Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Wielkość ma znaczenie. Olbrzymi procesor zrewolucjonizuje sztuczną inteligencję?

Recommended Posts

Trenowanie systemów sztucznej inteligencji trwa obecnie wiele tygodni. Firma Cerebras Systems twierdzi, że potrafi skrócić ten czas do kilku godzin. Pomysł polega na tym, by móc testować więcej pomysłów, niż obecnie. Jeśli moglibyśmy wytrenować sieć neuronową w ciągu 2-3 godzin, to rocznie możemy przetestować tysiące rozwiązań, mówi Andrew Feldman, dyrektor i współzałożyciel Cerebras.

Jeśli chcemy wytrenować sieć sztucznej inteligencji, która np. ma zarządzać autonomicznym samochodem, potrzebujemy wielu tygodni i olbrzymiej mocy obliczeniowej. Sieć musi przeanalizować olbrzymią liczbę zdjęć czy materiałów wideo, by nauczyć się rozpoznawania istotnych obiektów na drodze.

Klienci Cerebras skarżą się, że obecnie trenowanie dużej sieci neuronowej może trwać nawet 6 tygodni. W tym tempie firma może wytrenować około 6 sieci rocznie. To zdecydowanie zbyt mało dla przedsiębiorstw, które chcą sprawdzić wiele nowych pomysłów za pomocą SI.

Rozwiązaniem problemu ma być komputer CS-1, a właściwie jego niezwykły procesor. Maszyny CS-1 mają wysokość 64 centymetrów, a każda z nich potrzebuje do pracy 20 kW. Jednak 3/4 obudowy każdego z komputerów zajmuje układ chłodzenia, a tym, co najbardziej rzuca się w oczy jest olbrzymi układ scalony. Zajmuje on powierzchnię 46 255 milimetrów kwadratowych, czyli około 50-krotnie więcej niż tradycyjny procesor. Zawiera 1,2 biliona tranzystorów, 400 000 rdzeni obliczeniowych i 18 gigabajtów pamięci SRAM.

Procesor o nazwie Wafer Scale Engine (WSE) wypada znacznie lepiej niż podobne systemy. Jak zapewniają przedstawiciele Cerebras, ich maszyna, w porównaniu z klastrem TPU2 wykorzystywanym przez Google'a do trenowania SI, zużywa 5-krotnie mniej energii i zajmuje 30-krotnie mniej miejsca, a jest przy tym 3-krotnie bardziej wydajna. Takie zestawienie brzmi imponująco, a na ile rzeczywiście WSE jest lepszy od dotychczasowych rozwiązań powinno ostatecznie okazać się w bieżącym roku. Jak zauważa analityk Mike Demler, sieci neuronowe stają się coraz bardziej złożone, więc możliwość szybkiego ich trenowania jest niezwykle ważna.

Trzeba jednak przyznać, że w twierdzeniach Cerebras musi być ziarno prawdy. Wśród klientów firmy jest m.in. Argonne National Laboratory, które ma już maszyny CS-1 u siebie. Zapewne już wkrótce dowiemy się, czy rzeczywiście zapewniają one tak wielką wydajność i pozwalają tak szybko trenować sieci neuronowe.

Twórcami Cerebras są specjaliści, którzy pracowali w firmie Sea Micro, przejętej przez AMD. Pomysł stworzenia komputera wyspecjalizowanego w sztucznej inteligencji zaczął kiełkować w ich głowach w 2015 roku. Stwierdzili, że odpowiedni procesor musi być w stanie szybko przesyłać duże ilości danych, układy pamięci muszą znajdować się blisko rdzenia, a same rdzenie nie powinny zajmować się danymi, którymi już zajmują się inne rdzenie. To zś oznaczało, że tego typu układ musi składać się z olbrzymiej liczby niewielkich rdzeni wyspecjalizowanych w obliczeniach z zakresu sieci neuronowych, połączenia między rdzeniami muszą być szybkie i zużywać niewiele energii, a wszystkie dane muszą być dostępne na procesorze, a nie w osobnych układach pamięci.

