Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Naturalne zabezpieczenia zapobiegną ociepleniowemu sprzężeniu zwrotnemu ze strony metanu?

Recommended Posts

W wiecznej zmarzlinie i hydratach w głębi oceanów, uwięzione są olbrzymie ilości węgla. Od dawna słyszymy, że, w miarę wzrostu temperatury na Ziemi, węgiel ten może zostać uwolniony w postaci metanu – bardzo silnego gazu cieplarnianego – gwałtowanie przyspieszy globalne ocieplenie. Jednak ostatnie badania wskazują, że ten czarny scenariusz może się nie ziścić.

Gdy rośliny się rozkładają, w glebie pojawia się węgiel. Jednak gdy jest bardzo zimno, materia organiczna zamarza, a węgiel zostaje w niej uwięziony i nie trafia do atmosfery. Z taką sytuacją mamy do czynienia na Syberii, Alasce i północy Kanady, tam, gdzie występuje wieczna zmarzlina. Jednak w wiecznej zmarzlinie uwięzione jest też bardzo dużo zamrożonej wody. Gdy wieczna zmarzlina zaczyna się roztapiać, gleba zostaje zalana wodą i powstaje środowisko o niskiej zawartości tlenu. W połączeniu z zawartym w glebie węglem tworzą się idealne warunki dla mikroorganizmów, które żywią się węglem i uwalniają metan do atmosfery.

Drugie wielkie źródło metanu, hydraty metanu, znajduje się w głębi oceanów. Do ich uformowania się potrzebna jest bowiem niska temperatura i wysokie ciśnienie. Jeśli temperatura wody wzrośnie, hydraty zostaną zdestabilizowane, rozpadną się i uwolnią metan.

Naukowcy od dawna obawiają się roztapiania wiecznej zmarzliny i destabilizacji hydratów metanu. Dlatego też postanowili sprawdzić, jak sytuacja wyglądała w przeszłości. Grupa z laboratorium profesora Wasilija Petrenko, na czele której stał Michael Dyonisius, zbadała rdzenie z lodowca Taylor na Antarktydzie. Uwięzione tam powietrze sprzed 8–15 tysięcy lat pozwalało na zbadanie składu ziemskiej atmosfery z przeszłości. To okres, który jest częściowo podobny do obecnego. Ziemia przechodziła wówczas z epoki chłodniejszej do cieplejszej. Jednak wówczas zmiana była naturalna. Teraz jest ona napędzana przez działalność człowieka i przechodzimy z epoki cieplejszej do jeszcze cieplejszej, mówi Dyonisius.

Jak dowiadujemy się ze Science, uczeni, badając węgiel-14 w swoich próbkach stwierdzili, że uwalnianie metanu do atmosfery było wówczas małe. Prawdopodobieństwo destabilizacji starych rezerwuarów węgla i pojawienia się silnego ociepleniowego sprzężenia zwrotnego również i dzisiaj jest małe, mówi Dyonisius. Zdaniem badaczy, podczas ocieplenia związanego z końcem epoki lodowej emisja metanu do atmosfery była niewielka, gdyż na Ziemi istnieją naturalne bufory zabezpieczające.

W przypadku hydratów (klatratów) metanu, takim buforem jest sam ocean. Jeśli doszłoby do ich rozpadu, większość uwolnionego metanu zostanie rozpuszczone i utlenione w wodzie przez mikroorganizmy. Tylko niewielka jego część trafi do atmosfery. Jeśli zaś chodzi o metan z wiecznej zmarzliny, to jeśli uformuje się on wystarczająco głęboko w glebie, to może on zostać utleniony przez bakterie, zanim z gleby się wydostanie. Może też nigdy nie powstać i węgiel z wiecznej zmarzliny uwolni się w postaci dwutlenku węgla.

