Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Mars jest aktywny sejsmicznie, powstają tam wiry pyłowe i dziwne pulsujące sygnały magnetyczne

Recommended Posts

Mars jest aktywny sejsmicznie, często powstają na nim wiry pyłowe, a w jego wnętrzu pojawiają  tajemnicze pulsujące sygnały magnetyczne. Takie wnioski płyną z danych gromadzonych od ubiegłego roku przez misję InSight. Na łamach Nature właśnie opublikowano pięć pierwszych artykułów naukowych opartych na badaniach InSight. Szósty zaś ukazał się w Nature Geoscience i szczegółowo opisuje miejsce lądowania InSight.

InSight to pierwsza w historii misja, której celem jest zbadanie głębokich regionów pod powierzchnią Marsa. Pojazd wyposażono w sejsmometr (Seismic Experiment for Interior Structure - SEIS) wykrywający wstrząsy, czujniki ciśnienia powietrza, magnetometr oraz czujniki przepływu ciepła we wnętrzu planety.

Okazało się, że wstrząsy mają miejsce na Marsie częściej niż sądzono i są łagodniejsze niż przewidywano. SEIS został umieszczony na powierzchni planety w grudniu 2018 roku, a pracę rozpoczął w lutym 2019. W ciągu minionego roku zarejestrował on ponad 450 sygnałów sejsmicznych, z czego większość to prawdopodobnie wstrząsy. Najsilniejsze trzęsienie miało siłę 4.0 stopni.

Tak słabe wstrząsy nieco zawiodły naukowców. Nie są one bowiem na tyle potężne, by dotrzeć do niższych obszarów płaszcza i rdzenia planety, a uczeni mieli nadzieję, że zarejestrują pochodzące stamtąd sygnały i będą mogli zbadać te regiony. Uczeni wciąż jednak nie tracą nadziei. Pierwsze sygnały SEIS zarejestrował dopiero po długim oczekiwaniu, od listopada 2019 roku rejestruje średnio 2 sygnały dziennie, co sugeruje, że InSight wylądowała momencie, gdy Mars był wyjątkowo spokojny. Naukowcy trzymają więc kciuki, by sonda zarejestrowała naprawdę potężny wstrząs. Mars nie posiada płyt tektonicznych, a wstrząsy powstają w aktywnych wulkanicznie regionach planety.

Przed miliardami lat Mars posiadał też pole magnetyczne. Jego pozostałością są namagnetyzowane skały znajdujące się od 61 metrów do wilu kilometrów pod powierzchnią. Dlatego też InSight wyposażono w magnetometr. To pierwszy tego typu instrument, jaki umieszczono na powierzchni Czerwonej Planety. Magnetometr już wykrył, że w miejscu lądowania sondy sygnały są 10-krotnie silniejsze niż wynikało z badań prowadzonych z orbity. Różnica wynika z faktu, że pomiary dokonywane z orbity są uśredniane dla powierzchni setek kilometrów, a InSight dokonuje pomiarów bardziej lokalnych.

Jako, że większość skał znajdujących się w miejscu lądowania InSight jest zbyt młodych, by mogły być namagnetyzowane przez pole magnetyczne Marsa, naukowcy są przekonani, że zarejestrowane sygnały pochodzą z głębiej położonych skał. Zauważono też, że sygnały ulegają zmianie. Są różne za dnia i w nocy, a około północy zaczynają pulsować. Teoretycy nie wykluczają, że zmiany związane są z interakcją wiatru słonecznego z atmosferą Marsa.

InSight niemal na bieżąco mierzy też prędkość, ciśnienie i kierunek wiatru. Dotychczas zarejestrowano tysiące wirów pyłowych. Jest ich więcej niż w jakimkolwiek innym miejscu, gdzie dokonywano takich pomiarów. Pomimo tak wielkiej ich liczby jeszcze żaden z nich nie został zarejestrowany przez kamerę InSight. Jednak zarejestrował je instrument SEIS. Wiry pyłowe działają jak wielki odkurzacz i są doskonałym instrumentem do sejsmicznego badania tego, co dzieje się pod powierzchnią. Ich powstawanie ma prawdopodobnie związek z polem magnetycznym planety.

