Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Śmiercionośny wirus pomoże w walce ze śmiertelnym nowotworem mózgu?

Recommended Posts

Ironią losu jest, że jeden z najbardziej śmiercionośnych wirusów może być użyteczny w leczeniu jednego z najbardziej śmiercionośnych nowotworów mózgu, mówi profesor neurochirurgii Anthony van den Pol z Yale University. Wspomnianym wirusem jest jest Ebola, którą można wykorzystać do walki z glejakiem.

Glejaki to bardzo trudne w leczeniu, często śmiertelne nowotwory mózgu. Naukowcy z Yale opisali na łamach Journal of Virology w jaki sposób wykorzystali zarówno słabości nowotworu jak i zdolności obronne Eboli przeciwko atakowi ze strony układ odpornościowego.

W przeciwieństwie do zdrowych komórek, wiele nowotworów nie jest w stanie zorganizować nieswoistej odpowiedzi odpornościowej w reakcji na atak ze strony wirusa. Dlatego też naukowcy próbują wykorzystać wirusy do walki z nowotworami. To jednak niesie ze sobą ryzyko wywołania groźnej infekcji w organizmie. Dlatego też uczeni eksperymentują tworząc chimery różnych wirusów lub łącząc geny różnych wirusów tak, by atakowały one komórki nowotworowe, ale nie wywoływały infekcji w zdrowych komórkach.

Van den Pol zainteresował się pewnym szczególnym genem o nazwie MLD. To jeden z siedmiu genów, które ułatwiają Eboli ukrycie się przed układem odpornościowym. MLD ma też swój udział w niezwykłej zjadliwości tego wirusa.

Biorąc pod uwagę fakt, że wirus Ebola (EBOV) infekuje wiele różnych organów i komórek, a jednocześnie wykazuje słaby neurotropizm [neurotropizm to zdolność wirusa do infekowania komórek układu nerwowego – red.], zaczęliśmy się zastanawiać czy chimera wirusa pęcherzykowatego zapalenia jamy ustnej (VSV) zaprojektowana do ekspresji glikoproteiny wirusa Ebola (EBOV GP), nie mogłaby selektywnie infekować komórek guza mózgu. Wykorzystanie glikoproteiny MLD mogłoby ułatwić wirusowi uniknięcie ataku ze strony układu odpornościowego, stwierdzili naukowcy.

Van den Pol i Xue Zhang, również z Yale University, stworzyli więc wirusa VSV z ekspresją MLD, którego następnie wstrzyknęli do mózgu myszy z glejakiem. Okazało się, że MLD pomógł w selektywnym wykryciu i zabiciu komórek nowotworowych.

Stworzyliśmy chimerę VSV, w której glikoproteina Eboli zastąpiła naturalną glikoproteinę VSV. W ten sposób zredukowaliśmy neurotoksycznść VSV. Chimera VSV zdolna do ekspresji pełnej EBOV GP (VSV-EBOV) zawierającej MLD była znacząco bardziej efektywna i bezpieczna niż EBOV GP niezawierająca MLD, informują uczeni. Badania prowadzone na myszach z ludzkimi guzami nowotworowymi wykazały, że VSV-EBOV zawierające MLD znacznie lepiej niż VSV-EBOV bez MLD eliminuje guzy mózgu i wydłuża życie myszy.

Uczeni sądzą, że to właśnie użycie MLD chroni zdrowe komórki przed infekcją. Kluczowym czynnikiem może być tutaj fakt, że wirus z glikoproteiną MLD namnaża się wolniej niż wirus bez MLD

