Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Unikatowe badania antymaterii mogą wstrząsnąć Modelem Standardowym

Recommended Posts

Naukowcy z CERN-u wykorzystali zaawansowane techniki spektroskopii laserowej do zbadania, po raz pierwszy w historii, struktury subtelnej antywodoru. Okazało się, że przesunięcie Lamba – niewielkie rozbieżności między obserwowanymi poziomami energetycznymi, a przewidywaniami równania Diraca – jest tutaj takie samo jak w przypadku wodoru.

Fakt że w kosmosie wydaje się istnieć bardzo niewiele antymaterii od dawna niepokoi fizyków. Tworzenie i badania atomów antymaterii to jeden ze sposobów na poznanie przyczyn tej asymetrii. Szczególnym zainteresowaniem cieszy się tutaj badanie anomalii w spektrach antyatomów i porównywanie ich ze spektrami atomów, za pomocą którego możemy odkryć i wyjaśnić naruszenie symetrii CPT.

ALPHA tworzy atomy antywodoru łącząc antyprotony dostarczane przez Antiproton Decelerator z antyalektronami. Następnie całość umieszcza w pułapce magnetycznej w próżni, dzięki czemu antywodór nie wchodzi w reakcję z materią i nie ulega anihilacji. Na atomy antywodoru kierowane jest następnie światło lasera, za pomocą którego dokonywane są pomiary.

Na łamach Nature opisano najnowszy eksperyment, podczas którego uczeni z ALPHA badali strukturę subtelną antywodoru znajdującego się w pierwszym stanie wzbudzonym. Pomiary wykonano za pomocą setek antyatomów, które wytwarzano w grupach po około 20 średnio co 4 minuty. Antyatomy były przez dwa dni przechowywane w pułapce magnetycznej. Następnie za pomocą krótkich impulsów światła ultrafioletowego poziom wzbudzenia był zmieniany ze stanu podstawowego do 2P1/2 lub 2P3/2. Gdy antyatomy wracały do stanu 1S niektóre z nich uciekały z pułapki i ulegały anihilacji z atomami z jej ścianek.

W ten sposób naukowcy byli w stanie określić różnice pomiędzy oboma stanami 2P, a stanem 1S. Pomiarów z dokładnością 16 części na miliard. Okazało się, że rozszczepienie struktury subtelnej atomów wodoru i antywodoru jest takie samo. Niepewność obliczeń nie przekracza tutaj 2%. Również badania przesunięcia Lamba wykazały wysoką zgodność pomiędzy atomami wodoru i antywodoru. Tutaj różnice nie przekraczają 11%.

Randolf Pohl z Uniwersytetu w Moguncji mówi, że zespół ALPHA osiągnął spektakularny sukces w dziedzinie spektroskopii laserowej antywodoru. Szczególnie ważnym osiągnięciem jest zmniejszenie niepewności pomiaru przesunięcia Lamba do mniej niż 1/10000. Dalsze uściślenie pomiarów powinno pozwolić na zbadanie czy rzeczywiście dochodzi do naruszenia symetrii CPT.

Stwierdzenie, że pomiędzy tymi dwiema formami materii nie ma żadnej różnicy, może wstrząsnąć podstawami fizyki opartej na Modelu Standardowym. Nasze nowe pomiary dotyczą pewnych aspektów związanych z interakcją antymaterii, takich jak przesunięcie Lamba, które od dawna chcemy badać, mówi Jeffrey Hangst, rzecznik prasowy grupy ALPHA.
W następnym etapie naszych badań chcemy wykorzystać najnowocześniejszą technikę do schłodzenia dużych ilości antywodoru. Tego typu techniki umożliwią niezwykle precyzyjne porównanie materii i antymaterii, dodaje.


« powrót do artykułu

Share this post


Link to post
Share on other sites
2 godziny temu, KopalniaWiedzy.pl napisał:

Stwierdzenie, że pomiędzy tymi dwiema formami materii nie ma żadnej różnicy, może wstrząsnąć podstawami fizyki opartej na Modelu Standardowym.

