Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Sztuczny atom zapewni stabilność komputerom kwantowym?

Recommended Posts

Inżynierowe z Uniwersytetu Nowej Południowej Walii (UNSW) w Sydney uzyskali sztuczne atomy w krzemowych kropkach kwantowych. Były one bardziej stabilne niż atomy naturalne, zatem poprawiały stabilność całego układ kwantowego.

Profesor Andew Dzurak wyjaśnia, że sztuczne atomy nie posiadał y jądra, ale miały elektrony krążące wokół centrum urządzenia. Pomysł na stworzenie sztucznych atomów z elektronów nie jest niczym nowym. Teoretycznie zaproponowano je już w latach 30. ubiegłego wieku, a w latach 90. udało się je uzyskać, chociaż nie na krzemie. My po raz pierwszy wytworzyliśmy proste atomy na krzemie w roku 2013.

Jednak naszym najważniejszym osiągnięciem jest uzyskanie sztucznych atomów z większą liczbą elektronów niż wcześniej było możliwe, co oznacza, że będzie można takie atomy wykorzystać do wiarygodnych obliczeń w komputerach kwantowych. To bardzo ważne, gdyż kubity bazujące na jednym elektronie są bardzo zawodne.

Jak wyjaśnia profesor Dzurak okazało się, że gdy stworzymy sztuczne atomy w naszych kwantowych obwodach, one również mają dobrze zorganizowane w sposób przewidywalny powłoki elektronowe, podobnie jak naturalne atomy.

Profesor Dzurak wraz z zespołem skonfigurowali kwantowe urządzenia tak, by przetestować stabilność elektronów w sztucznym atomie. Wykorzystali napięcie elektryczne, by przyciągnąć elektrony i stworzyć z nich kwantową kropkę o średnicy około 10 nanometrów. W miarę jak powoli zwiększaliśmy napięcie, przyciągaliśmy kolejne elektrony i tak, jeden po drugim, tworzyliśmy z nich sztuczny atom w kwantowej kropce, wyjaśnia doktor Andre Saraiva, który odpowiadał za teoretyczną stronę badań.

W prawdziwym atomie w środku mamy ładunek dodatni, czyli jądro, wokół którego na trójwymiarowych orbitach krążą elektrony o ładunku ujemnym. W naszym przypadku nie mieliśmy dodatnio naładowanego jądra, a ładunek dodatni pochodził z elektrody oddzielonej od krzemu warstwą tlenku krzemu oraz elektrony zawieszone pod nią. Każdy z nich krąży wokół centrum kwantowej kropki. Nie tworzą tam sfery, ale raczej płaski dysk.

Naukowców interesowało szczególnie, co się stanie, gdy do istniejących elektronów doda się kolejny, który zajmie najbardziej zewnętrzną powłokę. Okazało się, że taki elektron może zostać użyty w roli kubitu. Dotychczas niedoskonałości krzemu na poziomie atomowym zaburzały zachowania kubitów, prowadząc do niestabilności i błędów. Wydaje się jednak, że elektrony znajdujące się na wewnętrznych powłokach działają jak „podkład” na niedoskonałym podłożu, zapewniając stabilność elektronu na zewnętrznej powłoce, wyjaśniają.

Profesor Dzurak dodaje, że wartość kubitu została zakodowana w spinie elektronu. Gdy elektrony, czy to w sztucznym czy w naturalnym atomie, utworzą powłokę, ustawiają swoje spiny w przeciwnych kierunkach, więc spin całości wynosi 0 i jest ona la nas nieprzydatna. gdy jednak dodamy nowy elektron na nowej powłoce, zyskujemy nową spin, który możemy wykorzystać jako kubit. Wykazaliśmy, ze jesteśmy w stanie kontrolować spin elektronów na zewnętrznych powłokach, zyskując w ten sposób stabilne wiarygodne kubity. To bardzo ważne, gdyż to oznacza, że możemy teraz pracować z mniej delikatnymi kubitami. Pojedynczy elektron jest niezwykle delikatny. Ale sztuczny atom z 5 czy 13 elektronami jest znacznie bardziej odporny.

