Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Wokół Ziemi krążą dwa księżyce. Jeden z nich wkrótce nas opuści

Recommended Posts

Minor Planet Centre ogłosiło właśnie, że Ziemia ma... dwa księżyce. Poza Srebrnym Globem naszą planetę okrąża jeszcze jeden księżyc, który został przechwycony przez Ziemię przed około 3 laty. Nie zobaczymy go jednak gołym okiem. Nowy księżyc ma zaledwie od 1 do 6 metrów średnicy i zbyt długo z nami nie pozostanie.

Po raz pierwszy został on zauważony przez Theodore'a Pruyne'a i Kacpera Wierzchosa za pomocą teleskopu w Mount Lemmon Observatory w Arizonie. Uczeni spostrzegli nieznany dotychczas obiekt 15 lutego. Kolejne obserwacje pozwoliły obliczyć jego orbitę i potwierdzić, że jest on powiązany z Ziemią. W związku z tym Minor Planet Center, które pracuje w imieniu Międzynarodowej Unii Astronomicznej, oficjalnie ogłosiło odkrycie i nadało księżycowi nazwę 2020 CD3.

Obiekt ten to niewielka asteroida, której orbita skrzyżowała się z orbitą Ziemi. Czasem takie asteroidy przelatują obok naszej planety, czasem na nią spadają. Jednak 2020 CD3 została przechwycona i stała się naszym tymczasowym księżycem. Te tak zwane „mini księżyce” pojawiają się i znikają. Autorzy jednego z wcześniejszych badań twierdzą, że w każdym momencie Ziemia posiada przynajmniej jeden dodatkowy czasowy mini-księżyc o średnicy powyżej 1 metra, który wykonuje co najmniej jeden pełny obieg wokół Ziemi.

Żaden z tych księżyców nie zostaje na długo, gdyż oddziaływania grawitacyjne Księżyca i Słońca destabilizują ich orbity. Najprawdopodobniej krążą one wokół Ziemi najwyżej przez kilka lat, później uwalniają się spod jej wpływu i zajmują orbitę wokół Słońca.

2020 CD3 znajduje się dalej niż Księżyc i prawdopodobnie odbywa obecnie ostatnie okrążenie wokół naszej planety.
Poprzednim odkrytym tymczasowym księżycem Ziemi był 2006 RH120. Pomiędzy wrześniem 2006 a czerwcem 2007 czterokrotnie okrążył on Ziemię, a później poleciał swoją drogą. Obecnie znajduje się po drugiej stronie Słońca, a Ziemię ponownie odwiedzi w 2028 roku.