Naukowcy zauważyli jednocześnie, że w przeszłości ocieplający się klimat spowodował uwalnianie się większej ilości metanu z mokradeł. I takiego scenariusza możemy się spodziewać. Jednak, jak mówi profesor Petrenko, antropogeniczna emisja metanu jest obecnie 2-krotnie większa niż emisja z mokradeł. Nasze dane wskazują, że nie powinniśmy się martwić olbrzymią ilością metanu, która może uwolnić się w wyniku globalnego ocieplenia. Powinniśmy martwić się metanem emitowanym przez człowieka.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Wiosna to dla wielu alergików niezbyt przyjemna pora roku. Są wówczas narażeni na kontakt z większą ilością pyłków roślinnych. Niestety, sytuacja takich osób będzie się pogarszała. Ocieplenie klimatu powoduje bowiem, że sezon pylenia się wydłuża, a wyższy poziom CO2 w atmosferze powoduje, że pyłku jest coraz więcej. Niektóre badania mówią, że w USA i Kanadzie w ciągu 30 lat sezon, w którym pojawiają się pyłki roślin, wydłużył się nawet o 20 dni. Teraz przyszła pora na podobne badania w Europie.
      Doktor Annett Menzer i jej koledzy z Uniwersytetu Technicznego w Monachium postanowili sprawdzić, czy w ostatnich dekadach doszło do zmian w transporcie pyłków roślinnych w atmosferze.
      Niemieccy badacze skupili się na Bawarii. Wykorzystali dane z 6 stacji monitoringu pyłku rozmieszczonych w całym landzie. Przeanalizowali zebrane przez nie dane i opublikowali artykuł na ten temat we Frontiers in Allergy.
      Uczeni odkryli, że w latach 1987–2017 niektóre rośliny, takie jak leszczyna i olcha każdego roku rozpoczynały pylenie nawet o 2 dni wcześniej niż roku poprzedniego. Natomiast pylące później, jak brzoza i jesion, przyspieszyły pylenie średnio o około 0,5 doby/rok.
      Pyłek może wędrować wraz z wiatrem przez setki kilometrów. Dodatkowym problemem dla alergików mogą być zmiany wzorców pogodowych powodowanych przez zmiany klimatyczne. Mogą one bowiem prowadzić do tego, że alergik zetknie się z „nowym” gatunkiem pyłku, takim, z którym wcześniej nie miał do czynienia.
      Czasem może być bardzo trudno odróżnić pyłek występujący lokalnie od tego przyniesionego z daleka. Dlatego też naukowcy skupili się na pyleniu występującym przed rozpoczęciem sezonu w danym miejscu.
      Jeśli, na przykład, w stacji monitoringu był obecny pyłek brzozy, ale lokalne brzozy nie pyliły jeszcze przez co najmniej 10 dni, uznawano, że pyłek pochodzi z daleka. Byliśmy zaskoczeni, że aż w 2/3 przypadków obserwowaliśmy pyłek przed lokalnym sezonem pylenia, mówi Menzel. Naukowcy wyjaśniają, że szczególnie uciążliwy może być dla alergików lekki pyłek, który może przebywać największe odległości.
      Naukowcy mówią,że potrzebne są dodatkowe badania, które pozwolą stwierdzić, na ile wcześniej tak naprawdę rozpoczyna się sezon pylenia, zatem na ile wcześniej alergicy narażeni są na kontakt z alergenami. Dotychczas bowiem sezon pylenia określano lokalnie, na podstawie tego, kiedy pyliły rośliny w okolicy. Jednak, jak wynika z powyższych badań, w wielu przypadkach pyłek pojawia się znacznie wcześniej, gdyż jest transportowany na duże odległości.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Rosyjscy naukowcy rozpoczynają poszukiwania paleowirusów, które mogły przetrwać w wiecznej zmarzlinie. Badania będą prowadzone w Państwowym Centrum Wirusologii i Biotechnologii „Wektor” w Kołcowie we współpracy z Północno-Wschodnim Uniwersytetem Federalnym (SWFU). Laboratorium „Wektor” to jedno z dwóch miejsc na świecie, w których przechowywane są aktywne wirusy ospy prawdziwej, jednej z najbardziej śmiercionośnych chorób w historii ludzkości.