 M.S. spodziewa się różnic w poziomach energetycznych i widmach wodoru i antywodoru? Czy chodzi o to, że dalej nie widać powodu, dla którego mamy więcej materii niż antymaterii?   

Edited by Jajcenty

Share this post


Link to post
Share on other sites

Clou programu sprowadza się do:

2 godziny temu, KopalniaWiedzy.pl napisał:

Szczególnym zainteresowaniem cieszy się tutaj badanie anomalii w spektrach antyatomów i porównywanie ich ze spektrami atomów, za pomocą którego możemy odkryć i wyjaśnić naruszenie symetrii CPT.

Na razie nie odkryliśmy. ;)

Share this post


Link to post
Share on other sites
3 godziny temu, Jajcenty napisał:

Czy chodzi o to, że dalej nie widać powodu, dla którego mamy więcej materii niż antymaterii?   

Ano. Albo więcej antymaterii niż materii, bo to na jedno wychodzi ;)

Share this post


Link to post
Share on other sites

Ten eksperyment potwierdził tylko, że oddziaływania elektromagnetyczne zachowują parzystość, a badane energie są zbyt małe, aby dostrzec naruszenia parzystości z oddziaływań słabych. Generalnie, największym problemem współczesnej fizyki jest to, że teoria modelu standardowego zbyt dokładnie przewiduje wyniki eksperymentów, nie dając miejsca na nową fizykę. Potwierdzanie wciąż tych samych teorii robi się nudne. Z drugiej strony, wiemy że coś w Kosmosie jest bardzo nie halo, ale nie potrafimy tego złapać bezpośrednio za rękę. Ciemna materia - której powinno być z 6-7 razy więcej niż zwykłej - cały czas nam umyka. Ciemna energia rozszerzająca wszechświat jest jeszcze bardziej tajemnicza, a jej zachowanie na przestrzeni miliardów lat historii wszechświata jest bardziej niż zagadkowe.

Share this post


Link to post
Share on other sites
1 godzinę temu, GROSZ-ek napisał:

Potwierdzanie wciąż tych samych teorii robi się nudne.

Ale do tego przecież zmierza fizyka, do stworzenia teorii którą będziemy mogli tylko w kółko potwierdzać. Co "gorsza" Model Standardowy pozostanie z nami praktycznie do "końca".

1 godzinę temu, GROSZ-ek napisał:

nie dając miejsca na nową fizykę

Miejsca na nową fizykę jest w cholerę, tylko na razie jest ono daleko od Genewy ;)
 

