Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Mars jest aktywny sejsmicznie, powstają tam wiry pyłowe i dziwne pulsujące sygnały magnetyczne

Recommended Posts

Mars jest aktywny sejsmicznie, często powstają na nim wiry pyłowe, a w jego wnętrzu pojawiają  tajemnicze pulsujące sygnały magnetyczne. Takie wnioski płyną z danych gromadzonych od ubiegłego roku przez misję InSight. Na łamach Nature właśnie opublikowano pięć pierwszych artykułów naukowych opartych na badaniach InSight. Szósty zaś ukazał się w Nature Geoscience i szczegółowo opisuje miejsce lądowania InSight.

InSight to pierwsza w historii misja, której celem jest zbadanie głębokich regionów pod powierzchnią Marsa. Pojazd wyposażono w sejsmometr (Seismic Experiment for Interior Structure - SEIS) wykrywający wstrząsy, czujniki ciśnienia powietrza, magnetometr oraz czujniki przepływu ciepła we wnętrzu planety.

Okazało się, że wstrząsy mają miejsce na Marsie częściej niż sądzono i są łagodniejsze niż przewidywano. SEIS został umieszczony na powierzchni planety w grudniu 2018 roku, a pracę rozpoczął w lutym 2019. W ciągu minionego roku zarejestrował on ponad 450 sygnałów sejsmicznych, z czego większość to prawdopodobnie wstrząsy. Najsilniejsze trzęsienie miało siłę 4.0 stopni.

Tak słabe wstrząsy nieco zawiodły naukowców. Nie są one bowiem na tyle potężne, by dotrzeć do niższych obszarów płaszcza i rdzenia planety, a uczeni mieli nadzieję, że zarejestrują pochodzące stamtąd sygnały i będą mogli zbadać te regiony. Uczeni wciąż jednak nie tracą nadziei. Pierwsze sygnały SEIS zarejestrował dopiero po długim oczekiwaniu, od listopada 2019 roku rejestruje średnio 2 sygnały dziennie, co sugeruje, że InSight wylądowała momencie, gdy Mars był wyjątkowo spokojny. Naukowcy trzymają więc kciuki, by sonda zarejestrowała naprawdę potężny wstrząs. Mars nie posiada płyt tektonicznych, a wstrząsy powstają w aktywnych wulkanicznie regionach planety.

Przed miliardami lat Mars posiadał też pole magnetyczne. Jego pozostałością są namagnetyzowane skały znajdujące się od 61 metrów do wilu kilometrów pod powierzchnią. Dlatego też InSight wyposażono w magnetometr. To pierwszy tego typu instrument, jaki umieszczono na powierzchni Czerwonej Planety. Magnetometr już wykrył, że w miejscu lądowania sondy sygnały są 10-krotnie silniejsze niż wynikało z badań prowadzonych z orbity. Różnica wynika z faktu, że pomiary dokonywane z orbity są uśredniane dla powierzchni setek kilometrów, a InSight dokonuje pomiarów bardziej lokalnych.

Jako, że większość skał znajdujących się w miejscu lądowania InSight jest zbyt młodych, by mogły być namagnetyzowane przez pole magnetyczne Marsa, naukowcy są przekonani, że zarejestrowane sygnały pochodzą z głębiej położonych skał. Zauważono też, że sygnały ulegają zmianie. Są różne za dnia i w nocy, a około północy zaczynają pulsować. Teoretycy nie wykluczają, że zmiany związane są z interakcją wiatru słonecznego z atmosferą Marsa.

InSight niemal na bieżąco mierzy też prędkość, ciśnienie i kierunek wiatru. Dotychczas zarejestrowano tysiące wirów pyłowych. Jest ich więcej niż w jakimkolwiek innym miejscu, gdzie dokonywano takich pomiarów. Pomimo tak wielkiej ich liczby jeszcze żaden z nich nie został zarejestrowany przez kamerę InSight. Jednak zarejestrował je instrument SEIS. Wiry pyłowe działają jak wielki odkurzacz i są doskonałym instrumentem do sejsmicznego badania tego, co dzieje się pod powierzchnią. Ich powstawanie ma prawdopodobnie związek z polem magnetycznym planety.