Już wstępne dane dostarczone przez InSight są bardzo obiecujące. Za rok poznamy informacje z całego marsjańskiego roku, który trwa dwa ziemskie lata. To da naukowcom znacznie lepszy obraz Marsa.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      NASA planuje powrót człowieka na Księżyc, który ma stać się ważnym etapem załogowej misji na Marsa. Wciąż nierozwiązane pozostaje jednak pytanie, gdzie na Czerwonej Planecie powinni lądować ludzie. W podjęciu decyzji może pomóc najnowszy artykuł z Geophysical Research Letters, którego autorzy dostarczyli mapę zamarzniętej wody na Marsie znajdującej się nawet 2,5 centymetra pod powierzchnią planety.
      Dostępność wody będzie kluczowym elementem dla wybrania miejsca lądowania misji załogowej. Posłuży ona astronautom zarówno do picia, jak i do wyprodukowania paliwa. NASA chce bowiem tak przygotować misję, by po wylądowaniu możliwe było korzystanie z zasobów planety. W ich badaniu biorą udział satelity okrążające Marsa. Sylvain Piqueux z Jet Propulsion Laboratory, autor wspomnianego na wstępie artykułu, wykorzystał dane z Mars Reconnaissance Orbitera (MRO) i Mars Odyssey, by znaleźć wodę, która jest łatwo dostępna.
      Nie potrzebujesz koparki by dostać się do tej wody. Wystarczy szpadel. Cały czas zbieramy dane na temat pokrywy lodowej Marsa, szukając najlepszych miejsc do lądowania misji załogowej, mówi Piqueux.
      Na Marsie woda w stanie ciekłym nie może się utrzymać. Niskie ciśnienie powoduje, że lód wystawiony bezpośrednio na oddziaływanie czynników zewnętrznych szybko odparowuje.
      Lód na Czerwonej Planecie występuje na średnich wysokościach, w pobliżu biegunów. Piqueux postanowił poszukać takich złóż, do których astronauci mogą łatwo się dostać. Wykorzystał w tym celu instrumenty badające temperatury i połączył te dane z ze zdjęciami kraterów po uderzeniach meteorytów oraz danymi z radaru wskazującymi na obecność lodu. Dzięki temu udało mu się określić głębokość, na jakiej występuje lód.
      Niewiele miejsc na Marsie nadaje się do lądowania misji załogowej. Dlatego też naukowcy skupiają się na średnich szerokościach półkuli północnej i południowej, gdzie jest znacznie cieplej niż na biegunach. Preferowana jest półkula północna, której tereny są położone niżej, zatem mamy tam grubszą warstwę atmosfery do wyhamowania lądującego pojazdu.
      Naukowców szczególnie interesuje równina Arkadia na półkuli północnej. Na stworzonej przez Piqueuxa mapie widzimy kilka kolorów. Te chłodne, niebieski i purpurowy, wskazują na lód znajdujący się nie więcej niż 30 centymetrów pod powierzchnią. Kolory ciepłe to lód ukryty głębiej, co najmniej 60 centymetrów pod powierzchnią. Z kolei kolor czarny to miejsce, gdzie zdecydowanie nic nie powinno lądować. Pojazd mógłby bowiem zatonąć tam w pyle.
      Piqueux chce teraz rozpocząć długoterminowe obserwacje marsjańskiego lodu. Uczony ma zamar sprawdzić, jak jego ilość i dostępność zmienia się wraz z porami roku. Im dłużej badamy lód, tym więcej się dowiadujemy. Całoroczne obserwacje prowadzone przez różne pojazdy przez wiele lat pozwolą odkryć nam jego nowe zasoby, mówi Leslie Tamppari, odpowiedzialna za stronę naukową misji MRO.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Ludzkość od kilkuset lat śledzi plamy na Słońcu i wie, że ich liczba zmienia się w 11-letnich cyklach. Dotychczas jednak brak dobrego wyjaśnienia tego fenomenu. Naukowcy z University of Washington opublikowali na łamach Physics of Plasmas artykuł, w którym proponują model ruchu plazmy, który ma wyjaśniać zarówno 11-letni cykl słoneczny ja i inne tajemnice naszej gwiazdy.