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Naukowcy z CERN-u dokonali najbardziej precyzyjnych pomiarów masy kwarka górnego. To najcięższa z cząstek elementarnych, a poznanie jej masy jest niezbędne do poznania zasad funkcjonowania wszechświata w najmniejsze skali.
      Najnowsze wyniki uzyskane przez zespół pracujący przy eksperymencie CMS (Compact Muon Solenoid) w Wielkim Zderzaczu Hadronów pozwoliły na poznanie masy kwarka górnego z dokładnością około 0,27%. Tak olbrzymią precyzję udało się osiągnąć dzięki wykorzystaniu  nowych metod analitycznych oraz poprawienia procedur dotyczących radzenia sobie z niepewnościami pomiaru.
      Znajomość masy najcięższej z cząstek to kluczowy element, który pozwoli przetestować matematyczną spójność całego modelu cząstek elementarnych. Na przykład, jeśli znalibyśmy dokładną masę bozonu W i bozonu Higgsa, moglibyśmy – korzystając z Modelu Standardowego – poznać dokładną masę kwarka górnego. Podobnie działa to w drugą stronę – poznanie dokładnej masy kwarka górnego i bozonu Higgsa, pozwoli na wyliczenie dokładnej masy bozonu W. Fizyka teoretyczna dokonała na tym polu olbrzymich postępów, jednak wciąż trudno jest dokładnie określić masę kwarka górnego. Tymczasem dla zrozumienia wszechświata, a szczególnie jego stabilności, potrzebujemy jak najbardziej precyzyjnych informacji o masie bozonu Higgsa i kwarka górnego. Z dotychczas dostępnych informacji na temat masy kwarka górnego wiemy, że wszechświat znajduje się bardzo blisko stanu metastabilnego. Jeśli masa kwarka górnego byłaby minimalnie inna, wszechświat w długim terminie byłby mniej stabilny i mógłby zakończyć swój żywot podczas gwałtownego wydarzenia podobnego do Wielkiego Wybuchu.
      Podczas ostatnich badań naukowcy z CMS wykorzystali dane zebrane przez CMS w 2016 roku podczas zderzeń protonów. Wzięli pod uwagę pięć różnych właściwości zderzeń, podczas których powstawała para kwarków górnych. Właściwości te zależą właśnie od masy kwarka górnego. Dotychczas przy tego typu badaniach pod uwagę brano trzy właściwości. Ponadto naukowcy przeprowadzili ekstremalnie precyzyjną kalibrację danych z CMS, dzięki czemu lepiej zrozumieli wszelkie niepewności pomiaru i ich wzajemne zależności. Po przeprowadzeniu odpowiednich obliczeń stwierdzili, że masa kwarka górnego wynosi 171,77±0,38 GeV. Jest ona zatem zgodna zarówno z wcześniejszymi pomiarami, jak i z założeniami Modelu Standardowego.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W CERN zakończono najbardziej precyzyjne w historii eksperymenty, których celem było sprawdzenie czy materia i antymateria reagują tak samo na oddziaływanie grawitacji. Trwające 1,5 roku badania z wykorzystaniem protonów i antyprotonów przeprowadzili specjaliści z eksperymentu BASE (Baryon Antibaryon Symmetry Experiment).
      Naukowcy zmierzyli stosunek ładunku do masy protonu i antyprotonu z dokładnością 16 części na bilion. To najbardziej precyzyjny ze wszystkich testów symetrii materii i antymaterii przeprowadzony na cząstkach złożonych z trzech kwarków, zwanych barionami, i ich antycząstkach, mówi Stefan Ulmer, rzecznik prasowy BASE.
      Zgodnie z Modelem Standardowym cząstki i antycząstki mogą się od siebie różnić, jednak większość właściwości, szczególnie ich masa, powinno być identycznych. Znalezienie różnicy masy pomiędzy protonami a antyprotonami lub też różnicy w ich stosunku ładunku do masy, oznaczałoby złamanie podstawowej symetrii Modelu Standardowego, symetrii CPT. Byłby to również dowód na znalezienie fizyki wykraczającej poza opisaną Modelem Standardowym.
      Istnienie takiej różnicy mogłoby doprowadzić do wyjaśnienia, dlaczego wszechświat składa się głównie z materii, mimo że podczas Wielkiego Wybuchu powinny powstać takie same ilości materii i antymaterii. Różnice pomiędzy cząstkami materii i antymaterii zgodne z Modelem Standardowym, są o rzędy wielkości zbyt małe, by wyjaśnić obserwowaną nierównowagę.