Twórcy Cerebras uznali, że tym, czego potrzebują, jest chip niemalże wielkości całego plastra krzemowego. Udało im się taki układ skonstruować, chociaż nie było to łatwe zadanie i wciąż muszą poradzić sobie z licznymi problemami. Jednym z nich było poradzenie sobie z filozofią tworzenia współczesnych plastrów krzemowych. Obecnie z pojedynczego plastra tworzy się wiele procesorów. Po ich przygotowaniu, plaster, zawierający wiele identycznych układów, jest cięty. W procesie przygotowywania plastra do produkcji tworzy się na nim specjalne linie, wzdłuż których przebiegają cięcia. Tymczasem Cerebras potrzebowało takiego plastra w całości, z połączeniami pomiędzy poszczególnymi rdzeniami. To zaś wymagało nawiązania współpracy z TSMC i opracowania metody przeprowadzenia połączeń przez linie.

Wysiłek się opłacił. Poszczególne rdzenie komunikują się między sobą z prędkością 1000 Pb/s, a komunikacja pomiędzy pamięcią a rdzeniami przebiega w tempie do 9 PB/s. To nie jest trochę więcej. To o cztery rzędy wielkości więcej, gdyż wszystko odbywa się w ramach tego samego plastra, cieszy się Feldman.

Jednak przeprowadzenie połączeń przez linie nie był jedynym problemem. Trzeba było zmodyfikować cały proces projektowania i produkcji układów. Nawet oprogramowanie do projektowania procesorów jest przygotowane pod niewielkie układy. Każda zasada, każde narzędzie i każde urządzenie jest obecnie dostosowana do produkcji układów scalonych o zwyczajowych rozmiarach. My zaś potrzebujemy czegoś znacznie większego, dlatego też musieliśmy na nowo opracować każdy element, dodaje Feldman.

Jeszcze innym problemem okazało się zasilanie takiego układu. Każdy z 1,2 biliona tranzystorów potrzebuje 0,8 wolta. To standardowe napięcie, ale tranzystorów jest tak dużo, że do układu należy doprowadzić prąd o natężeniu 20 000 amperów.

Uzyskanie w całym plastrze 20 000 amperów bez znacznego spadku napięcia było kolejnym wyzwaniem inżynieryjnym, mówią przedstawiciele Cerebras. Doprowadzenie prądu do krawędzi WSE nie wchodziło w rachubę, gdyż opory spowodowałyby spadek napięcia do zera zanim prąd osiągnąłby środek układu. Rozwiązaniem okazało się prostopadłe podłączenie od góry. Inżynierowie Cerebras zaprojektowali specjalny zestaw składający się z setek układów wyspecjalizowanych w kontrolowaniu przepływu prądu. Za pomocą miliona miedzianych połączeń dostarcza on zasilanie do WSE.

Cerebras nie podaje żadnych danych odnośnie testów wydajności swojego rozwiązania w porównaniu z innymi systemami. Zamiast tego firma zachęca swoich klientów, by po prostu sprawdzili, czy  CS-1 i WSE sprawują się lepiej w zadaniach, których ci klienci potrzebują. Nie ma w tym jednak nic dziwnego. Każdy korzysta z własnych modeli dostosowanych do własnych potrzeb. To jedyne co się liczy dla klienta, mówi analityk Karl Freund.