      Nasz model znacząco różni się od standardowego obrazu Słońca. Sądzę, że jesteśmy pierwszymi którzy są w stanie wyjaśnić naturę oraz źródło słonecznych zjawisk magnetycznych, czyli jak działa Słońce, mówi profesor Thomas Jarboe, główny autor artykułu.
      Model opiera się na doświadczeniach nabytych w czasie prac nad energią fuzyjną. Wynika z niego, że kluczem do zrozumienia Słońca jest cienka warstwa znajdująca się pod jego powierzchnią. To ona decyduje o plamach, przebiegunowaniu magnetycznym czy przepływie materii. Model ten porównano z danymi obserwacyjnymi i okazało się, że dobrze je on przewiduje. Dane obserwacyjne są kluczem do potwierdzenia słuszności naszego modelu funkcjonowania Słońca, mówi Jarboe.
      W tym nowym modelu mamy do czynienia z cienką warstwo przepływu plazmy i pola magnetycznego, innymi słowy z cienką warstwą swobodnie poruszających się elektronów, które z różną prędkością przemieszczają się w różnych częściach gwiazdy. Różnice w tempie przepływu wywołują zmiany pola magnetycznego, podobne do tych, które pojawiają się w niektórych eksperymentalnych reaktorach fuzyjnych.
      Co 11 lat wa warstwa staje się na tyle duża, że traci stabilność i Słońce się jej pozbywa, mówi Jarboe. Podczas tego procesu odsłonięta zostaje niżej położona warstwa plazmy, która porusza się w przeciwnym kierunku i ma odwrócone pole magnetyczne. Gdy obie półkule Słońca poruszają się z tą samą prędkością, pojawia się więcej plam. Gdy prędkości są różne, plam jest mniej. To właśnie różnica w prędkościach wywołała Minimum Maundera, stwierdza uczony.
      Gdy dwie półkule obracają się z różną prędkością, wówczas w pobliżu równika zaczątki plam nie pasują do siebie i nie dochodzi do ich powstawania, mówi Jarboe. Dotychczas naukowcy sądzili, że plamy słoneczne powstają na głębokości 30% średnicy Słońca, przypomina uczony. Tymczasem z nowego modelu wynika, że są one „superziarnami” powstającymi na głębokości 150–450 kilometrów. Plama słoneczna to coś zadziwiającego.Pojawia się nagle i znikąd.
      Podczas swoich badań nad reaktorami Jarboe i jego koledzy skupiali się na sferomaku, typie reaktora, który generuje plazmę w kuli. Tam plazma samodzielnie się organizuje w różnorodne wzorce. Gdy naukowcy porównali zachodzące w niej zjawiska z tym, co wiadomo o Słońcu, zauważyli podobieństwa.
      Jarboe twierdzi, że nowy model wyjaśnia przepływ materii wewnątrz Słońca, zmiany pola magnetycznego prowadzące do powstawania plam oraz całą strukturę magnetyczną naszej gwiazdy. Mam nadzieję, że naukowcy spojrzą na swoje dane z nowej perspektywy, a ci, którzy całe życie poświęcili zbieraniu danych otrzymają do ręki nowe narzędzie, pozwalające lepiej to wszystko zrozumieć, mówi uczony.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Na MIT powstał sterowany za pomocą pola magnetycznego robot podobny do nici, który może przemieszczać się w wąskich poskręcanych naczyniach krwionośnych, np. w naczyniach w mózgu. W przyszłości tego typu roboty, po połączeniu z innymi dostępnymi technologiami, mogą zostać użyte do szybkiego leczenia zatorów cy uszkodzeń w mózgu.
      Udar mózgu jest obecnie piątą przyczyną śmierci i główną przyczyną niepełnosprawności w USA. Jeśli leczenie ostrego udaru rozpocznie się w ciągu pierwszych 90 minut, to szanse pacjenta na przeżycie znacząco rosną, mówi profesor Xuanhe Zhao. Jeśli mielibyśmy urządzenie, które pozwoliłoby na usunięcie zatoru w ciągu tej „złotej godziny”, moglibyśmy potencjalnie uniknąć uszkodzenia mózgu. Z taką właśnie nadzieją pracujemy.