Istnieje też hipoteza mówiąca, że „mini księżyce” to asteroidy, których okres orbitalny wokół Słońca wynosi dokładnie 1 rok. Czasem ich orbity zbiegają się z naszą, wówczas wydają się powiązane z Ziemią, ale w rzeczywistości krążą niezależnie wokół Słońca. Mówi się tutaj o „kwazi-satelitach” Ziemi. Jeden z nich, 1991 VG, prawdopodobnie dokonał co najmniej jednego obiegu wokół naszej planety. Niewykluczone, że powtórzy to w przyszłości.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      NASA zaprezentowała całościową mapę powierzchni asteroidy Bennu. To kolaż zdjęć zgromadzonych w ramach misji OSIRIS-REx między 7 marca a 19 kwietnia 2019 r.
      By uzyskać mozaikę, wykorzystano aż 2155 zdjęć wykonanych przez PolyCam. Naukowcy z NASA chwalą się, że udało się uzyskać największą rozdzielczość (5 cm na piksel), z jaką kiedykolwiek całościowo zmapowano Bennu.
      OSIRIS-REx wykonywał ujęcia z odległości od 3,1 do 5 km od powierzchni asteroidy. Dzięki szczegółowemu widokowi Bennu NASA mogła wybrać miejsca pobrania próbek: główne, czyli Nightingale w kraterze w północnej części asteroidy, oraz zapasowe - Osprey.
      Mapę-mozaikę można ściągnąć w różnych rozmiarach w dwóch wersjach: z koordynatami i bez.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy z laboratorium ENIGMA (Evolution of Nanomachinest In Geospheres and Microbial Ancestors) na Rutgers University sądzą, że odtworzyli kształt pierwszej molekuły będącej wspólnym przodkiem współczesnych enzymów, które dały początek życiu na Ziemi.
      Życie to proces elektryczny. Obwód elektryczny jest katalizowany przez niewielki zestaw protein, które działają jak złożone nanomaszyny, czytamy na stronie laboratorium. ENIGMA jest współfinansowane przez NASA w ramach Astrobiology Program. Sądzimy, że życie powstało z bardzo małych klocków i pojawiło się zestaw Lego, z którego powstały komórki i bardziej złożone organizmy, jak my, mówi główny autor badań, biofizyk Paul G. Falkowski.
      Naukowcy wykonali analizę porównawczą trójwymiarowych struktur białek, by sprawdzić, czy można na tej podstawie wysnuć wnioski, co do kształtu ich wspólnego przodka. Szczególnie skupili się na podobieństwach pomiędzy kształtami, jakie w trzech wymiarach przyjmują łańcuchy aminokwasów. Poszukiwali prostego topologicznego modelu, który powiedziałby, jak wyglądały pierwsze proteiny, zanim stały się bardziej złożone i zróżnicowane.
      Odkryliśmy, że dwa powtarzające się wzorce zwijania są kluczowe dla pojawienia się metabolizmu. Prawdopodobnie te metody zawijania mają wspólnego przodka, który za pomocą duplikacji, specjalizacji i różnicowania ewoluował tak, by ułatwić transfer elektronów i katalizę na bardzo wczesnym etapie początków metabolizmu, wyjaśniają naukowcy.
      Te dwa zidentyfikowane metody zwijania to zwijanie ferredoksyny oraz konformacja Rossmanna. Naukowcy sądzą, że te dwie podstawowe struktury, które mogą mieć wspólnego przodka, posłużyły jako wzorzec dla protein sprzed ponad 2,5 miliarda lat.
      Przypuszczamy, że pierwszymi proteinami były małe, proste peptydy, któe pobierały elektrony z oceanu, atmosfery lub skał i przekazywały je innym molekułom akceptującym elektrony, mówi biolog molekularny Vikas Nanda. W reakcji transferu elektronu uwalnia się energia i energia ta napędza życie, dodaje.
      Naukowcy przyznają, że to wszystko jest jedynie hipotezą. Porównywanie kształtu obecnie istniejących protein to metoda pełna ograniczeń, która nie pozwala na uzyskanie pewności co do prawdziwości wnioskowania. Domyślamy się co mogło się wydarzyć, a nie dowodzimy, co się wydarzyło, stwierdzają autorzy badań. Jednak, jak zauważają, można tego typu badania posunąć dalej.
      Można spróbować odtworzyć w laboratorium hipotetyczne proteiny z przeszłości i sprawdzić, jak działają i jak mogą ewoluować. Naszym głównym celem jest dostarczenie NASA informacji, dzięki którym przyszłe misje naukowe będą wiedziały gdzie i jak poszukiwać życia na planetach pozasłonecznych.
      Ze szczegółami badań można zapoznać się na łamach PNAS.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W kwietniu ubiegłego roku japońska sonda Hayabusa 2 wystrzeliła w kierunku asteroidy Ryugu miedziany pocisk. Uderzenie odsłoniło wnętrze asteroidy. Wyrzucony podczas uderzenia materiał opadł na powierzchnię asteroidy. Trzy miesiące później w miejscu opadnięcia materiału wylądowała Hayabusa 2 i wystrzeliła drugi pocisk, z tantalu. Jego celem było wzbicie chmury pyłu, który miał trafić do specjalnego pojemnika. Hayabusa 2 wraca obecnie na Ziemię. Ma wylądować z próbkami w grudniu bieżącego roku.
