i USA zanotowano spadek o 20-30 procent w porównaniu z tym samym okresem roku ubiegłego. Nie zauważono jednak spadku zanieczyszczeń nad miastami w Iranie. Autorzy podejrzewają, że stało się tak dlatego, iż władze Iranu wprowadziły ograniczenia dopiero pod koniec marca.
      Z kolei Brasseur i jego zespół wykorzystał dane z 800 naziemnych stacji z północy Chin. Z danych tych naukowcy dowiedzieli się o 35-procentowym spadku poziomu PM2.5, 60-procentowym spadku poziomu dwutlenku azotu oraz wzroście poziomu ozonu.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy z Uniwersytetu w Utrechcie, Erasmus Medical Center oraz Harbour BioMed zidentyfikowali ludzkie przeciwciało monoklonalne, które chroni komórki przez zainfekowaniem przez wirus SARS-CoV-2. Odkrycie tego przeciwciała, które jest skuteczne również przeciwko SARS-CoV, to ważny krok w kierunku opracowania metody leczenia lub ochrony przed COVID-19.
      Niewykluczone, że stworzenie takiego leku zapobiegłoby w przyszłości epidemiom powodowanym przez podobne koronawirusy.
      Odkrycie to kładzie podwaliny pod kolejne badania w kierunku dokładnego opisu tego przeciwciała i opracowania leku na COVID-19, mówi współautor badań, profesor Frank Grosveld. O szczegółach badań możemy przeczytać w Nature Communications.
      SARS-CoV-2 i SARS-CoV należą do podgatunku Sarbecovirus z rodziny betakoronawirusów. Oba przeszły barierę międzygatunkową i zarażają ludzi, powodując zagrażające życiu objawy ze strony układu oddechowego.
      Przeciwciała monoklonalne to bardzo obiecująca kategoria leków do walki z chorobami zakaźnymi. Wykazały one swoją przydatność przeciwko wielu wirusom. Przeciwciała neutralizujące koronawirusy atakują przede wszystkim glikoproteinę S, której celem jest umożliwienie wirusowi wniknięcia do komórki gospodarza. Proteina ta składa się z dwóch funkcjonalnych podjednostek. S1, w skład której wchodzą cztery domeny od S1A do S1D, odpowiada za przyłączenie się wirusa do komórki. Z kolei podjednostka S2 jest odpowiedzialna za łączenie się błon komórkowych wirusa i komórki.
      Proteina S ma w 77,5% identyczną sekwencję aminokwasów w obu koronawirusach SARS. Zwykle łączy się ona z proteiną ACE2 na powierzchni komórki. Grosveld i jego koledzy poszukiwali przeciwciał biorących na cel SARS-CoV. W ten sposób zidentyfikowali przeciwciało monoklonalne 47D11, które działa przeciwko obu koronawirusom.
      Okazało się, że przeciwciało to przyczepia się do S1B u obu koronawirusów, potencjalnie uniemożliwiając wirusowi zainfekowanie komórki gospodarza. Co ciekawe, naukowcy sugerują, że 47D11 neutralizuje wirusy za pośrednictwem nieznanego jeszcze mechanizmu. Przypominają, że już wcześniejsze badania wskazywały istnienie takich alternatywnych mechanizmów, jak np. destabilizacja struktury proteiny S. Być może mamy tutaj do czynienia z czymś podobnym.
      To pierwsze doniesienia o ludzkim przeciwciele monoklonalnym, które neutralizuje SARS-CoV-2, stwierdzają autorzy badań w podsumowaniu. Przeciwciało to może być pomocne w opracowaniu testów antygenowych i serologicznych na SARS-CoV-2. Może też ono, samodzielnie lub w połączeniu z innymi środkami, zapobiegać lub leczyć COVID-19, a potencjalnie również przyszłe choroby powodowane przez wirusy z podgatunku Sarbecovirus.
      Wcześniej informowaliśmy, że potencjał powstrzymania nowego koronawirusa ma też białko LY6E.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy z Uniwersytetu w Glasgow odkryli, że odpady z tworzyw sztucznych znajdują się nawet w 80% gniazd pewnych ptaków morskich. Po raz pierwszy zidentyfikowano również źródło plastiku; przynajmniej dla części badanych gatunków.
      Analizy przeprowadzone w 2018 r. na niezamieszkałej wyspie u zachodnich wybrzeży Szkocji pokazały, że spośród 1597 zbadanych gniazd odpady tworzyw sztucznych znajdowały się aż w 625. W przypadku kormoranów czubatych (Phalacrocorax aristotelis) odsetek gniazd z plastikiem sięgał 80%. W przypadku gatunków, które co roku budują nowe gniazda - mew - czasem "tylko" 1/3 gniazd zawierała plastik.
      Duże różnice międzygatunkowe w zakresie proporcji gniazd z odpadami tworzyw sztucznych wynikają zapewne po części z różnych zachowań związanych z ich budową. Kormorany czubate korzystają z tych samych gniazd rok po roku, a więc ilość plastiku rośnie w nich z czasem.
      Co istotne, stwierdzono, że plastik w gniazdach to głównie odpady poużytkowe, wyrzucane w obszarach zabudowanych. Kończą one w gniazdach nie dlatego, że ptaki morskie aktywnie je zbierają i przenoszą do gniazda, ale dlatego, że podlegają biernemu transportowaniu przez prądy morskie - podkreśla dr Ruedi Nager.
      Danni Thompson, która współpracowała z dr. Nagerem, przyglądała się bliżej mewom srebrzystym (Larus argentatus), najliczniejszemu gatunkowi na Lady Isle.