      Naukowcy z BASE wykorzystali podczas swoich pomiarów antyprotony i jony wodoru, które służyły jako ujemnie naładowane przybliżenia protonów. Umieszczono je w tzw. pułapce Penninga. Badania prowadzono pomiędzy grudniem 2017 roku a majem 2019. Później przystąpiono do opracowywania wyników, a po zakończeniu prac w najnowszym numerze Nature poinformowano o rezultatach.
      Po uwzględnieniu różnic pomiędzy jonami wodoru a protonami okazało się, że stosunek ładunku do masy protonu jest z dokładnością do 16 części na miliard identyczny ze stosunkiem ładunku do masy antyprotonu. To czterokrotnie bardziej dokładne obliczenia niż wszystko, co udało się wcześniej uzyskać, mówi Stefan Ulmer. Aby dokonać tak precyzyjnych pomiarów musieliśmy najpierw znacznie udoskonalić nasze narzędzia. Badania przeprowadziliśmy w czasie, gdy urządzenia wytwarzające antymaterię były nieczynne. Wykorzystaliśmy więc magazyn antyprotonów, w którym mogą być one przechowywane przez lata, dodaje.
      Prowadzenie eksperymentów w pułapce Penninga w czasie, gdy urządzenia wytwarzające antymaterię nie działają, pozwala na uzyskanie idealnych warunków, gdyż nie występują zakłócające badania pola magnetyczne generowane przez „fabrykę antymaterii”.
      Naukowcy z BASE nie ograniczyli się tylko do niespotykanie precyzyjnego porównania protonów i antyprotonów. Przeprowadzili też testy słabej zasady równoważności. Wynika ona z teorii względności i głosi, że zachowanie wszystkich obiektów w polu grawitacyjnym jest niezależne od ich właściwości, w tym masy. Oznacza to, że jeśli pominiemy inne siły – jak np. siłę tarcia – reakcja wszystkich obiektów na oddziaływanie grawitacji jest taka sama. Przykładem może być tutaj piórko i młotek, które w próżni powinny opadać z tym samym przyspieszeniem.
      Orbita Ziemi wokół Słońca ma kształt elipsy, co oznacza, że obiekty uwięzione w pułapce Penninga będą odczuwały niewielkie zmiany oddziaływania grawitacyjnego. Okazało się, że zarówno proton i antyproton identycznie reagują na te zmiany. Uczeni z BASE potwierdzili, że słaba zasada równoważności odnosi się zarówno do materii jak i antymaterii z dokładnością około 3 części na 100.
      Ulmer podkreśla, że uzyskana w tym eksperymencie precyzja jest podobna do założeń eksperymentu, w ramach których CERN chce badać antywodór podczas spadku swobodnego w polu grawitacyjnym Ziemi. BASE nie prowadziło eksperymentu ze swobodnym spadkiem antymaterii w polu grawitacyjnym Ziemi, ale nasze pomiary wpływu grawitacji na antymaterię barionową są co do założeń bardzo podobne do planowanego eksperymentu. To wskazuje, że w dopuszczonym zakresie niepewności nie znaleźliśmy żadnych anomalii w interakcjach pomiędzy antymaterią a grawitacją.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Ludzie, Ziemia czy gwiazdy pojawili się dlatego, że w pierwszej sekundy istnienia wszechświata wytwarzane było więcej materii niż antymaterii. Ta asymetria była niezwykle mała. Na każde 10 miliardów cząstek antymaterii pojawiało się 10 miliardów + 1 cząstka materii. Ta minimalna nierównowaga doprowadziła do stworzenia materialnego wszechświata, a fenomenu tego współczesna fizyka nie potrafi wyjaśnić.
      Z teorii wynika bowiem, że powinna powstać dokładnie taka sama liczba cząstek materii i antymaterii. Grupa fizyków-teoretyków stwierdziła właśnie, że nie można wykluczyć, iż w naszych możliwościach leży wykrycie nietopologicznych solitonów Q-balls, a ich wykrycie pozwoliłoby odpowiedzieć na pytanie, dlaczego po Wielkim Wybuchu pojawiło się więcej materii niż antymaterii.