      W tej chwili nie wiemy, czy udało się pobrać próbki, jednak znamy wyniki szczegółowych obserwacji krateru, który został wybity przez pierwszy z wystrzelonych pocisków. Krater miał 14,5 metra średnicy i 2,3 metry głębokości. Po raz pierwszy byliśmy w stanie obserwować krater utworzony w środowisku mikrograwitacji, mówi Masahiko Arakawa z Uniwersytetu w Kobe.
      Dzięki tym obserwacjom wiemy, ile lat liczy sobie Ryugu. Dotychczasowe szacunki znacznie się od siebie różniły. Wiek asteroidy oceniano na 9 lub 160 milionów lat. Japończycy donieśli, że po powierzchnią struktura asteroidy bardziej przypomina piasek niż skałę. To zaś oznacza, że Ryugu ma zaledwie 9 milionów lat.
      Asteroidy takie jak Ryugu powstają, gdy dojdzie do zderzenia dwóch większych obiektów, a następnie ma miejsce ponowna akumulacja materiału rozrzuconego w wyniku zderzenia. Zwykle z takiego zderzenia zostaje utworzonych wiele obiektów. Niewykluczone, że w przyszłości zaobserwujemy innych członków „rodziny” Ryugu. Może to być tym łatwiejsze, że skoro do zderzenia doszło niedawno, to inne asteroidy z niego pochodzące powinny znajdować się w pobliżu.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Algorytm sztucznej inteligencji zidentyfikował 11 asteroid o średnicy ponad 100 metrów każda, które mogą uderzyć w Ziemię i spowodować olbrzymie zniszczenia. Każdy z tych obiektów jest znacznie większy od meteorytu tunguskiego (50–80 metrów średnicy), który eksplodował na Ziemią i powalił drzewa na obszarze ponad 2000 km2.
      Z pisma Astronomy & Astrophysics dowiadujemy się, że naukowcy z holenderskiego Uniwersytetu w Leiden stworzyli algorytm sztucznej inteligencji, który trenowali na superkomputerze ALICE. John D. Hefele, Francesco Bortolussi i Simon Portegies Zwart wykorzystali sieć neuronową, na której najpierw modelowali ruch planet i Słońca w ciągu najbliższych 10 000 lat. Następnie „przewinęli” swoją symulację od tyłu, dodając do niej hipotetyczne asteroidy „wyrzucane” z Ziemi w przestrzeń kosmiczną.
      Gdy uruchomili symulację we właściwej kolejności, otrzymali bazę danych wyimaginowanych asteroid, które mogłyby uderzyć w Ziemię. Ta baza posłużyła im do treningu sieci neuronowej, której zadaniem było następnie określenie, która z prawdziwych znanych nam asteroid może stanowić zagrożenie dla naszej planety.
      Testy dowiodły, że oprogramowanie, nazwane Hazard Object Identifier (HOI, co po holendersku oznacza też „cześć”), potrafi zidentyfikować 90,99% potencjalnie niebezpiecznych obiektów z udostępnionej przez NASA 2000 obiektów bliskich Ziemi.
      Kolejne symulacje wykazały, że w latach 2131 – 2923 co najmniej 11 dużych, ponad 100-metrowych znanych nam obecnie asteroid, przybliży się do Ziemi na odległość mniejszą niż 1/10 odległości pomiędzy Ziemią a Księżycem.
      Obserwacje obiektów bliskich Ziemi (NEO) prowadzone są od lat. Jednak obecnie stosowane oprogramowanie nie rozpoznało w tych asteroidach zagrożenia. Stało się tak dlatego, że asteroidy mają trudne do przewidzenia orbity, a oprogramowanie to używa innych metod obliczeniowych niż wspomniany algorytm sztucznej inteligencji.
      Wiemy teraz, że nasze oprogramowanie działa. Będziemy chcieli je udoskonalić i wykorzystać w nim więcej danych. Problem w tym, że niewielkie różnice w obliczeniach orbity mogą prowadzić do bardzo różnych wniosków, mówi profesor Portegies Zwart.
      Tego typu badania pozwolą nam w przyszłości uchronić Ziemię przed katastrofalnym w skutkach zderzeniem z asteroidą. Im szybciej dowiemy się o zagrożeniu, tym więcej czasu będziemy mieli, by na nie zareagować. Nie od dzisiaj bowiem prowadzi się badania koncepcyjne nad niszczeniem czy przekierowaniem obiektów zagrażających Ziemi.
      Temat asteroid zagrażających Ziemi i obrony przed nimi poruszaliśmy już wielokrotnie w tekstach Szef NASA zaleca modlitwę, Znamy już ponad 10 000 NEO, NASA planuje test technologii ochrony Ziemi przed asteroidami, Obronienie Ziemi będzie trudniejsze, niż sądziliśmy czy Źle szacujemy ryzyko kosmicznej katastrofy?