Zespół profesora Dzuraka był pierwszym, który już w 2015 roku zaprezentował kwantową bramkę logiczną na krzemie. Wcześniej, również jako pierwsi, uzyskali kubit na krzemie. W ubiegłym zaś roku jako pierwsi zmierzyli dokładność dwukubitowych operacji logicznych na krzemie.


« powrót do artykułu

Share this post


Link to post
Share on other sites

precyzja tych pól musi być niewiarygodna żeby chociaż przez chwilę te elektrony utrzymać w pułapce.

 

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Naukowcy ze szwedzkiego Uniwersytetu Technologicznego Chalmersa poinformowali, że są jednym z pierwszych, którym udało się stworzyć materiał zdolny do przechowywania fermionów Majorany. Fermiony Majorany mogą być stabilnymi elementami komputera kwantowego. Problem z nimi jest taki, że pojawiają się w bardzo specyficznych okolicznościach.
      Na całym świecie trwają prace nad komputerami kwantowymi. Jednym z najpoważniejszych wciąż nierozwiązanych problemów jest niezwykła delikatność stanów kwantowych, które łatwo ulegają dekoherencji, tracąc superpozycję, czyli zdolność do jednoczesnego przyjmowania wielu wartości.
      Jednym z pomysłów na komputer kwantowy jest wykorzystanie do jego budowy fermionów Majorany. Para takich fermionów, umieszczonych w odległych częściach materiału, powinna być odporna na dekoherencję.
      Problem jednak w tym, że w ciałach stałych fermiony Majorany pojawiają się wyłącznie w nadprzewodnikach topologicznych. To nowy typ materiału, który bardzo rzadko jest spotykany w praktyce. Wyniki naszych eksperymentów zgadzają się z teoretycznymi przewidywaniami dotyczącymi topologicznego nadprzewodnictwa, cieszy się profesor Floriana Lombardi z Laboratorium Fizyki Urządzeń Kwantowych na Chalmers.
      Naukowcy rozpoczęli pracę od topologicznego izolatora z tellurku bizmutu (Bi2Te3). Izolatory topologiczne przewodzą prąd wyłącznie na powierzchni. Wewnątrz są izolatorami. Uczeni z Chalmers pokryli swój izolator warstwą aluminium, które w bardzo niskiej temperaturze jest nadprzewodnikiem. W takich warunkach do izolatora topologicznego przeniknęła nadprzewodząca para elektronów, przez co topologiczny izolator wykazywał właściwości nadprzewodzące, wyjaśnia profesor Thilo Bauch.
      Jednak wstępne pomiary wykazywały, że uczeni mają do czynienia ze standardowym nadprzewodnictwem w Bi2Te3. Gdy jednak naukowcy ponownie schłodzili swój materiał, by dokonać kolejnych pomiarów, sytuacja uległa nagłej zmianie. Charakterystyki nadprzewodzących par elektronów różniły się od siebie w zależności o kierunku. Takie zachowanie nie jest zgodne ze standardowym nadprzewodnictwem. Zaczęły zachodzić niespodziewane, ekscytujące zjawiska, mówi Lombardi.
      Istotnym elementem tego, co się wydarzyło był fakt, że zespół Lombardi – w przeciwieństwie do wielu innych grup, które prowadziły podobne eksperymenty – użył platyny do połączenia izolatora topologicznego z aluminium. Wielokrotne chłodzenie doprowadziło do wzrostu napięć w platynie, przez co doszło do zmian właściwości nadprzewodnictwa. Analizy wykazały, że w ten sposób najprawdopodobniej uzyskano topologiczny nadprzewodnik.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Po raz pierwszy udało się zmierzyć spin elektronu w materiale. Osiągnięcie uczonych z Uniwersytetów w Bolonii, Wenecji, Mediolanie, Würzburgu oraz University of St. Andrews, Boston College i University of Santa Barbara może zrewolucjonizować sposób badania i wykorzystania kwantowych materiałów w takich dziedzinach jak biomedycyna, energia odnawialna czy komputery kwantowe. Pomiar spinu w kontekście topologii materiału, w którym był mierzony, był możliwy dzięki wykorzystaniu promieniowania synchrotronowego oraz nowoczesnym technikom modelowania zachowania materii.