      Obecnie w celu usunięcia zatoru w mózgu zwykle przeprowadza się procedurę polegającą na wprowadzeniu do tętnicy udowej cewnika, który dociera do mózgu. Później wykorzystywany jest jeszcze stent, za pomocą którego usuwa się skrzep.
      To długotrwała procedura, wymagająca obecności specjalnie przeszkolonego chirurga, który ponadto otrzymuje podczas niej dawkę promieniowania, służącego do obrazowania przebiegu operacji. To wymagający zabieg. Nie ma wystarczająco dużo chirurgów, którzy potrafią go wykonać. Szczególnie na terenach podmiejskich i wiejskich, mówi Yoonho Kim, jeden z autorów badań. Procedura wymaga ręcznego sterowania narzędziami, które wykonane są z metalu pokrytego polimerem. Ten z kolei może uszkadzać wyściółkę naczyń krwionośnych.
      Zespół z MIT postanowił pójść inną drogą. Naukowcy przez ostatnie lata pogłębiali swoją wiedzę na temat hydrożeli oraz produkowanych technologią druku 3D materiałach sterowanych za pomocą pola magnetycznego. Teraz połączyli swoją wiedzę i stworzyli sterowaną magnetycznie pokrytą hydrożelem nić, którą podczas testów przeprowadzili przez dokładny model 1:1 naczyń krwionośnych mózgu.
      Rdzeń robotycznej nici jest wykonany z nitinolu, czyli stopu niklu i tytanu. To materiał jednocześnie giętki i sprężysty. Został on pokryty specjalnym tuszem połączonym z nitinolem za pomocą cząstek magnetycznych, a całość pokryto hydrożelem, materiałem, który jest biokompatybilny, gładki, nie uszkadza naczyń krwionośnych i nie wpływa na reakcję leżących pod nim cząstek magnetycznych. Następnie za pomocą dużego magnesu wykazali, że są w stanie precyzyjnie sterować urządzeniem.
      Stworzyli też silikonowy model naczyń krwionośnych mózgu, który wypełnili płynem o podobnej lepkości co krew, a następnie przeprowadzili swoją robotyczną nić przez naczynia.
      Kim mówi, że ich nić można wyposażyć w różnego typu funkcje. Może ona np. dostarczać do miejsca zatoru leki rozpuszczające zakrzep czy rozbijać go za pomocą lasera. Na potrzeby badań uczeni zastąpili nitinol światłowodem i wykazali, że są taki robot również może dotrzeć do miejsca zakrzepu, a oni są w stanie aktywować laser na żądanie.
      Przeprowadzono też porównanie robotycznej nici pokrytej i niepokrytej hydrożelem. Okazało się, że żel ułatwiał przemieszczanie się i zapobiegał utknięciu nici w wąskich naczyniach.
      Jednym z wyzwań chirurgii jest nawigowanie przez złożoną sieć naczyń krwionośnych mózgu, które mogą mieć taką średnicę, iż dostępne cewniki nie są w stanie tam dotrzeć. Te badania dają nadzieję na rozwiązanie tego problemu i przeprowadzenie operacji bez konieczności otwierania czaszki, mówi profesor Kyujin Cho, z Narodowego Uniwersytetu Seulskiego.
      Kolejna dobra wiadomość jest taka, że skoro chirurg nie musi fizycznie popychać cewnika, gdyż nić jest sterowana za pomocą pola magnetycznego, nie musi on przebywać w sąsiedztwie źródła promieniowania wykorzystywanego do obrazowania przebiegu operacji. Już istniejące rozwiązania pozwalają na jednoczesne zastosowanie pola magnetycznego i fluoroskopii, więc lekarz może przebywać w innym pomieszczeniu, a nawet w innym mieście, kontrolując pole magnetyczne za pomocą dżojstika. Mamy nadzieję, że w kolejnym etapie badań będziemy mogli przetestować naszą technologię in vivo, cieszy się Kim.