      Uczeni będą badali tkanki miękkie przechowywane w uniwersyteckim Muzeum Mamutów w poszukiwaniu materiału genetycznego mikroorganizmów, który mógłby się tam zachować. Eksperci z laboratorium „Wektor” chcą znaleźć paleowirusy, które pozwolą im na rozpoczęcie programu rozwoju rosyjskiej paleowirusologii oraz badań nad ewolucją wirusów.
      Olesja Ochlopkowa z SWFU mówi, że laboratorium „Wektor” od około 10 lat próbuje rozpocząć badania z zakresu paleowirusologii. Obecnie przeszliśmy od planowania do działania.
      Najpierw w badanym materiale wykonuje się otwór, z którego pobierane są tkanki. Te umieszczane są w próbówce, w której są transportowane do laboratorium „Wektor”. Tam, za pomocą standardowych technik biologii molekularnej izoluje się kwasy nukleinowe i prowadzi sekwencjonowanie genomu. Jeśli kwasy nie uległy zniszczeniu, będziemy mogli uzyskać dane o ich składzie, ustalić, w jaki sposób się zmieniały, określić całą sekwencję wydarzeń. Dzięki temu będziemy w stanie opisać trendy, w wyniku których powstał obecnie istniejący ekosystem wirusów i określić potencjał epidemiologiczny obecnie współczesnych mikroorganizmów, dodaje uczona.
      Pierwszym zwierzęciem, którego tkanki zostały poddane badaniom jest koń sprzed 4450 lat, znaleziony w Wierchojańsku w 2009 roku. Będziemy badali też inne zwierzęta: jelenia znad rzeki Omołoj, mamuta z Małej Wyspy Lachowskiej, czarnego psa z Tumat, kurowate, gryzonie i wiele innych zwierząt. Mamy tutaj znaleziska z okresu ostatnich 10 lat, które były badane tylko pod kątem. Po raz pierwszy będziemy poszukiwali w nich paleowirusów, wyjaśnia Maksim Czeprasow, szef laboratorium w Muzeum Mamutów.
      Siergiej Fiodorow, dyrektor ds. ekspozycji, wyjaśnia, że zwierzęta nadają się do badań, gdyż są przechowywane w specjalnych lodówkach w temperaturze od -16 do -18 stopni Celsjusza. Muzeum Mamutów od dawna współpracuje z laboratorium „Wektor”. Już na początku obecnego wieku specjaliści z „Wektora” przyjechali do nas, by wspólnie pracować nad próbkami. Technologia nie stoi w miejscu. Mamy nadzieję, że dzięki nowym metodom badawczym znajdziemy paleowirusy.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Plankton morski, który stanowi podstawię wielu ekosystemów, wytwarza około połowy tlenu na Ziemi i reguluje poziom dwutlenku węgla w atmosferze, może być zagrożony wyginięciem wskutek ocieplania się klimatu. Do takich wniosków doszedł zespół pracujący pod kierunkiem doktorantki Sarah Trubovitz z University of Nevada w Reno. Wyniki badań zostały opublikowane na łamach Nature Communications.
      Z badań wynika, że najbardziej zagrożony jest plankton zamieszkujący okalające Antarktydę wody Oceanu Południowego. Naukowcy przyjrzeli się bardzo rozpowszechnionemu planktonowi z gromady promienic oraz ich reakcji na zmiany temperatury wody. Zbadali skamieniałości pochodzące z neogenu. To młodszy okres kenozoiku, trwający od 23 do 2,5 miliona lat temu. Dzieli się na miocen i pliocen.
      Przeprowadzone badania wykazały, że duże zmiany temperatury wody prowadziły do olbrzymich spadków bioróżnorodności polarnych promienic. Odkrycie to stoi w sprzeczności z dotychczasowymi przypuszczeniami mówiącymi, że w przeszłości, podczas dużych zmian temperatury, plankton migrował, by znaleźć odpowiednie dla siebie warunki. Okazuje się jednak, że najbardziej prawdopodobnym skutkiem ogrzewania się wód oceanicznych będzie wyginięcie wielu gatunków promienic.