      Profesor Domenico di Sante z Uniwersytetu w Bolonii wyjaśnia: Na zachowanie elektronów w materiałach mają wpływ pewne właściwości kwantowe, determinujące ich spin w materiale, w którym się znajdują. Tak jak na tor ruchu światła we wszechświecie ma wpływ obecność gwiazd, ciemnej materii czy czarnych dziur, które zaginają czasoprzestrzeń.
      Właściwości elektronu znamy od dawna, jednak dotychczas nikt nie bezpośrednio nie zmierzył „topologicznego spinu” elektronu. Uczeni z Włoch, Niemiec, Wielkiej Brytanii i USA wykorzystali efekt znany jako dichroizm kołowy. Zjawisko to polega na różnej absorpcji przez substancje światła spolaryzowanego kołowo prawo- i lewoskrętnie. W swoich badaniach skupili się na metalach kagome. To materiały, w których atomy tworzą – znany z tradycyjnego japońskiego koszykarstwa kagome – wzór składający się z sieci trójkątów o wspólnych wierzchołkach. Ta nietypowa geometria atomów powoduje, że elektrony zachowują się w takim materiale w sposób nietypowy, co pozwala badać niezwykłe zjawiska kwantowe. Metale kagome służą m.in. do badań nad nadprzewodnictwem wysokotemperaturowym. Pierwsze eksperymenty z nimi przeprowadzono w USA w 2018 roku.
      Teraz dwuwarstwowe metale kagome XV6Sn6 – gdzie X oznacza pierwiastek ziem rzadkich, tutaj były to terb, skand i holm – posłużyły do badania topologicznego spinu elektronu. Było to możliwe dzięki połączeniu eksperymentu z analizą teoretyczną. Teoretycy przeprowadzili najpierw złożone symulacje kwantowe na potężnych superkomputerach i poinstruowali eksperymentatorów, w którym miejscu materiału powinni mierzyć dichroizm kołowy, wyjaśnia Di Sante.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Rząd Niemiec zapowiedział, że przeznaczy 3 miliardy euro na zbudowanie do roku 2026 uniwersalnego komputera kwantowego. To część nowej strategii, w ramach której Niemcy chcą na polu informatyki kwantowej dorównać światowej czołówce – USA i Chinom – oraz stać się na tym polu liderem wśród krajów Unii Europejskiej. To kluczowe dla niemieckiej suwerenności technologicznej, stwierdziła Bettina Sark-Watzinger, minister ds. edukacji i badań.
      Ze wspomnianej kwoty 2,2 miliarda trafi do różnych ministerstw, które będą zajmowały się promocją i znalezieniem zastosowań dla komputerów kwantowych. Największa pulę, bo 1,37 miliarda otrzyma ministerstwo ds. edukacji i badań. Pozostałe 800 milionów euro otrzymają duże państwowe instytuty badawcze.
      Rząd w Berlinie zakłada, że kwota ta pozwoli na zbudowanie do roku 2026 komputera kwantowego o pojemności co najmniej 100 kubitów, którego możliwości w niedługim czasie zostaną p powiększone do 500 kubitów. Tutaj warto przypomnieć, że w ubiegłym roku IBM zaprezentował 433-kubitowy komputer kwantowy.
      W Unii Europejskiej nie powstały tak gigantyczne firmy IT jak Google czy IBM, które same są w stanie wydatkować miliardy dolarów na prace nad komputerami kwantowymi. Dlatego też przeznaczone nań będą pieniądze rządowe. Frank Wilhelm-Mauch, koordynator europejskiego projektu komputera kwantowego OpenSuperQPlus mówi, że i w USA finansowanie prac nad maszynami kwantowymi nie jest transparentne, bo wiele się dzieje w instytucjach wojskowych, a z Chin w ogóle brak jakichkolwiek wiarygodnych danych.