       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Ludzie od dawna marzą o terraformowaniu Marsa. Już w 1971 roku Carl Sagan zaproponował roztopienie lodu biegunie północnym Marsa i wytworzenie w ten sposób atmosfery. To zainspirowało do badań innych naukowców, którzy musieli odpowiedzieć na podstawowe pytanie: czy na Marsie istnieje wystarczająco dużo wody i gazów cieplarnianych, by możliwe było zwiększenie ciśnienia i temperatury na całej planecie. W 2018 roku nadeszło olbrzymie rozczarowanie. Finansowane przez NASA badania wykazały, że wszystkie zasoby Marsa wystarczyłyby do zwiększenia ciśnienia atmosferycznego zaledwie do poziomu 7% ciśnienia na Ziemi. Wydaje się więc, że terraformowanie całego Marsa jest nierealne.
      Teraz naukowcy z Harvard University, Jet Propulsion Laboratory oraz University of Edinburgh wpadli na pomysł, by nie działać na skalę całej planety, a regionalnie.
      W Nature Astronomy opublikowali artykuł, w którym dowodzą, że możliwe jest stworzenie na Marsie warunków sprzyjających życiu. Ich zdaniem należy wykorzystać aerożel krzemionkowy by wywołać efekt cieplarniany podobny do ziemskiego. Modele komputerowe i eksperymenty wykazały, że wystarczy nakryć niektóre obszary planety warstwą aerożelu grubości 2–3 centymetrów, by zablokować szkodliwe promieniowanie ultrafioletowe, na stałe podnieść temperaturę powyżej 0 stopni i przepuścić na tyle widzialnego światła, by rośliny mogły prowadzić fotosyntezę. I to wszystko bez potrzeby używania dodatkowego źródła ciepła.
      Regionalne podejście do uczynienia Marsa nadającym się do zamieszkania jest znacznie łatwiej osiągalne niż globalna modyfikacja jego atmosfery, mówi profesor Robin Wordsworth z Harvarda. W przeciwieństwie do wcześniejszych tego typu pomysłów, tutaj mamy projekt, który można stopniowo testować i rozwijać za pomocą technologii i materiałów, które już teraz posiadamy, dodaje.
      Mars to, poza Ziemią, najbardziej przyjazna życiu planeta Układu Słonecznego. Jednak pozostaje nieprzyjazny dla wielu form życia. System tworzenia niewielkich zamieszkałych wysp pozwoliłby na przekształcanie Marsa w kontrolowalny, skalowalny sposób, wyjaśnia Laura Kerber z Jet Propulsion Laboratory.
      Naukowcy przyznają, że ich pomysł opiera się na zjawisku, które już zaobserwowano na Marsie. W przeciwieństwie do czap lodowych na ziemskich biegunach pokrywy lodowe występujące na Marsie to połączenie wody i zamarzniętego CO2. Dwutlenek węgla, jak wiemy, przepuszcza promienie słoneczne i zatrzymuje ciepło. Latem zjawisko to powoduje, że pod pokrywą lodową marsjańskich biegunów tworzą się kieszenie, w których występuje efekt cieplarniany.
      Zaczęliśmy myśleć o tym efekcie cieplarnianym wywoływanym przez zamarznięty dwutlenek węgla i o tym, jak można by go wykorzystać do stworzenia warunków dla istnienia życia na Marsie. Zastanawialiśmy się, czy istnieje materiał, który charakteryzuje się minimalnym przewodnictwem cieplnym, ale przepuszcza dużo światła, wspomina Wordsworth. Wybór naukowców padł na krzemionkowy aerożel, jeden z najdoskonalszych izolatorów stworzonych przez człowieka.
      Aerożele krzemionkowe są w 97% porowate, dzięki czemu światło łatwo się przez nie przedostaje, jednak nanowarstwy ditlenku krzemu zatrzymują promieniowanie podczerwone, znacząco utrudniając przewodnictwo cieplne.
      Aerożel krzemionkowy to obiecujący materiał, gdyż działa pasywnie. Nie wymaga dostarczania energii, nie posiada ruchomych części, które trzeba by konserwować i naprawiać, przez długi czas utrzymuje ciepło, przypomina Kerber.
      Modele komputerowe i eksperymenty wykazały, że jeśli takim aerożelem pokryjemy jakiś obszar znajdujący się na marsjańskich średnich szerokościach geograficznych, to temperatury na tym obszarze wzrosną niemal do poziomu ziemskiego. Wystarczy pokryć odpowiednio duży obszar, a nie będzie potrzeba żadnej innej technologii czy zjawiska fizycznego. Po prostu wystarczy warstwa tego materiału, by utrzymać wodę w stanie ciekłym, wyjaśnia Wordsworth.