Jednym z takich klientów jest właśnie Argonne National Laboratory. Ma ono dość specyficzne potrzeby. Wykorzystuje sieci neuronowe do rozpoznawania różnych rodzajów fal grawitacyjnych w czasie rzeczywistym. Pracujący tam specjaliści wolą więc samodzielnie przekonać się, czy nowe urządzenie lepiej sprawdzi się w tych zastosowaniach niż dotychczas stosowane superkomputery.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Dotychczas słyszeliśmy, że „kiedyś” powstanie pełnowymiarowy komputer kwantowy, zdolny do przeprowadzania obliczeń różnego typu, który będzie bardziej wydajny od komputerów klasycznych. Teraz IBM zapowiedział coś bardziej konkretnego i interesującego. Firma publicznie poinformowała, że do końca roku 2023 wybuduje komputer kwantowy korzystający z 1000 kubitów. Obecnie najpotężniejsza kwantowa maszyna IBM-a używa 65 kubitów.
      Plan IBM-a zakłada, że wcześniej powstaną dwie maszyny pozwalające dojść do zamierzonego celu. W przyszłym roku ma powstać 127-kubitowy komputer, a w roku 2022 IBM zbuduje maszynę operującą na 433 kubitach. Rok później ma zaprezentować 1000-kubitowy komputer kwantowy. A „kiedyś” pojawi się komputer o milionie kubitów. Dario Gil, dyrektor IBM-a ds. badawczych mówi, że jest przekonany, iż firma dotrzyma zarysowanych tutaj planów. To coś więcej niż plan i prezentacja w PowerPoincie. To cel, który realizujemy, mówi.
      IBM nie jest jedyną firmą, która pracuje nad komputerem kwantowym. Przed rokiem głośno było o Google'u, który ogłosił, że jego 53-kubitowy komputer kwantowy rozwiązał pewien abstrakcyjny problem osiągając przy tym „kwantową supremację”, a więc rozwiązując go znacznie szybciej, niż potrafi to uczynić jakakolwiek maszyna klasyczna. Stwierdzenie to zostało jednak podane w wątpliwość przez IBM-a, a niedługo później firma Honeywell ogłosiła, że ma najpotężniejszy komputer kwantowy na świecie.
      Google zapowiada, że w ciągu 10 lat zbuduje kwantową maszynę wykorzystującą milion kubitów. Tak przynajmniej zapowiedział Hartmut Neven, odpowiedzialny w Google'u za prace nad kwantową maszyną, który jednak nie podał żadnych konkretnych terminów dochodzenia do celu.
      IBM zadeklarował konkretne daty po to, by jego klienci i współpracownicy wiedzieli, czego można się spodziewać. Obecnie dziesiątki firm kwantowe używają maszyn kwantowych IBM-a,by rozwijać własne technologie kwantowe. Poznanie planów Błękitnego Giganta i śledzenie jego postępów, pozwoli im lepiej planować własne działania, mówi Gil.
      Jednym z partnerów IBM-a jest firma Q-CTRL, rozwija oprogramowanie do optymalizacji kontroli i wydajności poszczególnych kubitów. Jak zauważa jej założyciel i dyrektor, Michael Biercuk, podanie konkretnych terminów przez IBM-a może zachęcić fundusze inwestycyjne do zainteresowania tym rynkiem. Fakt, że wielki producent sprzętu wkłada dużo wysiłku i przeznacza spore zasoby może przekonać inwestorów, mówi.
      Zdaniem Bierucka 1000-kubitowa maszyna będzie niezwykle ważnym krokiem milowym w rozwoju komputerów kwantowych. Co prawda będzie 1000-krotnie zbyt mało wydajna, by w pełni wykorzystać potencjał technologii, ale przy tej liczbie kubitów możliwe już będą wykrywanie i korekta błędów, które trapią obecnie komputery kwantowe.
      Jako, że stany kwantowe są bardzo delikatne i trudne do utrzymania, badacze opracowali protokoły korekcji błędów, pozwalające na przekazanie informacji z jednego fizycznego kubita do wielu innych. Powstaje w ten sposób „kubit logiczny”, którego stan można utrzymać dowolnie długo.
      Dzięki 1121-kubitowej maszynie IBM będzie mógł stworzyć kilka kubitów logicznych i doprowadzić do interakcji pomiędzy nimi. Taka maszyna będzie punktem zwrotnym w pracach nad komputerami kwantowymi. Specjaliści będą mogli skupić się nie na walce z błędami w indywidualnych kubitach, a na wysiłkach w celu udoskonalenia architektury i wydajności całej maszyny.
      IBM już w tej chwili buduje olbrzymi chłodzony helem kriostat, który ma w przyszłości chłodzić komputer kwantowy z milionem kubitów.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Sztuczna inteligencja w zastosowaniach wojskowych kojarzy się z autonomicznymi systemami broni czy androidami jak Terminator. Jednak amerykańscy eksperci twierdzą, że rzeczywistość będzie mniej spektakularna, a potęga militarnej SI nie będzie opierała się na zabójczych robotach.
