Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Podwójny kondensat fermionów i ekscytonów jest możliwy. Zrewolucjonizuje obrazowanie medyczne

Rekomendowane odpowiedzi

Zdaniem chemików-teoretyków z University of Chicago, powinno być możliwe stworzenie materiałów, które jednocześnie przesyłają prąd elektryczny oraz energię ekscytonów i czynią to bez strat w dość wysokich temperaturach. Naukowcy obliczyli, ze takie materiały powinny istnieć w pojedynczym stanie kwantowym, jednak będą wykazywały właściwości dwóch różnych kondensatów – jednego złożonego z ekscytonów i drugiego z par fermionów.

Kondensaty Bosego-Einsteina uzyskuje się w wyniku schładzania gazów tak bardzo, że długość fal materii de Broglie'a poszczególnych cząstek jest porównywalna z odległościami pomiędzy nimi. W ten sposób całość ma ten sam podstawowy stan kwantowy. Kondensat musi składać się z bozonów, gdyż mają one spin całkowity i mogą jednocześnie przybierać ten sam stan kwantowy. Możliwe jest też stworzenie kondensatów Bosego-Einsteina z par fermionów o spinie połówkowym, gdyż taka para ma spin całkowity, jest więc bozonem.

W nadprzewodnikach pary elektronów (fermionów), zwane parami Coopera, tworzą stan nadciekły, dzięki czemu prąd może przemieszczać się nie napotykając oporu. pary Coopera mają niską energię wiązania, co oznacza, że wiązania są łatwo rozrywane przez energię termiczną. Po przekroczeniu pewnej temperatury granicznej pary ulegają rozerwaniu i materiał z nadprzewodnika staje się przewodnikiem.

Jednym ze sposobów na podniesienie temperatury granicznej kondensatu jest uzyskanie go z ekscytonów (bozonów), czyli par elektron-dziura. Ekscytony, w przeciwieństwie do par Coopera, nie niosą ze sobą ładunku elektrycznego. Są silniej ze sobą powiązane, co oznacza, że stworzony z nich kondensat może istnieć w wyższych temperaturach niż nadprzewodnik. Problem jednak w tym, że cząstki i dziury bardzo szybko ulegają anihilacji, więc kondensaty z ekscytonów są bardzo trudne do uzyskania.

Kondensaty ekscytonów można uzyskiwać umieszczając elektrony w pułapce optycznej lub wykorzystując bliźniacze warstwy materiału, takiego jak półprzewodniki czy grafen, do utrzymania elektronów i dziur z dala od siebie. Kondensaty ekscytonowe mogą też współistnieć z kondensatami stworzonymi z par fermionów. W takim systemie umożliwiają one istnienie par Coopera w wyższych temperaturach.

Autorzy najnowszych badań, LeeAnn Sager, Shiva Safaei i David Mazziotti z University of Chicago przypominają, że właściwości obu typów kondensatów wchodzących w skład takiego systemu, pozostają różne. Uczeni postanowili sprawdzić, czy jest teoretycznie możliwe stworzenie materiału, który jednocześnie wykazuje właściwości obu kondensatów. Taki materiał mógłby jednocześnie przewodzić elektryczność i energię wzbudzenia ze 100-procentową wydajnością.

Naukowcy wykorzystali model komputerowy do symulowania zachowania systemu składającego się z czterech fermionów. Z modelu wynika, że taki materiał rzeczywiście wykazywałby właściwości obu kondensatów. Uczeni nie mieli dostępu do wystarczających mocy obliczeniowych, by przeskalować swój system. Obliczyli więc, co by się stało, gdyby splątano kwantowe funkcje falowe nadprzewodnika i ekscytonowego kondensatu zawierającego dużą liczbę cząstek. Jak mówi Mazziotti, z obliczeń wynika, że istnieje dość duża rodzina funkcji falowych, łączących te właściwości. Nic nie stoi na przeszkodzie, by właściwości te wykazywały w świecie makro.