      Krzemionkowy aerożel mógłby więc zostać wykorzystany do budowy pomieszczeń mieszkalnych, a nawet samodzielnej biosfery na Marsie.
      Naukowcy mają teraz zamiar przetestować swoje koncepcje na tych obszarach Ziemi, które przypominają Marsa. Mają tutaj do wyboru suche doliny Antarktyki i Chile.
      Profesor Wordsorth przypomina, że gdy zaczniemy poważną dyskusję na temat uczynienia Marsa nadającym się do zamieszkania, będziemy musieli rozważyć też kwestie filozoficzne czy etyczne, dotyczące np. ochrony planety. Jeśli mamy zamiar zaszczepić życie na Marsie, to musimy odpowiedzieć sobie na pytanie, czy już tam nie ma życia. A jeśli jest, to jak to pogodzić. Nie unikniemy takich pytań, jeśli chcemy, by ludzie mieszkali na Marsie.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Wiele gatunków zwierząt wyczuwa pole magnetyczne Ziemi i korzysta z niego przy przemieszczaniu się. Czują je ptaki, pszczoły, ryby czy wilki. Okazuje się, że mogą je wyczuwać również ludzie. Joseph Kirschvink z Caltechu (California Institute of Technology) i jego koledzy odkryli, że zmiana kierunku pobliskiego pola magnetycznego powoduje czasowe zmiany w aktywności ludzkiego mózgu.
      Uczestnicy badań siedzieli w ciemnym pokoju, aktywność ich mózgów była rejestrowana za pomocą EEG. W pokoju znajdowały się też elektromagnesy, za pomocą których generowano pole magnetyczne. Jego zmiany odpowiadały zmianom, jakie zachodzą, gdy przemieszczamy się po ziemi.
      Kierunek i intensywność ziemskiego pola magnetycznego zmieniają się w zależności od położenia geograficznego. Na przykład na biegunie północnym pole magnetyczne skierowane jest pionowo w dół. Na całej półkuli północnej zawsze pole magnetyczne jest tak właśnie skierowane.
      Naukowcy mierzyli fale alfa na 100 milisekund przed i po zmianie pola magnetycznego. Okazało się, że u niektórych ludzi dochodziło do spadku amplitudy fal alfa gdy poddawano ich działaniu fal skierowanych w dół, obracających się w kierunku przeciwnym do ruchu wskazówek zegara. Gdy fale obracały się w kierunku zgodnym z ruchem wskazówek zegara, zmiany w falach mózgowych nie zachodziły. Naukowcy nie potrafili tego wyjaśnić. Gdy kierunek pola magnetycznego był zwrócony w górę, zmiany w mózgach ogóle nie zachodziły. Uczeni spekulują, że w tym przypadku może być to kwestia dostosowania mózgu do życia na półkuli północnej. Ciekawe, czy hipotezę tę udało by się potwierdzić za pomocą eksperymentów na półkuli południowej, zastanawia się Isaac Hilburn, członek zespołu badawczego.
      Badania nad magnetorecepcją u zwierząt trwają od dawna, a najsilniejszym dowodem na istnienie tego zjawiska jest zmiana kierunku przemieszczania się zwierząt w reakcji na zmianę pola magnetycznego.
      Naukowcy, którzy nie brali udziału w eksperymencie, ostrożnie podchodzą do uzyskanych wyników. Podkreślają, że badania trzeba jeszcze powtórzyć oraz że reakcja mózgu nie musi mieć nic wspólnego z orientacją w przestrzeni. Ponadto, jak podkreślają, EEG mógł mimo wszystko wyłapać zakłócenia z otoczenia, ponadto zapisy te trudno jest interpretować.
      Jeśli jednak okaże się, że ludzkie mózgi rzeczywiście reagują na zmiany pola magnetycznego, niewykluczone, że magnetorecepcja odgrywała rolę w życiu społeczeństwo łowiecko-zbierackich.

      « powrót do artykułu
×
×
  • Create New...