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Zdaniem autorów nowych badań oraz algorytmu sztucznej inteligencji, jedno z masowych ziemskich wymierań, wymieranie dewońskie, nigdy nie miało miejsca. Obecnie uważa się, że przed około 375 milionami lat oceany stały się toksyczne, co doprowadziło do masowego wymierania. Wyginęły wówczas m.in. niemal wszystkie trylobity. Jednak grupa naukowców twierdzi, że nie było to masowe wymieranie, a stopniowy proces rozciągnięty na 50 milionów lat.
      Wymieranie dewońskie nie miało miejsca. Ziemia doświadczyła powolnego spadku bioróżnorodności, co zresztą niektórzy naukowcy już wcześniej sugerowali, mówi Doug Erwin z Narodowego Muzeum Historii Naturalnej w Waszyngtonie.
      Badanie historii bioróżnorodności nie jest łatwym zadaniem. Większość gatunków istnieje zaledwie kilka milionów lat. Jeśli więc widzimy skamieniałości gatunku w różnych miejscach, to pochodzą one z mniej więcej tego samego okresu. Podczas dotychczasowych badań nad bioróżnorodnością skupiano się na okresach liczących około 10 milionów lat.
      Jednak Shuzhong Shen z Instytutu Geologii i Paleontologii w Nankinie oraz jego koledzy i współpracujący z nimi Erwin byli w stanie przeprowadzić badania, w czasie których przyjrzeli się okresom trwającym zaledwie 26 000 lat. Dokonali tego za pomocą opracowanych przed dekadą metod analizy statystycznej, które wykorzystali do analizy 100 000 rekordów dotyczących skamieniałości 11 000 gatunków morskich znalezionych w Chinach i Europie. Obliczenia były tak złożone, że naukowcy musieli opracować specjalny algorytm sztucnej inteligencji i uruchomić go na czwartym najpotężniejszym superkomputerze świata, Tianhe-2A.
      Badaniami objęto okres 300 milionów lat,od początku kambru po początek triasu. Jak mówią obrazowo uczeni, poprawienie rozdzielczości czasowej badań pozwoliło na przejście od stwierdzenia, że wszyscy ludzie żyjący w tym samym wieku byli sobie współcześni, po uznanie za współczesnych sobie tylko ludzi, żyjących w tym samym półroczu.
      Spadek bioróżnorodności w dewonie jest wciąż jasno widoczny, ale następował on przez cały późny dewon, a nie był pojedynczym skoncentrowanym wydarzeniem, mówi emerytowany paleontolog Richard Bambach, autor pracy naukowej z 2004 roku, w której argumentował, że w dewonie nie doszło do masowego wymierania.
      Pomysł, że na Ziemi doszło do 5 masowych wymierań pojawił się po raz pierwszy w 1982 roku. Od tamtego czasu autorzy różnych badań argumentowali, że wymierań było od 3 do 20.
      Nie istnieje formalna definicja masowego wymierania, jednak większość specjalistów zgadza się, że takim mianem należy określić znaczne zwiększenie liczby gatunków ginących w krótkim czasie. Na przykład w okresie wymierania permskiego większość gatunków wyginęła w ciągu 63 000 lat.
      W roku 2004 Bambach argumentował również, że nie było wymierania triasowego. Jednak od tamtej pory pojawiło się więcej dowodów, iż miało ono jednak miejsce. Bambach przyznaje, że w tej kwestii się mylił.
      Wszystko jednak wskazuje na to, że Ziemia doświadczyła czterech, a nie pięciu, okresów masowego wymierania.

      « powrót do artykułu
×
×
  • Create New...