Opisane powyżej rozwiązanie mogłoby – przynajmniej w teorii – wspomagać leczenie chirurgiczne i zapobiegać nawrotom choroby.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Naukowcy z Centrum Biologii Czeskiej Akademii Nauk odkryli 40 nieznanych dotychczas wirusów występujących w wodzie pitnej, które infekują mikroorganizmy morskie. Pierwszy z nich, szczegółowo opisany Budvirus – którego nazwa pochodzi od Czeskich Budziejowic – należy do grupy gigantycznych wirusów (niektóre z nich są większe od bakterii) i atakuje jednokomórkowe glony, kryptomonady (kryptofity). Okazało się, że Budvirus odgrywa olbrzymią rolę w naturze, kontrolując zakwit glonów i utrzymując równowagę w środowisku wodnym.
      Wszystkie wspomniane wirusy zostały znalezione w zbiorniku Římov w pobliżu Czeskich Budziejowic. Jest on regularnie monitorowany od pięciu dekad, co czyni go jednym z najlepiej zbadanych zbiorników słodkowodnych w Europie.
      W jednej kropli słodkiej wody może znajdować się nawet milion bakterii i 10 milionów wirusów. Pomimo rozwoju nauki, wciąż nie znamy większość z tych mikroorganizmów. Jesteśmy w stanie stopniowo je poznawać dzięki technikom sekwencjonowania DNA. Wyodrębniamy cały materiał genetyczny znajdujący się w próbce wody, przeprowadzamy jego analizę i w ten sposób śledzimy organizmy obecne w wodzie. Tak zdobywamy informacje o nowych wirusach i bakteriach, wyjaśnia Rohit Ghai, dyrektor Laboratorium Ekologii i Ewolucji Mikroorganizmów w Centrum Biologii Czeskiej Akademii Nauk.
      Na ślad Budvirusa naukowcy wpadli wiosną, w czasie gwałtownego zakwitu glonów w wodzie. Wiedzieli, że dzięki drapieżnikom żywiącym się glonami, takim jak pierwotniaki czy wrotki, oraz zmniejszeniu się dostępności składników odżywczych, rozkwit wkrótce zostanie powstrzymany i ilość glonów się zmniejszy. Teraz udało się im potwierdzić, że Budvirus odgrywa olbrzymią rolę w powstrzymywaniu zakwitu glonów, a jego działalność jest szczególnie ważna wiosną. Budvirus jest pierwszym znanym nam wirusem, który infekuje kryptomonady z rodzaju Rhodomonas, jednego z najbardziej rozpowszechnionych glonów. Dlatego też możemy przypuszczać, że reprezentuje on grupę wirusów powszechną w zbiornikach słodkowodnych na całym świecie, stwierdziła Helena Henriques Vieira.
      Kapsyd Budvirusa ma kształt 20-ścianu o średnicy 200 nanometrów, jest więc 10-krotnie większy od kapsydu przeciętnego wirusa. Jego genom koduje ponad 400 białek, a funkcja połowy z nich nie jest obecnie znana.
      Ekosystemy słodkowodne są niezwykle dynamiczne, zachodzi tam wiele interakcji pomiędzy organizmami od bakterii i wirusów, przez pierwotniaki po ryby. Interakcje te mają olbrzymi wpływ na równowagę środowiska i jego odporność na ekstremalne zmiany. Ważne jest, byśmy dokładnie rozumieli rolę tych organizmów i ich wzajemne interakcje. Dzięki temu, gdy w wodzie będą zachodziły nieprzewidziane zmiany, będziemy wiedzieli, co się dzieje, dodaje Ghai.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Wielka bioróżnorodność lasów deszczowych czy raf koralowych to rzecz powszechnie znana. Mało kto jednak zdaje sobie sprawę, jak olbrzymia bioróżnorodność występuje w jego własnym domu. A konkretnie na szczoteczce do zębów i słuchawce od prysznica. Grupa naukowców z Northwestern University odkryła w tych miejscach zaskakująco duże zróżnicowanie wirusów, z czego wiele gatunków nie było dotychczas znanych nauce. Uczeni badali bakteriofagi, zidentyfikowane przez nich organizmy nie są niebezpieczne dla ludzi.