Jak czytamy na łamach Physical Review B, ten pojedynczy stan kwantowy, który nazwali kondensatem fermionowo-ekscytonowym, łączy właściwości obu kondensatów w „wysoce nietrywialny sposób”.

Teraz grupa Mazziottiego współpracuje z praktykami nad stworzeniem w laboratorium opisanego teoretycznie materiału. Na razie najbardziej oczywistym kandydatem do jego stworzenia wydaje się para nadprzewodzących warstw, chociaż naukowcy nie wiedzą jeszcze, jakiego nadprzewodnika użyją.

Uczeni nie mają jednak złudzeń, co do zadania, jakie przed sobą postawili. Jednym z problemów, z którymi będą musieli się zmierzyć, jest zarządzanie różnymi energiami wiązań par Coopera i ekscytonów. Trudno będzie zbliżyć obie warstwy do siebie tak, by pojawiło się wiązanie, a jednocześnie, by były one od siebie na tyle daleko, by nie doszło do tunelowania elektronów pomiędzy warstwami. Jeśli jednak uda się tego dokonać, możemy zyskać niezwykły materiał. Może on np. posłużyć do stworzenia urządzeń do obrazowania medycznego, w których nie będzie dochodziło do utraty światła, zatem zyskamy niezwykle dużą rozdzielczość obrazu.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Podstawą nadprzewodnictwa jest łączenie się elektronów w pary. Rodzi się jednak pytanie, czy mogą wobec tego łączyć się też w czwórki. Profesor Egor Babaev przez niemal 20 lat szukał sposobu ma tworzenie nowego stanu materii, elektronowych czworaczków. Teraz w końcu mu się udało. Pracujący pod jego kierunkiem fizycy ze szwedzkiego Królewskiego Instytutu Technologii (KTH – Kungliga Tekniska högskolan) donieśli na łamach Nature Physics, że udało im się uzyskać stan przewidziany przez Babaeva przed 17 laty.
      Uczony w 2004 roku opublikował artykuł, w którym teoretycznie opisał elektronowe czworaczki, a w roku 2012 opisał, w jaki sposób je uzyskać je w bazującym na żelazie materiale Ba1−xKxFe2As2.
      Łączenie się elektronów w pary pozwala na pojawienie się nadprzewodnictwa, stanu, w którym ładunek elektryczny nie napotyka na przeszkody. O tym, że elektrony mogą się łączyć, a nie odpychać, dowiedzieliśmy się z teorii opracowanej przez Coopera, Bardeena i Schrieffera, którzy zostali za nią uhonorowani Nagrodą Nobla w 1972 roku.
      To właśnie te tzw. pary Coopera są nośnikami ładunku w nadprzewodnikach. W normalnych warunkach dwa elektrony, które mają przecież te same ładunki, silnie się odpychają. Jednak w niskich temperaturach w kryształach łączą się w luźne pary. O parach takich wiedzieliśmy od dawna. Jednak idea łączenia się fermionów (a elektrony są fermionami) w czwórki została przez naukowców zaakceptowana dopiero niedawno. Profesor Babaev wyjaśnia, że aby doszło do zaistnienia związku czterech fermionów musi pojawić się coś, co zapobiegnie tworzeniu się par oraz ich przepływie bez oporu, a jednocześnie umożliwi tworzenie czterofermionowego kondensatu.
      Problem w tym, że teoria BCS, mikroskopowa teoria nadprzewodnictwa zwana też teorią Bardeena-Coopera-Shrieffera, nie pozwala na tworzenie fermionowych czworaczków. Gdy więc współpracujący z Babaevem eksperymentator Vadim Grinenko z Technische Universtät Dresden trafił przed 3 laty na ślady wskazujące na istnienie takiego stanu materii, naukowcy musieli zmierzyć się z powszechnie akceptowaną teorią.