Już wstępne dane dostarczone przez InSight są bardzo obiecujące. Za rok poznamy informacje z całego marsjańskiego roku, który trwa dwa ziemskie lata. To da naukowcom znacznie lepszy obraz Marsa.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Analiza danych z misji InSight wykazała, że jądro Marsa jest całkowicie płynne. Ma więc inną budowę niż jądro Ziemi, gdzie stałe jądro wewnętrzne otoczone jest przez płynne jądro zewnętrzne. Dotychczas nikt nie był w stanie stwierdzić, jaki jest stan skupienia jądra Czerwonej Planety. Udało się to dopiero uczonym z USA, Belgii, Niemiec i Francji, którzy podczas swoich badań wykorzystali dane z InSight.
      Zrozumienie struktury wewnętrznej oraz atmosfery Marsa jest niezbędne do opisania historii tworzenia się i ewolucji planety. Wysłana w 2018 roku InSight zebrała unikatowe dane na temat jej budowy zewnętrznej. Misja zakończyła się w grudniu ubiegłego roku, ale naukowcy z całego świata wciąż analizują przysłane przez nią dane.
      Na ich podstawie badacze stwierdzili, że pod płaszczem, które w całości jest ciałem stałym, znajduje się jądro o średnicy 1835 ± 55 km i średniej gęstości 5955–6290 kg/m3. Nasze analizy danych z InSight stanowią argument przeciwko istnieniu stałego jądra wewnętrznego i pokazują kształt jądra wskazując, że głęboko w płaszczu istnieją wewnętrzne anomalie masy. Znaleźliśmy też dowody na powolny wzrost tempa ruchu obrotowego Marsa, który może być powodowany długoterminowym trendem w wewnętrznej dynamice Marsa lub wpływem jego atmosfery i pokryw lodowych, czytamy w artykule opublikowanym na łamach Nature.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Zauważyłam sygnał, którego nikt wcześniej nie odnotował, mówi Jackie Villadsen, astronom z Bucknell University. Uczona w czasie weekendu analizowała w domu dane z radioteleskopu Karl G. Jansky Very Large Array gdy wpadła na coś, czego wcześniej nie zauważono. Wraz z Sebastianem Pinedą z Uniwersytetu Kalifornijskiego w Boulder przystąpiła do dalszej analizy. I okazało się, że sygnał się powtarza.
      Nadchodził on z gwiazdy YZ Ceti, położonej w odległości 12 lat świetlnych od Ziemi. Gwiazda posiada układ planetarny, a najbliższą jej planetą jest YZ Ceti b. Ma ona masę ok. 0,7 masy Ziemi, jej promień to 0,913 promienia Ziemi i okrąża gwiazdę macierzystą w ciągu zaledwie dwóch dni. Emisja sygnału ma miejsce w podobnej fazie obiegu planety, dlatego też Villadsen i Pineda proponują na łamach Nature Astronomy, że do emisji dochodzi w wyniku interakcji pomiędzy planetą a gwiazdą. A konkretnie w wyniku interakcji pomiędzy ich polami magnetycznymi. To zaś oznaczałoby, że skalista YZ Ceti b posiada pole magnetyczne, a to już ma olbrzymie znaczenie dla poszukiwania planet, na których może istnieć życie.
      Nie wystarczy bowiem, że znajdziemy skalistą planetę podobną do Ziemi, która znajduje się w ekosferze swojej gwiazdy, czyli w takiej odległości, na której może istnieć woda w stanie ciekłym. Planeta powinna mieć też atmosferę, a do jej utrzymania i ochronienia przed negatywnym wpływem macierzystej gwiazdy niezbędne jest wystarczająco silne pole magnetyczne. Bez niego oddziaływanie gwiazdy obedrze planetę z atmosfery. Te badania nie tylko pokazują, że ta skalista planeta prawdopodobnie posiada pole magnetyczne, ale również opisują obiecującą metodą znalezienia większej liczby takich planet, mówi Joe Pesce z National Radio Astronomy Observatory.