      Komputery kwantowe wciąż jeszcze nie są gotowe do większości praktycznych zastosowań, jednak związane z nimi nadzieje są olbrzymie. Mogą one zrewolucjonizować wiele dziedzin życia. Mają przeprowadzać w ciągu sekund obliczenia, które komputerom klasycznym zajmują lata. A to oznacza, że możliwe będzie przeprowadzanie obliczeń, których teraz się w ogóle nie wykonuje, gdyż nie można ich skończyć w rozsądnym czasie. Maszyny kwantowe mogą przynieść rewolucję na tak różnych polach jak opracowywanie nowych leków czy logistyka.
      Wiele niemieckich przedsiębiorstw działa już aktywnie na polu informatyki kwantowe. Na przykład firm Bosch, dostawca podzespołów dla przemysłu motoryzacyjnego, we współpracy z IBM-em wykorzystuje symulacje na komputerach kwantowych do zbadania czym można zastąpić metale ziem rzadkich w silnikach elektrycznych. Z kolei producent laserów Trumpf pracuje nad kwantowymi chipami i czujnikami, a działający na rynku półprzewodników Infineon rozwija układy scalone korzystające z szyfrowania kwantowego. Niemiecka Agencja Kosmiczna wystrzeliła zaś pierwsze satelity testujące systemy dystrybucji kwantowych kluczy szyfrujących.
      Bettina Stark-Watzinger chce, by do roku 2026 w Niemczech z komputerów kwantowych korzystało co najmniej 60 podmiotów.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Komputery kwantowe mogą bazować na różnych rodzajach kubitów (bitów kwantowych). Jednym z nich są kubity z fotonów, które o palmę pierwszeństwa konkurują z innymi rozwiązaniami. Mają one sporo zalet, na przykład nie muszą być schładzane do temperatur kriogenicznych i są mniej podatne na zakłócenia zewnętrzne niż np. kubity bazujące na nadprzewodnictwie i uwięzionych jonach. Pary splątanych fotonów mogą stanowić podstawę informatyki kwantowej. Jednak uzyskanie splatanych fotonów wymaga zastosowania nieporęcznych laserów i długotrwałych procedur ich dostrajania. Niemiecko-holenderska grupa ekspertów poinformowała właśnie o stworzeniu pierwszego w historii źródła splątanych fotonów na chipie.
      Dokonany przez nas przełom pozwolił na zmniejszenie źródła ponad 1000-krotnie, dzięki czemu uzyskaliśmy powtarzalność, długoterminową stabilność, skalowalność oraz potencjalną możliwość masowej produkcji. To warunki, które muszą być spełnione, by zastosować tego typu rozwiązanie w realnym świecie kwantowych procesorów, mówi profesor Michael Kues, dyrektor Instytutu Fotoniki na Leibniz Universität Hannover. Dotychczas źródła światła dla komputerów kwantowych wymagały zastosowania zewnętrznych, nieporęcznych systemów laserowych, których użyteczność była ograniczona. Poradziliśmy sobie z tymi problemami tworząc nową architekturę i różne systemy integracji podzespołów na układzie scalonym, dodaje doktorant Hatam Mahmudlu z grupy Kuesa.
      Naukowcy mówią, że ich układ scalony jest równie łatwy w użyciu, jak każdy innych chip. Żeby rozpocząć generowanie splątanych fotonów wystarczy układ zamontować i włączyć. Jak każdy inny układ scalony. Jego obsługa nie wymaga żadnego specjalnego doświadczenia. Zdaniem twórców układu, w przyszłości takie źródło może znaleźć się w każdym kwantowym procesorze optycznym.