      Obecnie w wodach Oceanu Południowego żyje około 100 gatunków promienic. Wiele z nich nie będzie w stanie przeżyć ocieplającego się klimatu. Wyginięcie tych promienic znacząco zmniejszy bioróżnorodność ekosystemów w oceanie na wysokich szerokościach geograficznych. Co więcej, prognozy przewidują, że w ciągu najbliższych 300 lat ocieplenie na tych szerokościach geograficznych będzie tak duże, jak duże było tam ochłodzenie w ciągu ostatnich 10 milionów lat. Jako, że zmiany te będą zachodziły tak szybko, w wyniku ewolucji nie powstaną nowe gatunki, które zdążą zastąpić te, które będą wymierały. Zbyt mało wiemy o interakcjach pomiędzy poszczególnymi gatunkami planktonu by przewidzieć, co dokładnie się stanie. Możemy jednak przypuszczać, że zniknięcie wielu gatunków promienic wywoła reakcję w całym łańcuchu pokarmowym ekosystemu morskiego, ostrzega Trubovitz.
      Młoda uczona rozpoczęła swoje badania z zamiarem stworzenia pierwszego kompletnego spisu tropikalnych promienic żyjących na przestrzeni 10 milionów lat pomiędzy neogenem a czwartorzędem. Podobny spis dotyczący polarnych promienic został stworzony w 2013 roku przed doktora Johana Renaudie. Wówczas to okazało się, że gdy Ziemia ochłodziła się przed milionami lat, z Oceanu Południowego zniknęło wiele gatunków promienic. Jednak Renaudie nie był w stanie stwierdzić czy – jak podejrzewali ekolodzy – promienice migrowały w cieplejsze regiony, czy też wyginęły.
      Trubovitz, korzystając z pomocy doktorów Paula Noble z University of Nevada oraz Dave'a Lazarusa z berlińskiego Muzeum Przyrody, rozpoczęła proces identyfikowania i katalogowania dziesiątków tysięcy skamieniałych promienic. Chciała sprawdzić, czy znajdzie wśród nich gatunki z regionów polarnych, których zniknięcie odnotował Renaudie.
      Przez rok Trubovitz stworzyła pierwszy kompletny katalog tropikalnych promienic. Odkryła przy tym nowe nieznane dotychczas gatunki. Później porównała swój katalog z katalogiem Renaudie'go i stwierdziła, że zdecydowana większość gatunków promienic, które zniknęły z regionów polarnych, nie występuje w obszarach cieplejszych. Promienice nie migrowały, a wyginęły.
      Byłam zaskoczona faktem, jak niewiele polarnych gatunków było w stanie skolonizować cieplejsze wody. Stało się tak, mimo że zmiany zachodziły powoli, przez miliony lat, a habitaty cieplejszych i chłodniejszych wód były ze sobą połączone prądami oceanicznymi. Spodziewaliśmy się, że więcej gatunków promienic wykorzysta te prądy, by – w obliczu ochładzającego się klimatu – przenieść się w obszary o odpowiadających im temperaturach. Okazuje się, że nie były w stanie tego zrobić i wyginęły, mówi uczona.
      Trubovitz i jej koledzy sprawdzili też, czy ochładzający się klimat spowodował spadek bioróżnorodności wśród tropikalnych gatunków promienic. Wiemy bowiem, że ochłodzenie dotknęło wówczas też tropików, chociaż w stosunkowo niewielkim stopniu. Spodziewaliśmy się, że wśród tropikalnych promienic zaobserwujemy podobny wzorzec reakcji co wśród promienic polarnych. Być może proporcjonalny do spadku temperatury, jakiego doświadczyły tropiki. Okazało się jednak, że nic takiego nie miało miejsca. Wydaje się zatem, że promienice są odporne na niewielkie zmiany, ale gdy zostanie przekroczona granica tolerancji, dochodzi wśród nich do znaczących spadków bioróżnorodności, dodaje.