      Mieszkańcy krajów rozwiniętych zdecydowaną większość czasu spędzają w budynkach. Ich zdrowie i dobrostan są powiązane ze środowiskiem wewnątrz tych budynków, w tym z ich mikrobiomami. To dwustronne oddziaływanie. Mikroorganizmy w budynkach wpływają na nas, a my wpływamy na nie. Nasze zachowania, sprzątanie mieszkania, używane środki chemiczne i higieny osobistej, to co jemy, wpływają na skład mikrobiomów. Uczeni z Northwestern zbadali wirusy w domowych biofilmach, skupiając się na słuchawkach od pryszniców oraz szczoteczkach do zębów. Wiemy bowiem, że bakteriofagi, wirusy atakujące bakterie i wysoce specyficzne dla konkretnych ich gatunków, wpływają na strukturę i funkcjonowanie bakteryjnych społeczności. A prysznic czy szczoteczka do zębów to środowiska podlegające dynamicznym zmianom. Zamieszkujące je mikroorganizmy mają do czynienia z ekstremalnymi zmianami temperatur, okresami wysokiej wilgotności oraz wysychania, są wystawione na działanie produktów chemicznych używanych i do higieny osobistej i do utrzymani czystości w łazience.
      Badacze przeprowadzili kompleksową analizę genetyczną mikroorganizmów zamieszkujących 34 szczoteczki do zębów i 92 słuchawki do prysznica. Znaleźli na nich ponad 600 gatunków wirusów, z których wiele nie było dotychczas znanych. Szczoteczki do zębów i słuchawki prysznicowe do siedliska fagów zupełnie odmienne od innych, mówi główna autorka badań, Erica M. Hartmann. Badania pokazały, że szczoteczki i słuchawki są zasiedlone prze różne fagi. Co więcej, każdy z badanych przedmiotów miał własny, unikatowy skład mikroorganizmów. Olbrzymie zróżnicowanie mikroorganizmów zaskoczyło uczonych i pokazało, jak wielu bakteriofagów jeszcze nie znamy.
      Po co jednak badać mikroorganizmy, które nie są szkodliwe dla człowieka? Fagi są interesujące z punktu widzenia biotechnologii i medycyny. Penicylina pochodzi z pleśni na chlebie. Być może kolejny rewolucyjny antybiotyk zostanie stworzony z czegoś, co żyje na twojej szczoteczce do zębów, wyjaśnia Hartmann.
      Uczona dodaje, że projekt badawczy rozpoczął się od zwykłej ciekawości. Jesteśmy otoczeni mikroorganizmami. Jednak ściany czy stoły to dla nich trudne środowisko. Preferują one miejsca, gdzie jest woda. A ta powszechnie występuje na szczoteczkach do zębów i słuchawkach.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Długi COVID dotyka mniej więcej co piątej osoby, która miała COVID, mówi profesor Bren Palmer z University of Colorado. Jest  opisywany, jako objawy, które trwają dłużej niż 4 tygodnie po zarażeniu. Objawy te to m.in. ból w klatce piersiowej, kaszel, krótki oddech, mgła mózgowa i zmęczenie, dodaje. Palmer, ekspert od HIV, uważa, że przyczyną długiego COVID są ukryte w organizmie rezerwuary wirusa, które powodują, że starający się je zwalczyć układ odpornościowy staje się nadaktywny.
      Palmer, który od lat bada wirusa HIV, już w 2020 roku zainteresował się przyczynami długiego COVID (zwanego też PASC – post-acute sequelae SARS-CoV-2) . W 2020 roku zaczął badać grupę 40 osób, które zachorowały na COVID, a z których 20 całkowicie wyzdrowiało, a u 20 pojawiły się objawy długiego COVID. Wraz z pulmonolog Sarah Jolley, która kieruje UCHealth Post-COVID Clinic for PASC analizował próbki kału i krwi badanych, poszukując specyficznych limfocytów T aktywnych po wyleczeniu z początkowej infekcji. Naukowcy skupiali się szczególnie na poszukiwaniu limfocytów CD4 i CD8. U osób z PASC znaleźliśmy niezwykle wysoki poziom cytotoksycznych komórek CD8 T. Było ich nawet 100-krotnie więcej niż u osób, u których długi COVID się nie rozwinął, mówi uczony. Palmer był zaskoczony faktem, że sześć miesięcy po wyleczeniu z początkowej infekcji aż połowa limfocytów T wykazywała aktywność przeciwko COVID-19. To zdumiewająco dużo, znacznie więcej niż w przypadku infekcji HIV, gdzie wirus bez przerwy się replikuje, mówi naukowiec.