      Przez kolejne trzy lata uczeni prowadzili liczne eksperymenty i badania, mające potwierdzić odkrycie. Babaev mówi, że kluczową obserwacją jest spostrzeżenie, że czterofermionowe kondensaty spontanicznie łamią parzystość operacji odwrócenia czasu. Jest to matematyczna operacja, która pozwala zmienić znak współrzędnej czasowej na ujemny, dzięki czemu można opisać zjawisko tak, jakby czas biegł do tyłu lub cały ruch biegł w przeciwnym kierunku. Gdy użyjemy takiego zabiegu matematycznego, to wszystkie podstawowe prawa fizyki nadal działają. Działają też nadprzewodniki. Innymi słowy, jeśli obliczamy teoretycznie właściwości typowego nadprzewodnika i odwrócimy strzałkę czasu, nadal jest on takim samym nadprzewodnikiem.
      Jednak w przypadku czterofermionowego kondensatu po odwróceniu strzałki czasu pojawia się inny stan. Prawdopodobnie minie wiele lat, zanim go w pełni zrozumiemy. Nasze eksperymenty prowadzą do postawienia wielu nowych pytań, ujawniają istnienie wielu niezwykłych właściwości powiązanych z reakcją na temperaturę, pole magnetyczne i ultradźwięki, dodaje Babaev.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Terahercowe lasery to niezwykle obiecujące urządzenia, które mogą znaleźć zastosowanie m.in. w obrazowaniu medycznym. Niestety, wymagają olbrzymich systemów chłodzenia, przez co dotychczas można je było znaleźć jedynie w laboratoriach naukowych. Teraz może się to zmienić, a wszystko dzięki pracy zespołu naukowego kierowanego przez Zbiga Wasilewskiego z kanadyjskiego University of Waterloo oraz Qing Hu z MIT.
      Amerykańsko-kanadyjski zespół naukowy stworzył właśnie kaskadowy laser kwantowy o dużej mocy, który działa bez wielkich systemów chłodzenia. Pracuje on już w temperaturze 250 kelwinów (-23,15 stopnia Celsjusza). Dotychczas tego typu systemy wymagały schłodzenia do co najmniej 210 kelwinów (-63,15 stopnia Celsjusza). Nowemu laserowi wystarczy więc niewielki system chłodzący. A naukowcy przekonują, że nie powiedzieli jeszcze ostatniego słowa.
      Promieniowanie terahercowe mieści się pomiędzy podczerwienią a mikrofalami. Długość jego fali wynosi od 3 mm do 30 mm. Wiele molekuł absorbuje promieniowanie w tych zakresach, co pozwala np. na identyfikowanie takich molekuł. Olbrzymią zaletą promieniowania THz jest fakt, że przenika ono przez wiele materiałów, takich jak papier, ubrania czy plastik. To oznacza, że promieniowanie takie – podobnie jak promieniowanie rentgenowskie – można wykorzystać do obrazowania wnętrz obiektów.
      Jednak w przeciwieństwie do promieniowania rentgenowskiego fotony w zakresie teraherców mają stosunkowo niską energię, jest to więc promieniowanie niejonizujące, zatem bezpieczne do użycia w medycynie czy naukach biologicznych. Kolejną jego zaletą jest fakt, że długość jego fali jest mniejsza niż w przypadku promieniowania mikrofalowego, co pozwala na uzyskanie obrazów o wyższej rozdzielczości.
      Wszystko to wygląda dobrze w teorii, jednak gorzej z praktycznym wykorzystaniem. Promieniowanie w zakresie 0,1–10 THz jest rzadko wykorzystywane ze względu na ograniczenia technologiczne. Wyzwaniem jest bowiem wygenerowanie promieniowania THz o odpowiedniej mocy.
      Jednym z jego źródeł mogą być kwantowe lasery kaskadowe (QCL), gdyż łatwo można je dostrajać do potrzeb. Problem jednak w tym, że lasery takie wymagają bardzo niskich temperatur do pracy. W 2019 roku naukowcy z EHT Zurich stworzyli QCL generujący światło w zakresie THz, który pracował w temperaturze 210 kelwinów. System taki wciąż wymagał dużych systemów chłodzących. Teraz zaś grupa Wasilewskiego i Hu pochwaliła się tego typu laserem pracującym przy 250 kelwinach. A taki laser można już chłodzić za pomocą niewielkiego systemu.