      Dotychczas eksperci mieli olbrzymie problemy w zintegrowaniu na jednym chipie laserów, filtra i wnęki, gdyż nie istnieje żaden pojedynczy materiał, z którego można by stworzyć wszystkie te urządzenia. Rozwiązaniem okazało się podejście hybrydowe. Naukowcy na jednym chipie umieścili laser z fosforku indu, wnękę oraz filtr z azotku krzemu. W polu lasera, w wyniku spontanicznego nieliniowego procesu, dochodzi do powstania dwóch splątanych fotonów. Uzyskaliśmy wydajność i jakość wymaganą do zastosowania naszego chipa w kwantowych komputerach czy kwantowym internecie, zapewnia Kues. Nasze źródło światła wkrótce stanie się podstawowym elementem programowalnych fotonicznych procesorów kwantowych, uważa uczony. Szczegóły badań zostały opublikowane w Nature Photonics.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcom po raz pierwszy udało się zaprezentować przełącznik wykonany z pojedynczej molekuły fullerenu. Dzięki precyzyjnie dostrojonemu laserowi międzynarodowy zespół uczonych był w stanie wykorzystać molekułę fullerenu do zmiany drogi elektronu w przewidywalny sposób. Przełącznik, w zależności od impulsów lasera, działał od 3 do 6 rzędów wielkości szybciej niż przełączniki wykorzystywane obecnie w układach scalonych.
      Dzięki fullerenom mogą zatem powstać komputery znacznie szybsze niż to, co można osiągnąć za pomocą współczesnej elektroniki. Można je będzie wykorzystać też do obrazowania medycznego o niedostępnej obecnie rozdzielczości.
      Wiele dziesięcioleci temu fizycy odkryli, że w obecności pól elektrycznych oraz światła molekuły emitują elektrony. Współautor najnowszych badań, Hirofumi Yanagisawa w Uniwersytetu Tokijskiego wraz z zespołem, najpierw stworzył hipotezę dotyczącej emisji elektronów przez wzbudzone fullereny w zależności od rodzaju wzbudzającego je impulsu laserowego. Następnie międzynarodowa grupa naukowa dowiodła jej słuszności.
      Za pomocą krótkiego impulsu czerwonego lasera uzyskaliśmy kontrolę nad sposobem kierowania przez molekułę nadchodzącego elektronu. W zależności od impulsu, elektron może pozostać na swoim kursie, lub też zmienić trasę w przewidywalny sposób. [...] Sądzimy, że możemy osiągnąć tutaj milion razy krótszy czas przełączania niż za pomocą klasycznego tranzystora. To zaś może przełożyć się na zwiększenie wydajności komputerów. Jednak równie ważne byłoby dostrojenia lasera tak, by molekuła fullerenu mogła działać jednocześnie jak wiele przełączników. Uzyskalibyśmy w ten sposób odpowiednik wielu tranzystorów w pojedynczej molekule. To zwiększyłoby złożoność systemu bez zwiększania jego fizycznych rozmiarów, wyjaśnia Yanagisawa.
      Fullereny to cząsteczki składające się z parzystej liczby atomów węgla, tworzące zamkniętą, pustą w środku bryłę. O ich potencjalnym zastosowaniu w informatyce pisaliśmy już przed 15 laty. Jak się okazuje, możliwe jest precyzyjne manipulowanie orientacją fullerenów za pomocą precyzyjnych ultrakrótkich impulsów laserowych, decydując w ten sposób, jak dojdzie do emisji elektronu. To technika podobna do tego, jak w mikroskopii fotoelektronów (PEEM) uzyskuje się obrazy. Jednak rozdzielczość PEEM sięga maksymalnie około 10 nanometrów, czyli 10 miliardowych części metra. Fullerenowy przełącznik pozwoliłby na osiągnięcie rozdzielczości około 300 pikometrów, czyli 300 bilionowych części metra, dodaje Yanagisawa.
      Autorzy badań dodają, że jeśli udałoby się spowodować, by pojedyncza molekuła fullerenu działała jak wiele przełączników jednocześnie, to niewielka sieć takich molekuł przeprowadzałaby obliczenia znacznie szybciej niż dzisiejsze procesory. Jednak do pokonania jest wiele przeszkód, jak np. odpowiednie zminiaturyzowanie laserów. Tak czy inaczej mogą minąć lata, zanim fullerenowe przełączniki trafią do układów scalonych.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...