      Sygnał z pola magnetycznego planety, docierający do nas z odległości kilkunastu lat świetlnych, musi być bardzo silny. Już wcześniej naukowcy wykrywali pola magnetyczne pozasłonecznych olbrzymów wielkości Jowisza. Jednak wykrycie ich w przypadku niewielkich planet rozmiarów Ziemi jest trudne. Praca Villadsen i Pinedy to jednocześnie przepis na wyszukiwanie pól magnetycznych niewielkich planet. Okazuje się bowiem, że gdy taka planeta znajduje się bardzo blisko gwiazdy i posiada pole magnetyczne, to niejako „rzeźbi bruzdy” w polu magnetycznym gwiazdy. I powoduje, że gwiazda emituje jasne promieniowanie w zakresie radiowym.
      Niewielki czerwony karzeł YZ Ceti i jego planeta YZ Ceti b to idealna para do tego typu badań. Planeta jest tak blisko karła, że obiega go w ciągu 2 dni. Dla porównania, obieg Merkurego wokół Słońca to 88 dni. Gdy plazma z YZ Ceti trafia na „magnetyczny pług” planety, dochodzi do jej interakcji z polem magnetycznym samej gwiazdy i wygenerowania sygnału radiowego, tak silnego, że można go zarejestrować na Ziemi. A siła tego sygnału pozwala nam zmierzyć siłę pola magnetycznego YZ Ceti b.
      To dostarcza nam nowych informacji o środowisku wokół gwiazdy, czymś, co nazywamy pozasłoneczną pogodą kosmiczną, dodaje Pineda.
      Jak wiemy z własnego doświadczenia, interakcja pomiędzy plazmą słoneczną i atmosferą Ziemi może doprowadzić do zakłóceń pracy satelitów a nawet urządzeń elektrycznych na samej Ziemi. Te same zjawiska odpowiadają za wspaniałe zorze polarne. Interakcja pomiędzy YZ Ceti b a jej gwiazdą również prowadzi do pojawienia się zorzy, z tą jednak różnicą, że jest to zorza na gwieździe. Tak naprawdę, to obserwujemy zorzę na gwieździe. To ta zarejestrowana emisja radiowa. Jeśli planeta ma atmosferę, to i na niej pojawia się zorza, mówi Pineda.
      Rozwiązanie podane przez Villadsen i Pinedę jest najbardziej prawdopodobnym wyjaśnieniem zarejestrowanych sygnałów radiowych. Autorzy badań mówią jednak, że sprawa nie jest ostatecznie rozwiązana. Potrzeba jeszcze sporo pracy, by ostatecznie udowodnić, że ten sygnał radiowy jest powodowany przez planetę, mówi Villadsen. Obecnie uruchamianych jest i planowanych wiele nowych radioteleskopów. Gdy ostatecznie udowodnimy, że za sygnałem stoi pole magnetyczne planety, będziemy mogli bardziej systematycznie badać tego typu zjawiska. Jesteśmy na początku drogi, dodaje Pineda.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Weteran badań Marsa, łazik Curiosity, od pewnego czasu wykonuje zdjęcia chmur na Czerwonej Planecie. Niedawno przysłał na Ziemię wyjątkowe obrazy, w tym pierwszą sfotografowaną na Marsie tak wyraźną śreżogę, czyli promienie słoneczne przeświecające przez warstwę chmur.
      Większość chmur na Marsie znajduje się na wysokości nie większej niż 60 km. Jednak chmury na najnowszych obrazach wydają się być znacznie wyżej, gdzie jest wyjątkowo zimno. Dlatego naukowcy przypuszczają, że tworzy je zamarznięty dwutlenek węgla.
      Obserwując kiedy, gdzie i na jakich wysokościach formują się marsjańskie chmury, naukowcy mogą dowiedzieć się więcej na temat składu atmosfery Czerwonej Planety, jej temperatury oraz wiejących w niej wiatrów.
      Przed kilkoma tygodniami łazik sfotografował nawet chmury iryzujące. Iryzacja oznacza, że cząstki znajdujące się w danej części chmury są identycznej wielkości. Patrząc na zmiany koloru, widzimy zmiany wielkości cząstek, a to pokazuje nam ewolucję chmury w czasie, wyjaśnia Mark Lemmon ze Space Science Institute w Boulder.
      Łazik Curiosity trafił na Marsa w sierpniu 2012 roku. Pracuje w kraterze Gale i dotychczas przebył ponad 29 kilometrów po powierzchni Czerwonej Planety. Bada tam pierwiastki niezbędne do powstania życia, poszukuje śladów procesów biologicznych, przygląda się składowi powierzchni Marsa, prowadzi badania ewolucji atmosfery, obiegu wody i promieniowania na powierzchni planety. To czwarty z pięciu łazików, jakie NASA wysłała na Marsa i, obok Perseverance, jeden z dwóch obecnie działających.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Systemy podtrzymywania życia, woda, żywność, habitaty, instrumenty naukowe i wiele innych elementów będzie niezbędnych do przeprowadzenia załogowej misji na Marsa. Jednym z najważniejszych z nich są systemy produkcji energii. Te obecnie stosowane w misjach kosmicznych są albo niebezpieczne – wykorzystują rozpad pierwiastków promieniotwórczych – albo też niestabilne wraz ze zmianami pór dnia i roku, bo korzystają z energii słonecznej.