      Badania te pokazują, że wiele gatunków polarnego planktonu jest szczególnie narażonych na wyginięcie. Prognozuje się bowiem, że bieguny mogą się ocieplić nawet o 7–10 stopni Celsjusza. Nie wiemy też, co taka zmiana oznacza dla promienic zamieszkujących regiony polarne. W badanym okresie zmiany temperatury na Ziemi nie wpłynęły na ich bioróżnorodność, jednak trzeba pamiętać, że mówimy tutaj o 10 milionach lat, zatem organizmy te miały czas, by do tych zmian się dostosować. W skali milionów lat promienice są w stanie poradzić sobie ze ociepleniem o 3 stopnie Celsjusza. Nie są zdolne reagować błyskawicznie, dodaje Trubovitz.
      Szczegóły badań zostały opublikowane w artykule Marine plankton show threshold extinction response to Neogene climate change.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Zwierzęta mogą wpaść w „ekologiczną pułapkę” modyfikując swoje zachowanie w reakcji na globalne ocieplenie w niewłaściwym kierunku, informują naukowcy z University of Exeter. Dotychczas znaliśmy „hipotezę ratunkową”, mówiącą, że wiele gatunków, szczególnie tych o bardziej elastycznych zachowaniach, może dostosować się do zmian klimatycznych. Ostatnie badania wykazały, że istnieje też pułapka, w którą wpadł stadnik rdzawołbisty.
      Naukowcy zauważyli, że w reakcji na zmiany klimatu gatunek ten zmienił zachowanie tak, że może to zmniejszyć jego zdolności do rozmnażania się. Stało się tak, gdyż ptaki zareagowały na maksymalne temperatury wczesnej wiosny przesuwając swój sezon rozrodczy na wcześniejszy okres. Problem jednak w tym, że średnie temperatury w tym okresie są wciąż niższe niż późniejszą wiosną, a to nie wróży dobrze inkubującym jajkom. Samice, zamiast dłużej siedzieć na jajka, siedzą krócej. To może zwiększać ich szanse na przeżycie, ale wystawia jajka na działanie szkodliwych niskich temperatur.
      Mieliśmy nadzieję, że bardziej elastyczne zwierzęta lepiej będą rodziły sobie ze zmianami klimatu. Okazuje się jednak, że mogą popełniać pomyłki, które pogarszają sytuację gatunku, mówi Alex Cones.
      Wiele zwierząt rozmnaża się wiosną najwcześniej jak to tylko możliwe, a ocieplający się klimat powoduje, że robią to coraz wcześniej, wyjaśnia profesor Andy Russel. Paradoksalnie, nasze badania wykazały, że wcześniejsze rozmnażanie się w reakcji na ocieplenie spowodowało, że jaja i młode stadnika rdzawołbistego są częściej narażone na zimno. Ptaki powinny zareagować dłużej wysiadując jaja, ale tego nie robią. Wysiadywanie jaj jest dla samicy bardziej kosztowne energetycznie w niższych temperaturach, więc samice skupiają się na własnym przetrwaniu i skracają czas wysiadania, dodaje. Opieka rodzicielska jest czymś, co podlega adaptacjom. Jednak w tym przypadku ptaki adaptują się w niekorzystnym kierunku, wpadając w ekologiczną pułapkę.
      Stadnik rdzawołbisty żyje w południowo-wschodniej Australii. Ich jaja, by przetrwać, muszą znajdować się w temperaturze wyższej niż 25 stopni Celsjusza, a optymalna temperatura dla rozwoju zarodka wynosi około 38 stopni Celsjusza.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Zmiany klimaty spowodowały, że cyklony tropikalne docierające na ląd wolniej słabną, przez co dalej docierają i powodują większe zniszczenia, czytamy na łamach najnowszego wydania Nature. Naukowcy z The Okinawa Institute of Science and Technology (OIST) Graduate University dowiedli, że cyklony, które tworzą się nad gorącymi wodami oceanicznymi, niosą obecnie więcej wilgoci, przez co po dotarciu na ląd dłużej się utrzymują. To sugeruje, że w przyszłości mogą utrzymywać się jeszcze dłużej i obszarom, do których wcześniej nie docierały.