      Naukowcy stwierdzili też, że istnieje odwrotna zależność pomiędzy ilością specyficznych dla COVID-19 limfocytów T we krwi, a wydajnością płuc. Im we krwi więcej limfocytów T specyficznych dla COVID, tym gorsze wyniki testów wydajności płuc, mówi Palmer. To zaś bardzo silnie wskazuje, że obecność limfocytów T napędza długi COVID. Wyniki te skłoniły Palmera do wysunięcia hipotezy, że ukryte w organizmie rezerwuary wirusa SARS-CoV-2 są przyczyną ciągłego stanu zapalnego, nadmiernej aktywności układu odpornościowego i występowania objawów długiego COVID. To nadmierna reakcja układu odpornościowego powoduje te objawy. Uważamy, że gdzieś w organizmie jest rezerwuar wirusa, którego nie można wykryć za pomocą wymazów z nosa czy gardła. U osób, które zmarły z powodu COVID wirus był wszędzie. Podczas autopsji znajdowano go w mózgu, nerkach, płucach i jelitach, przypomina uczony.
      Z artykułu opublikowanego właśnie z piśmie Gut dowiadujemy się, że Palmer we współpracy z profesor Catherine Lozupone przeanalizowali próbki kału od pacjentów z PASC i wykazali, że skład flory bakteryjnej jelit u tych osób jest powiązany z markerami stanu zapalnego znalezionymi we krwi. To zaś wskazuje na związek pomiędzy mikrobiomem jelit a stanem zapalnym w przebiegu długiego COVID.
      Zdaniem Palmera, oba przeprowadzone przez niego badania sugerują, że leki przeciwwirusowe takie jak Paxlovid mogą być skuteczne w leczeniu PASC. Niektóre z badań wskazywały, że zaszczepienie pacjentów z długim COVID powodowało u nich zmniejszenie objawów. Szczepionka dodatkowo pobudza układ odpornościowy, być może dzięki temu jego odpowiedź jest wówczas bardziej skuteczna, udaje się zlikwidować rezerwuary wirusów i stąd zmniejszenie objawów. Z kolei inne badania wykazały, że po podaniu Paxlovidu zostaje zatrzymana replikacja wirusa, a to prowadzi do zmniejszenia aktywności układu odpornościowego. To zaś sugeruje, że podawanie Paxlovidu może być skutecznym lekiem na długi COVID. Jednocześnie wyniki takie wydają się potwierdzać hipotezę, że gdzieś w organizmie mamy ukryty rezerwuar wirusa, do którego nie mamy dostępu, stwierdza naukowiec.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Około 25% powierzchni lądowej Półkuli Północnej stanowi wieczna zmarzlina. Globalne ocieplenie powoduje, że rozmarzająca gleba uwalnia materię organiczną uwięzioną od tysięcy lat. Część z tej materii stanowią mikroorganizmy oraz wirusy. Jean-Michel Claverie z Uniwersytetu Aix-Marseille i jego zespół informują o wyizolowaniu i „ożywieniu” 13 nowych wirusów należących do 5 kladów zdolnych do zainfekowania Acanthamoeba spp. Najmłodszy z wirusów liczył sobie 27 000 lat, najstarszy zaś – 48 500 lat co czyni go najstarszym wirusem zdolnym do zainfekowania komórki.
      Nasze badania potwierdzają zdolność wirusów o dużym DNA do zainfekowania Acanthamoeba po ponad 48 500 lat spędzonych w wiecznej zmarzlinie, czytamy w artykule [PDF] udostępnionym na łamach bioRxiv. Wspomniane wirusy należą do rodzajów Pandorawirus, Cedratvirus, Megawirus, Pacmanvirus i Pithovirus. Wszystkie to jedne z największych znanych nam wirusów, wszystkie znane są od niedawna i wszystkie infekują ameby.
      Zespół Claverie poszukiwał w próbkach właśnie dużych wirusów zdolnych do infekowania Acanthamoeba. Naukowcy dodawali próbki wiecznej zmarzliny do kultur ameb i poszukiwali śladów infekcji, które wskazywałyby, że wirusy „ożyły” i się replikują. Jeśli zaś wspomniane wirusy mogły „ożyć” po dziesiątkach tysięcy lat w wiecznej zmarzlinie i infekować komórki, oznacza to, że prawdopodobnie do tego samego zdolne są inne mniejsze wirusy. Roztapianie się wiecznej zmarzliny wiąże się więc z ryzykiem pojawienia się mikroorganizmów zdolnych do infekowania roślin i zwierząt, w tym człowieka. A ryzyko takie rośnie, gdyż wraz z globalnym ociepleniem w Arktyce będzie pojawiało się coraz więcej ludzi, chociażby po to, by wydobywać niedostępne dotychczas surowce.