      Wrażliwość kwantowych laserów kaskadowych na temperaturę wynika z ich budowy. QCL korzystają z kwantowych studni i barier składających się z tysięcy cienkich warstw półprzewodnika. Przechodząc przez kolejne warstwy elektron emituje fotony o których częstotliwości decyduje struktura warstw. W zbyt wysokiej temperaturze elektrony mają tendencję do „wyciekania” ze studni kwantowych, co niekorzystnie odbija się na wydajności lasera.
      Autorzy najnowszego osiągnięcia udoskonalili laser tworząc nową strukturę półprzewodnikową. Składa się ona z niemal 15 000 interfejsów pomiędzy studniami kwantowymi a barierami, wyjaśnia Wasilewski. Połowa z tych barier ma grubość mniej niż 7 atomów. Jakość wykonania tych interfejsów jest kluczowa dla wydajności lasera.
      Hu informuje, że jednym z pierwszych zastosowań, w jakich zostanie przetestowany udoskonalony laser terahercowy będzie obrazowanie w czasie rzeczywistym komórek nowotworu skóry. Komórki nowotworowe są niezwykle wyraźnie widoczne w promieniowaniu terahercowym, gdyż zawierają więcej wody i krwi niż zdrowe komórki, a woda bardzo silnie absorbuje promieniowanie w zakresie THz. Technologię tę można również wykorzystać do wykrywania np. metaamfataminy, heroiny czy materiałów wybuchowych takich jak TNT, gdyż również są one dobrze widoczne w promieniowaniu THz.
      To jednak nie wszystko. Na łamach Nature Photonics naukowcy mówią, że powinno być możliwe stworzenie kwantowego lasera kaskadowego pracującego w zakresie THz, który w ogóle nie będzie wymagał chłodzenia. Już teraz planują dalsze prace nad zwiększaniem temperatury, w której może działać taki laser.
      Grupa Hu pracuje też nad czujnikami promieniowania w zakresie teraherców. Większość sygnałów w paśmie THz jest dość słabych. Niezależnie od tego, czy pochodzą ze źródeł pozaziemskich (aż 90% fotonów we wszechświecie znajduje się w paśmie THz) czy źródeł ziemskich, zwiększenie możliwości ich wykrycia znakomicie ułatwi badania i przetwarzanie takich sygnałów, dodaje Hu.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Na brazylijskim Uniwersytecie w Campinas (UNICAMP) powstał światłowód wykonany wyłącznie z agaru. Urządzenie jest nieszkodliwe dla człowieka (jadalne), biokompatybilne i całkowicie biodegradowalne. Nowy światłowód może być wykorzystany przede wszystkim w obrazowaniu medycznym, fototerapii, optogenetyce oraz do precyzyjnego dostarczania leków. Można go też zastosować do wykrywania mikroorganizmów w konkretnych organach, gdzie ulegnie całkowitemu wchłonięciu po spełnieniu zadania.
      Agar to naturalna żelatyna występująca w glonach morskich. Składa się z dwóch polisacharydów: agarozy i agaropektyny. Światłowód jest dziełem grupy badawczej, na czele której stali profesorowie Eric Fujiwara i Cristiano Cordeiro.
      Nasz światłowód to cylinder agarowy o średnicy 2,5 milimetra. Jest zbudowany z sześciu otworów o średnicy 0,5 mm każdy, rozmieszczonych regularnie wzdłuż rdzenia. Światło jest uwięzione dzięki różnicy współczynnika refrakcji pomiędzy otworami a rdzeniem, mówi profesor Fujiwara.
      Uczony wyjaśnia, że światłowód wyprodukowano wlewając agar do formy. Po zastygnięciu był gotowy. Uczony zapewnia, że możliwe jest indywidualne dobieranie współczynnika refrakcji oraz kształtu światłowodu. Wystarczy zmienić skład roztworu agaru oraz kształt formy.