      Obecnie fizycy uważają, że asymetria materii i antymaterii pojawiła się w pierwszej sekundzie po Wielkim Wybuchu, a w jej czasie rodzący się wszechświat gwałtownie zwiększył swoje wymiary. Jednak przetestowanie teorii o inflacji kosmologicznej jest niezwykle trudne. Żeby ją sprawdzić musielibyśmy wykorzystać olbrzymie akceleratory cząstek i dostarczyć im więcej energii, niż jesteśmy w stanie wyprodukować.
      Jednak amerykańsko-japoński zespół naukowy, w skład którego wchodzą m.in. specjaliści z japońskiego Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU) i Uniwersytetu Kalifornijskiego w Los Angeles (UCLA) uważają, że do przetestowania tej teorii można wykorzystać nietopologiczne solitony Q-ball. Jedna z teorii dotyczących nierównowagi materii i antymaterii mówi bowiem, że pojawiła się ona w wyniku złożonego procesu tzw. bariogenezy Afflecka-Dine'a. To w jej przebiegu miały pojawić się Q-balle.
      Profesor Graham White, główny autor badań z Kavli IPMU wyjaśnia, czym jest Q-ball. Mówi, że jest bozonem, jak bozon Higgsa. Bozon Higgsa pojawia się, gdy pole Higgsa zostaje wzbudzone. Jednak w polu Higgsa mogą pojawiać się też inne elementy, jak grudki. Jeśli mamy pole bardzo podobne do pola Higgsa, które ma pewien ładunek, nie ładunek elektryczny, ale jakiś ładunek, wówczas taka grudka ma ładunek taki, jak jedna cząstka. Jako, że ładunek nie może po prostu zniknąć, całe pole musi „zdecydować” czy tworzy grudki czy cząstki. Jeśli utworzenie grudek będzie wymagało mniej energii, będą powstawały grudki. Łączące się ze sobą grudki stworzą Q-ball, mówi.
      Często mówimy, że takie Q-balle istnieją przez jakiś czas. W miarę rozszerzania się wszechświata zanikają one wolniej niż promieniowanie tła, w końcu większość energii wszechświata skupia się w Q-ballach. W międzyczasie pojawiają się niewielkie fluktuacje w gęstości promieniowania, które skupiają się tam, gdzie dominują Q-balle. Gdy zaś Q-ball się rozpada, jest to zjawisko tak gwałtowne, że pojawiają się fale grawitacyjne. Możemy je wykryć w nadchodzących dekadach. Piękno poszukiwań fal grawitacyjnych polega na tym, że wszechświat jest całkowicie dla nich przezroczysty, wędrują więc do jego początku, mówi White.
      Zdaniem teoretyków, generowane przez znikające Q-balle fale mają odpowiednie charakterystyki, by można je było zarejestrować za pomocą standardowych wykrywaczy fal grawitacyjnych.
      Szczegóły badań zostały opublikowane w serwisie arXiv.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Obowiązujący od ponad 70 lat powłokowy model jądra atomowego trzyma się dobrze. Jednak badania przeprowadzone właśnie w ramach eksperymentu ISOLDE w CERN są kolejnymi dającymi sprzeczne informacje odnośnie liczb magicznych.
      Z modelu powłokowego możemy wywnioskować, że te jądra, których powłoki są wypełnione, mają większą energię wiązania, są zatem stabilniejsze niż inne jądra. Liczby protonów i neutronów, dla których powłoki są wypełnione, nazywane są liczbami magicznymi. Obecnie uznane liczby magiczne zarówno dla protonów jak i neutronów to 2, 8, 20, 28, 50, 82 i 126. Jeśli mamy do czynienia z jądrem, dla którego i protony i neutrony występują w liczbie magicznej, mówimy o jądrze podwójnie magicznym. Jądrem podwójnie magicznym jest np. jądro tlenu, zawierające 8 protonów i 8 neutronów.
      Od mniej więcej dwóch dekad kolejne eksperymenty wskazują, że liczbą magiczną, przynajmniej dla neutronów, może być 32. W 2013 roku naukowcy z CERN badając izotopy wapnia bogate w neutrony zauważyli nagły spadek energii separacji neutronów poza liczbą N=32. Literami N i Z oznacza się, odpowiednio, liczbę neutronów i protonów w jądrze. Spadek taki wskazuje zaś, że 32 może być liczbą magiczną. Jeszcze wcześniej ci sami naukowcy podczas badania spektrum wzbudzenia wapnia-52 zaobserwowali wyższe niż spodziewane wzbudzenie przy wartościach Z=20 i N=32. Jako, że wiemy, iż 20 jest liczbą magiczną, sugerowałoby to istnienie w tym przypadku jądra podwójnie magicznego. Jakby tego było mało, badania prowadzone w japońskim RIKEN wskazują na zmiany pobudzenia nie tylko jądra wapnia-52 (N=32), ale też wapnia-54 (N=34).