      Ryzyko zainfekowania ludzi uśpionymi przez tysiąclecia wirusami i bakteriami będzie się zwiększało. Trzeba jednak pamiętać, że jest i pozostanie ono mniejsze niż ryzyko wybuchu epidemii wywołanej już krążącymi wśród ludzi i zwierząt mikroorganizmami. Globalne ocieplenie powoduje bowiem, że choroby tropikalne zwiększają swój zasięg, a nosiciele ich patogenów pojawiają się np. w Europie.
      Ryzykowne mogą być też prace nad znajdującymi się w wiecznej zmarzlinie wirusami. Gdy używamy kultur Acanthamoeba spp. do badania obecności wirusów w prehistorycznej wiecznej zmarzlinie, korzystamy z ochrony miliardów lat dystansu ewolucyjnego pomiędzy amebami a ludźmi i innymi ssakami. To najlepsza ochrona przed przypadkowym zarażeniem się pracowników laboratorium czy rozprzestrzenieniem wirusów na współcześnie żyjące zwierzęta. Ryzyko związane z „ożywianiem” takich wirusów jest całkowicie pomijalne w porównaniu z ryzykiem, jakie stwarza poszukiwanie paleowirusów bezpośrednio w tkankach mamutów, nosorożców włochatych czy prehistorycznych koni, czym zajmują się Rosjanie z laboratorium Vector w Nowosybirsku. Na szczęście jest to laboratorium klasy BLS4. My, bez podejmowania niepotrzebnego ryzyka, sądzimy, że uzyskane przez nas wyniki można ekstrapolować na wiele innych wirusów DNA zdolnych do infekowania ludzi i zwierząt. Naszym zdaniem istnieje ryzyko, że z wiecznej zmarzliny uwolnią się nieznane wirusy. W tej chwili niemożliwością jest stwierdzić, jak długo takie wirusy pozostaną aktywne po wystawieniu ich na czynniki zewnętrzne, jak promienie ultrafioletowe, tlen czy wyższe temperatury – podsumowują autorzy badań.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Od wybuchu pandemii COVID-19 minęło już ponad 2,5 roku, a wciąż nie jest jasne, w jaki sposób SARS-CoV-2 powoduje problemy neurologiczne i w jaki sposób uzyskuje dostęp do neuronów. Naukowcy próbują dowiedzieć się, w jaki sposób wirus powoduje takie objawy neurologiczne jak utrata smaku i węchu w fazie ostrej, czy zaburzenia poznawcze (w tym problemy z pamięcią czy koncentracją) w fazie tzw. „długiego COVID”.
      SARS-CoV-2 podczas infekowania komórki wiąże się z receptorem ACE2 i wnika do komórki za pomocą mechanizmu endocytozy. Jednak w mózgu ACE2 niemal nie występuje. Dlatego też naukowcy z francuskiego Instytutu Pasteura wykorzystali najnowsze osiągnięcia mikroskopii, by przyjrzeć się, w jaki sposób koronawirus dostaje się do neuronów. Badania pokazały, że patogen wykorzystuje nanorurki łączące zainfekowane komórki z neuronami. Nanorurki te to tymczasowe dynamiczne struktury pozwalające komórkom na wymianę materiału bez potrzeby istnienia specjalnych receptorów w błonie komórkowej. Okazuje się, że wirus jest w stanie użyć tych nanorurek w czasie infekcji, mimo że nie zawierają one ACE2.
      W mózgach niektórych osób chorujących na COVID znaleziono materiał genetyczny SARS-CoV-2. Jego obecność wyjaśniała objawy neurologiczne związane z chorobą. Sugerowano wówczas, że wirus dostaje się do centralnego układu nerwowego korzystając z błony węchowej, jednak to wciąż nie wyjaśniało, jak dostaje się do samych neuronów.
      Nowe badania ujawniły zaś istnienie licznych fragmentów wirusa zarówno wewnątrz nanorurek, jak i na ich powierzchni. Okazało się też, że taka droga infekowania jest szybsza i bardziej bezpośrednia, niż infekowanie komórek za pomocą receptora ACE2. Wirus potrafi też przemieszczać się po powierzchni nanorurek i docierać w ten sposób do komórek posiadających receptor. Nanorurki są zatem dla wirusa bardzo wygodną drogą infekcji. Pozwalają nie tylko na wniknięcie do neuronów, ale ułatwiają też dotarcie do innych komórek.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...