      Dodatkową zaletą agarowego światłowodu jest fakt, że on sam może zostać wykorzystany zarówno jako podłoże do hodowli mikroorganizmów, jak i urządzenie do ich próbkowania. W otworach, którymi wędruje światło, można umieścić pożywkę i hodować tam bakterie. A po badaniach całości można łatwo i tanio się pozbyć, nie szkodząc przy tym środowisku naturalnemu.
      Nowatorski światłowód opisano na łamach Nature w artykule pt. Agarose-based structured optical fibre.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Fizyka zna różne typy cząstek. Mamy więc cząstki elementarne, które stanową podstawowy budulec tego, co nas otacza. Są też takie cząstki jak np. atomy, składające się w wielu mniejszych elementów. Są wreszcie i kwazicząstki, czyli wzbudzenia systemów składających się z wielu elementów, które zachowują się jak cząstki. Naukowcy z Uniwersytetu Technicznego w Wiedniu odkryli właśnie π-ton, kwazicząstkę składającą się z dwóch elektronów, dwóch dziur i światła.
      Najprostszą kwazicząstką jest dziura. Wyobraźmy sobie, że wiele atomów jest ułożonych w regularny wzór w krysztale i w każdym atomie jest poruszający się elektron. Tylko w jednym atomie brakuje elektronu. To właśnie jest dziura, wyjaśnia profesor Karsten Held z Instytutu Fizyki Ciała Stałego. W miejsce brakującego elektronu może przejść elektron z sąsiadującego atomu. Wówczas dziura zostanie zamknięta, ale pojawi się inne, w atomie, z którego przywędrował elektron.
      Naukowcom łatwiej jest w takich przypadkach badać nie ruch elektronów, a dziur. Jeśli elektrony poruszają się w prawo, dziura porusza się w lewo. Jej ruch podlega prawom fizyki, podobnie jak ruch cząstek. Jednak, w przeciwieństwie do elektronu, który można obserwować również poza naszym kryształem, dziura istnieje jedynie w odniesieniu do innych cząstek. Dlatego też mówimy tutaj o kwazicząstce.
      Jednak, jak dodaje Karsten Held, granica pomiędzy cząstkami a kwazicząstkami nie jest ostra. Zwykłe cząstki też mogą być rozumiane jedynie w kontekście ich otoczenia. Nawet w próżni bez przerwy dochodzi, na bardzo krótki czas, do wzbudzeń par cząstka-dziura. Bez tego masa elektronu byłaby zupełnie inne. Innymi słowy, nawet gdy eksperymentujemy ze zwykłymi elektronami, tak naprawdę obserwujemy elektron będący kwazicząstką.
      Jeszcze inną kwazicząstką jest ekscyton, który odgrywa ważną rolę w fizyce półprzewodników. Składa się ona z elektronu, który ma ładunek ujemny, oraz z dziury, będącej nieobecnością ładunku ujemnego, ma ona zatem ładunek dodatni. Badaliśmy takie właśnie ekscytony. Stworzyliśmy model komputerowy do obliczeń kwantowych efektów fizycznych, jakie wywierają one w ciałach stałych, mówią główne autorki badań doktor Anna Kauch i doktor Petra Pudleiner. Ich obliczenia wskazały na istnienie nowej kwazicząstki, która składa się z dwóch elektronów i dwóch dziur połączonych za pomocą fotonów.
      Odkrywcy nazwali nową cząstkę π-tonem. Nazwa π-ton wzięła się stąd, że dwa elektrony i dwie dziury są utrzymywane razem przez fluktuacje spinu, które zawsze zmieniają się o 180 stopni pomiędzy jednym punkcie w sieci krystalicznej, a drugim. Zatem zmieniają się o π radianów. Tę ciągłą zmianę możemy wyobrazić sobie jak przechodzenie na szachownicy z pól ciemnych na jasne, mówią odkrywczynie π-tonu.