      Z drugiej jednak strony badania promieni kwadratowych jąder potasu-51 i wapnia-52, dla których N=32 nie wykazało żadnych oznak, że mamy do czynienia z jądrami magicznymi.
      Naukowcy z ISOLDE badali teraz bardzo egzotyczne jądro potasu-52 (N=33). Poszukiwali w nim nagłego relatywnego wzrostu promienia kwadratowego, co jest silnym wskazaniem, że N=32 jest liczbą magiczną. Jednak niczego takiego nie zauważyli.
      Nowe badania wprowadzają tylko więcej zamieszania. Nie odrzucamy wyników wcześniejszych badań, gdyż były one wykonane prawidłowo, na sprzęcie najwyższej klasy. Kwestionujemy tylko płynące z nich wnioski, że 32 jest liczbą magiczną dla neutronów, mówi Thomas Cocolios, fizyk atomowy z Uniwersytetu Katolickiego w Leuven (KU Leuven). Teraz uczeni planują przeprowadzenie podobnych pomiarów dla wapnia-53 i wapnia-54, by zweryfikować twierdzenia, iż N=34 jest liczbą magiczną.
      Wiele wskazuje na to, że teoretycy będą musieli przemyśleć problem dotyczący N=32. Badanie energii wskazuje, że jest to liczba magiczna, jednak badanie wielkości jądra temu przeczy. Obserwujemy tutaj sprzeczność pomiędzy badaniami, które dają wiarygodne wyniki. Muszą się tym zająć teoretycy, mówi Gerda Neyens, fizyk teoretyczna z KU Leuven, która kieruje eksperymentem ISOLDE.
      Uczona dodaje, że zrozumienie tego fenomenu nie będzie łatwe, gdyż interakcje pomiędzy protonami a neutronami nie zachodzą bezpośrednio, a na poziomie kwarków. To utrudnia nam zrozumienie jąder atomowych, szczególnie tych egzotycznych. Im więcej badamy egzotycznych jąder, tym bardziej zdajemy sobie sprawę, że nasze modele teoretyczne mają coraz większe kłopoty ze spójnym opisaniem zjawisk w nich zachodzących, dodaje Cocolios.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy z CERN-u są pierwszymi, którym udało się zaobserwować trzy czarmonia pochodzące z pojedynczego zderzenia dwóch protonów. Odkrycie, dokonane podczas analizy danych z eksperymentu CMS pozwoli lepiej zrozumieć rozkład kwarków i gluonów wewnątrz protonu.
      Czarmonium, zwane też kwarkonium powabnym, to pierwsza odkryta cząstka zawierająca kwark powabny. Jego odkrycie zostało nazwane „rewolucją listopadową fizyki cząstek elementarnych”. Potwierdziło bowiem, że istnieje czwarty rodzaj kwarka, pozwoliło na potwierdzenie kwarkowego modelu hadronów, a Burtonowi Richterowi i Samuelowi Tingowi przyniosło nagrodę Nobla z fizyki (1976). Jako, że obaj odkryli czarmonium niezależnie od siebie, i jeden nazwał je cząstką J, a drugi cząstką psi, czarmonium znane jest też jako mezon J/ψ.
      Dotychczas podczas eksperymentów, również tych prowadzonych w Wielkim Zderzaczu Hadronów, obserwowano jedno lub dwa czarmonia pochodzące z pojedynczego zderzenia. Trzy czarmonia udało się zauważyć dzięki temu, że przeprowadzający analizę naukowcy poszukiwali zmian J/ψ w pary mionów. W ten sposób znaleźli 5 przypadków zderzeń proton-proton, podczas których jednocześnie powstały po trzy cząstki J/ψ. Istotność statystyczna obserwacji wynosi ponad 5σ, zatem można mówić o odkryciu.
      Trzeba jednak pamiętać, że do pojawienia się aż trzech kwarkoniów powabnych dochodzi niezwykle rzadko. Pojedyncze kwarkonium powabne pojawia się 3,7 miliona razy częściej, a dwa kwarkonia powabne – 1800 razy częściej niż trzy takie cząstki.
      Mimo tego, to temat warty zbadania, mówi Stefanos Leontsinis z CERN-u. W przyszłości LHC powinien zebrać większą próbkę trzech mezonów J/ψ pojawiających się w wyniku jednego zderzenia, a dzięki temu lepiej zrozumiemy wewnętrzną strukturę protonu.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...