      Ponieważ mewy srebrzyste często żerują na wysypiskach, chcieliśmy sprawdzić, czy połykają przy tym plastik i przynoszą go do gniazd - opowiada Thompson.
      Bazując na zdjęciach gniazd i tworzyw znalezionych w zwróconych resztkach pokarmu w miejscu gniazdowania, naukowcy mogli porównać rodzaj i kolor plastiku pochodzącego z regurgitacji i wbudowanego w konstrukcję. Gdyby źródłem materiału w gnieździe były kawałki pochodzące z żerowania w obszarach zamieszkanych, można by się spodziewać sporych podobieństw między kawałkami ze zwróconej treści i gniazda.
      Okazało się jednak, że rodzaj plastiku z diety różnił się od znalezionego w gnieździe, co pokazało nam, że plastik z gniazd dostał się tu w inny sposób - opowiada dr Nager.
      Naukowcy sporządzili mapę wszystkich gniazd na wyspie i sprawdzili, czy gniazda z odpadami tworzyw sztucznych są równo rozmieszczone. Okazało się, że gniazda z północy Lady Isle, które znajdują się bliżej strefy pływów od strony stałego lądu, częściej zawierają plastik (o ile w południowej połowie wyspy plastik wchodził w skład 32,1% gniazd mew srebrzystych, o tyle na północy odsetek ten wynosił już 42,3%). To sugeruje, że plastik w gniazdach pochodzi z lądu i jest wymywany na brzeg. Jednym słowem, ptaki mogą go zbierać z bezpośredniego otoczenia gniazda.
      Jak podali autorzy raportu z Marine Pollution Bulletin, plastik wykryto w 80% gniazd kormoranów czubatych, 53% gniazd mew siodłatych (Larus marinus), 35% gniazd mew srebrzystych, a także 25% gniazd mew żółtonogich (Larus fuscus) i kormoranów zwyczajnych (Phalacrocorax carbo).
      Liczebność populacji ptaków morskich na świecie spada, dlatego tak ważne jest, by zrozumieć wszystkie działające na nie presje. Ptaki te stykają się z zanieczyszczeniem plastikiem, bo zjadają tworzywa sztuczne, zaplątują się w odpady (np. sieci czy torby) i wreszcie wbudowują tworzywa w swoje gniazda. Ostatnie z opisanych zjawisk może wpływać na jakość i właściwości gniazd, negatywnie oddziałując na jaja i pisklęta. Możliwe także, że dorosłe ptaki i pisklęta zaplątują się w resztki tworzyw i giną.
      Wykorzystanie dokumentacji fotograficznej do monitorowania ilości/akumulacji plastiku, a także do identyfikacji jego pochodzenia pozwoli, wg biologów, lepiej zaplanować działania ochronne, np. wybrać plaże, które należałoby posprzątać w pierwszej kolejności.
       

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Koronawirus zmutował i obecnie mamy do czynienia z nową, bardziej zaraźliwą i niebezpieczną odmianą, twierdzą naukowcy z Los Alamos National Laboratory (LANL). Pojawiła się ona w Europie na początku lutego. Stamtąd zaczęła się rozprzestrzeniać i pod koniec marca dominowała na całym świecie. Naukowcy ostrzegają, że jeśli epidemia SARS-CoV-2 nie wygaśnie w sezonie letnim, jak ma to miejsce w przypadku grypy sezonowej, może nadal mutować, co znakomicie może utrudnić opracowanie szczepionki.
      To złe wiadomości, mówi główna autorka badań, Bette Korber. Nie powinno nas to jednak zniechęcać. Nasz zespół z LANL udokumentował te mutacja, a było to możliwe dzięki ogólnoświatowemu wysiłkowi naukowców, którzy natychmiast udostępniają genom lokalnie występującego wirusa.
      Przypomnijmy, że na początku marca chińscy naukowcy informowali o zidentyfikowaniu dwóch typów koronawirusa SARS-CoV-2, z których bardziej agresywny powodował 70% infekcji, a starszy i mniej agresywny – 30%. Typ bardziej agresywny miał być też bardziej rozpowszechniony w Wuhan na wczesnych etapach epidemii.
      Teraz naukowcy z Los Alamos, we współpracy z uczonymi z Duke University i brytyjskiego University of Sheffield przeanalizowali tysiące genomów SARS-CoV-2 zebranych przez Global Initiative for Sharing All Influenza Database (GISAID).
      Analizą zajął się zespół, który dotychczas zajmował się tworzeniem bazy danych nt. wirusa HIV. Od dwóch miesięcy specjaliści ci rozwijają narzędzia do śledzenia i analizy SARS-CoV-2 w czasie rzeczywistym. Bo bazy GISAID trafiają obecnie setki genomów koronawirusa dziennie, a eksperci z Los Alamos na bieżąco je analizują.
      Dotychczas zidentyfikowano mutacje w 14 miejscach proteiny S, za pomocą której wirus przyłącza się do komórek. Najbardziej niepokojące są dwie z nich. Są too mutacja D614G, czyli zmiana nukleotydów G na A w pozycji 23403 w szczepie referencyjnym z Wuhan. Z nieznanych obecnie przyczyn wiąże się ona z większą zaraźliwością wirusa. Naukowców martwi też mutacja S943P. Co prawda występuje ona wyłącznie na terenie Belgii, ale wiele wskazuje na to, że jest ona skutkiem rekombinacji. Ten proces wymaga zaś jednoczesnej infekcji organizmu gospodarza dwoma odmiennymi szczepami wirusa.
      Cała praca, wraz ze szczegółowym opisem wszystkich mutacji, została opublikowana w biorxiv [PDF].

      « powrót do artykułu
×
×
  • Create New...