      Na razie π-ton został potwierdzony i zweryfikowany za pomocą komputera. Zbadaliśmy π-ton za pomocą różnych modeli komputerowych. Pojawiał się on w każdym z nich. Powinno być zatem możliwe jego wykrycie w różnych materiałach. Niektóre eksperymenty przeprowadzone z tytanianem samaru wydają się wskazywać na istnienie π-tonu. Dodatkowe badania z wykorzystaniem fotonów i neutronów powinny dać nam jaśniejszy obraz sytuacji, dodaje Karsten Held.
      O nowej kwazicząstce możemy przeczytać na łamach Physical Review Letters.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Zaawansowane technologie obrazowania medycznego, takie jak tomografy komputerowe, stają się coraz łatwiej dostępne. Odpowiednie urządzenia stoją w coraz większej liczbie placówek medycznych, gdzie są opłacane z podatków. Znacznie gorzej jest w przypadku weterynarii, ponieważ nieliczne przychodnie i gabinety stać na taki sprzęt, a nie mogą one liczyć na budżet państwa. Logicznym byłoby wykorzystanie istniejącej infrastruktury ludzkiej medycyny również w przypadku zwierząt, tym bardziej, że wiele takich urządzeń całymi godzinami stoi bezczynnie.
      W niektórych krajach weterynarze próbują namówić prywatne szpitale i kliniki, by zezwoliły na obrazowanie zwierząt, jednak pomysł ten spotyka się z dużymi oporami, a jako argument przeciw podaje się – bez żadnych dowodów naukowych – względy higieniczne. Tymczasem okazuje się, że nic bardziej mylnego – futro psów jest mniej zanieczyszczone niż męska broda.
      Zespół naukowy pracujący pod kierunkiem Andreasa Gutzeita ze szwajcarskiej Hirslanden Clinic postanowił porównać bakterie żyjące w brodach mężczyzn oraz w sierści psów. Do badań zaangażowano 18 brodatych panów w wieku 18–76 lat oraz 30 psów różnych ras, od których próbki pobrano z futra na karku. W obu przypadkach porównano zagęszczenie mikroorganizmów.
      Okazało się, że o wysokim zagęszczeniu mikroorganizmów można mówić w przypadku 100% badanych mężczyzn i w przypadku 77% badanych psów. Jednak, co gorsza, ludzkie brody były znacznie częściej siedzibą chorobotwórczych patogenów. Ich obecność stwierdzono bowiem w brodach 39% badanych. Dla psów odsetek ten wynosił 13%.
      Szwajcarzy dodatkowo pobrali próbki z jamy ustnej i porównali żyjące tam mikroorganizmy. W jamie ustnej ludzi żyło znacząco więcej mikroorganizmów niż w pyskach psów, stwierdzili badacze.
      Podczas naszych badań zauważyliśmy, że w męskich brodach występuje znacznie więcej bakterii niż w psich futrach. W ludzkich brodach stwierdziliśmy też więcej mikroorganizmów groźnych dla człowieka. W skanerach do rezonansu magnetycznego, które wykorzystywano do obrazowania psów, nie znaleźliśmy żadnych mikroorganizmów powodujących choroby odzwierzęce. Na podstawie tych badań możemy stwierdzić, że w porównaniu z brodatymi mężczyznami psy należy uznać za czyste, napisali badacze.
      Zespół Gutzeita zauważa jeszcze jedną korzyść, poza finansową i lepszym wykorzystaniem istniejącego sprzętu, z dopuszczenia do obrazowania psów w klinikach dla ludzi. Otóż, jako że większość osób uznaje, że futro zwierząt jest mniej higieniczne niż ludzki zarost czy włosy, można z dużą dozą prawdopodobieństwa stwierdzić, że urządzenia byłyby przecierane płynami dezynfekującymi po każdym czworonożnym pacjencie. Byłoby więc dezynfekowane znacznie częściej niż obecnie, gdy korzystają z nich wyłącznie ludzie, a co za tym idzie, stan ich higieny byłby znacznie lepszy.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...