      To bardzo ważne spostrzeżenie, które powinno być brane pod uwagę przy podejmowaniu decyzji dotyczących radzenia sobie ze skutkami globalnego ocieplenia, mówi jeden z autorów badań, profesor Pinaki Chakraborty, dyrektor Jednostki Mechaniki Płynów na OIST. Wiemy, że miejscowości przybrzeżne muszą przygotować się na bardziej intensywne huragany. Okazuje się, że na ich nadejście muszą być też gotowe miejscowości położone w głębi lądu, które mogą nie mieć odpowiedniej infrastruktury, by sobie z tym radzić, a ich mieszkańcy mogą nie mieć doświadczenia z takimi zjawiskami, dodaje uczony.
      Naukowcom z Okinawy udało się wykazać bezpośredni związek pomiędzy ocieplającym się klimatem, a tymi cyklonami, które docierają na ląd. Na potrzeby swoich badań naukowcy przeanalizowali huragany, które w ostatnim półwieczu uformowały się nad północnym Atlantykiem i dotarły na ląd. Okazało się, że obecnie w ciągu pierwszej doby po uderzeniu w ląd cyklony słabną dwukrotnie wolniej niż przed 50 laty. Gdy przyjrzeliśmy się danym jasno było widać, że w kolejnych latach cyklony słabną coraz wolniej. Nie był to jednak proces ciągły. Zmiany w poszczególnych latach odpowiadały zmianom temperatury powierzchni wód oceanicznych, mówi doktorant Lin Li, główy autor badań.
      Naukowcy przetestowali swoje spostrzeżenia za pomocą symulacji komputerowych czterech różnych cyklonów, które przeprowadzono z różnymi danymi dotyczącymi temperatury powierzchni oceanu. Gdy w symulacji huragan osiągnął kategorię 4, naukowcy symulowali jego nadejście nad ląd, odcinając go od źródła wilgoci od spodu.
      Cyklony tropikalne to silniki cieplne, jak np. silnik w samochodzie. W silniku samochodowym spalane jest paliwo i uzyskana energia cieplna zamieniana jest w pracę mechaniczną. W cyklonach wilgoć z powierzchni oceanu jest paliwem, które intensyfikuje i podtrzymuje siłę huraganu, a energia cieplna z wody jest zamieniana w potężne wiatry. W momencie, gdy huragan dotrze na ląd, dostawy paliwa zostają przerwane. Bez paliwa samochód zaczyna zwalniać, a huragan, bez źródła wilgoci, traci na sile, wyjaśnia Li.
      Naukowcy zauważyli, że nawet gdy nad ląd docierają cyklony o tej samej sile, to ten, który uformował się nad cieplejszymi wodami, wolniej słabnie. Symulacje te udowodniły, że wyciągnęliśmy prawidłowe wnioski z naszych analiz. A wnioski te mówią, że cieplejsze oceany wpływają na tempo słabnięcia huraganu, nawet po odcięciu połączenia z wodami oceanicznymi. Pytanie brzmi, dlaczego tak się dzieje, mówi Chakraborty.
      Przeprowadzili więc dodatkowe symulacje i wykazali, że odpowiedzią na to pytanie jest wilgotność. Nawet gdy cyklon dociera na ląd, zamienia się w huragan i nie ma łączności z oceanem, powietrze wciąż zawiera sporo wilgoci. Z czasem wilgoć tę traci i wiatry słabną. Huragany, które powstają nad cieplejszymi wodami oceanicznymi, mogą zawierać więcej wilgoci, która podtrzymuje je przez dłuższy czas i nie pozwala im szybko osłabnąć, dodają uczeni.
      Naukowcy zauważają, że konieczna jest zmiana obecnych – zbyt prostych – modeli badania huraganów. Obecne modele nie biorą pod uwagę wilgotności. Rozważają one huragany jako suchy wir powietrza, który jest osłabiany przez tarcie o ląd. Nasza praca pokazuje, że ten model jest niekompletny. Dlatego też modele te nie wykazywał dotychczas oczywistego wpływu ocieplania się klimatu na huragany, mówi Li.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...