      Wybór miejsca lądowania każdej z misji marsjańskich to skomplikowany proces. Eksperci muszą bowiem określić miejsca, których zbadanie może przynieść jak najwięcej korzyści i w których w ogóle da się wylądować. W przypadku misji załogowych sytuacja jeszcze bardziej się skomplikuje, gdyż dodatkowo będą musiały być to miejsca najlepiej nadające się do życia, np. takie, w których można pozyskać wodę.
      Grupa naukowców pracujących pod kierunkiem Victorii Hartwick z NASA wykorzystała najnowsze modele klimatyczne Marsa do przeanalizowania potencjału produkcji energii z wiatru na Czerwonej Planecie. Dotychczas podczas rozważań nad produkcją energii na Marsie nie brano pod uwagę atmosfery. Jest ona bowiem bardzo rzadka w porównaniu z atmosferą Ziemi.
      Ku swojemu zdumieniu naukowcy zauważyli, że pomimo rzadkiej marsjańskiej atmosfery wiejące tam wiatry są na tyle silne, by zapewnić produkcję energii na dużych obszarach Marsa.
      Badacze odkryli, że w niektórych proponowanych miejscach lądowania prędkość wiatru jest wystarczająca, by stanowił on jedyne lub uzupełniające – wraz z energią słoneczną bądź jądrową – źródło energii. Pewne regiony Marsa są pod tym względem obiecujące, a inne – interesujące z naukowego punktu widzenia – należałoby wykluczyć biorąc pod uwagę jedynie potencjał energii wiatrowej lub słonecznej. Okazało się jednak, że energia z wiatru może kompensować dobową i sezonową zmienność produkcji energii słonecznej, szczególnie na średnich szerokościach geograficznych czy podczas regionalnych burz piaskowych. Co zaś najważniejsze, proponowane turbiny wiatrowe zapewnią znacznie bardziej stabilne źródło energii po połączeniu ich z ogniwami fotowoltaicznymi.
      Naukowcy przeanalizowali hipotetyczny system, w którym wykorzystane zostają panele słoneczne oraz turbina Enercon E33. To średniej wielkości komercyjny system o średnicy wirnika wynoszącej 33 metry. Na Ziemi może ona dostarczyć 330 kW mocy. Z analiz wynika, że na Marsie dostarczałaby średnio 10 kW.
      Obecnie szacuje się, że 6-osobowa misja załogowa będzie potrzebowała na Marsie minimum 24 kW mocy. Jeśli wykorzystamy wyłącznie ogniwa słoneczne, produkcja energii na potrzeby takiej misji będzie większa od minimum tylko przez 40% czasu. Jeśli zaś dodamy turbinę wiatrową, to odsetek ten wzrośnie do 60–90 procent na znacznych obszarach Marsa. Połączenie wykorzystania energii słonecznej i wiatrowej mogłoby pozwolić na przeprowadzenie misji załogowej na tych obszarach Czerwonej Planety, które wykluczono ze względu na słabą obecność promieniowania słonecznego. Te regiony to np. obszary polarne, które są interesujące z naukowego punktu widzenia i zawierają wodę.
      Autorzy badań zachęcają do prowadzenia prac nad przystosowaniem turbin wiatrowych do pracy w warunkach marsjańskich. Tym bardziej, że wykorzystanie wiatru może wpłynąć na produkcję energii w wielu miejscach przestrzeni kosmicznej. Hartwick mówi, że jest szczególnie zainteresowana potencjałem produkcji energii z wiatru w takich miejscach jak Tytan, księżyc Saturna, który posiada gęstą atmosferę, ale jest zimny. Odpowiedź na tego typu pytania będzie jednak wymagała przeprowadzenia wielu badań interdyscyplinarnych.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...