      Pułkownik Brad Boyd, szef Joint Warfighting Operations w Joint Artificial Intelligence Center (JAIC) amerykańskiego Departamentu Obrony mówi, że znacznie ważniejsze od budowy najlepszej broni autonomicznej jest wykorzystanie sztucznej inteligencji do gromadzenia, analizowanie oraz przesyłania danych oraz ich wykorzystania podczas treningu nowych bądź udoskonalania starych systemów.
      Najbardziej intensywnie pracujemy nad infrastrukturą, bo to ona zdecyduje, kto za 20 lat wygra wojnę, powiedział Boyd podczas konferencji prasowej. I nie chodzi tu o to, kto będzie miał najlepsze algorytmy, one za 20 lat i tak będą przestarzałe. Chodzi o to, kto będzie dysponował najlepszą infrastrukturą bo z niej wciąż będziemy korzystali za 50 lat.
      W ubiegłym miesiącu JAIC przyznało firmie Deloitte Consulting kontrakt o wartości do 106 milionów dolarów. Za te pieniądze w ciągu czterech lat ma powstać specjalna platforma dla chmur obliczeniowych – Joint Common Foundation (JCF) – zaprojektowana pod kątem potrzeb Pentagonu. Zadaniem Deloitte Consulting jest znalezienie odpowiednich kontrahentów, którzy wykonają poszczególne elementy JCF.
      JCF będzie działała jak scentralizowany hub zawierający dane i narzędzia, dzięki którym kontrahenci Pentagonu będą tworzyli i testowali produkty na potrzeby amerykańskich sił zbrojnych. Zbudowana z myślą o współpracy z przemysłem platforma ma być pomyślana tak, by była możliwa jej integracja z innymi elementami, takimi jak np. chmura JEDI, którą kosztem 10 miliardów USD ma dla Pentagonu stworzyć Microsoft.
      Umieszczenie wszystkich danych i narzędzi w jednym wspólnym repozytorium, jakim ma być JCF, ułatwi tworzenie i testowanie nowych algorytmów. SI ma kolosalny apetyt na dane. Właściwie nie ma momentu, w którym można powiedzieć, że algorytm SI został ukończony. On jest ciągle udoskonalany i testowany, mówi Nand Mulchandani, p.o. dyrektora JAIC. Również wdrożenie algorytmu nie jest łatwe, gdyż jego wydajność i możliwości mogą zależeć od lokalizacji geograficznej, w której jest wdrażany. Nie możesz wdrożyć algorytmu w jednej części świata i oczekiwać, że będzie działał w innej części. Trzeba mu zapewnić dostęp do lokalnych danych, by przystosować się do specyficznej lokalizacji czy zadań. Mulchandani nazywa ten proces cyklem ponownego treningu i stwierdza to coś, w czym musimy być naprawdę dobrzy.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Jeden z najlepszych amerykańskich pilotów myśliwców przegrał 5:0 w serii symulowanych walk powietrznych ze sztuczną inteligencją. O pilocie, który zmierzył się z SI wiemy tylko, że jego znak wywoławczy to „Banger” i ukończył on kurs instruktorski obsługi broni pokładowej, do którego dopuszczani są wyłącznie najlepsi piloci. Jego pogromca, SI autorstwa niewielkiej firmy Heron Systems, pokonał wcześniej kilka innych systemów sztucznej inteligencji.
      Symulowane walki odbywały sie w ramach prowadzonego przez DARPA (Agencja Badawcza Zaawansowanych Systemów Obronnych) programu AlphaDogfight Trials. Program składał się z czterech etapów. W pierwszym z nich osiem algorytmów SI kontrolujących myśliwiec F-16 zmierzyło się z pięcioma algorytmami stworzonymi przez naukowców z Applied Physics Laboratory na Uniwersytecie Johnsa Hopkinsa. W drugim etapie osiem wspomnianych algorytmów – autorstwa Aurora Flight Sciences, EpiSys Science, Georgia Tech Research Institute, Heron Systems, Lockheed Martin, Perspecta Labs, PhysicsAI i SoarTech – starło się każdy z każdym. Na tej podstawie wyłoniono cztery najlepsze algorytmy, które zmierzyły się o prawo do walki z ludzkim przeciwnikiem. W półfinale algorytm Heron Systems pokonał sztuczną inteligencję twórcy F-16, firmy Lockheed Martin.
      Tym samym SI Heron System zakwalifikował się do walki z jednym z czołowych pilotów US Air Force. Rozegrano 5 symulowanych pojedynków. Łącznie trwały one nie dłużej niż 2 minuty. Człowiek przegrał wszystkie.
      W czasie pojedynków pilot miał hełm, który dawał mu taki sam widok, jak podczas prawdziwej walki. Symulowano samoloty poruszające się z prędkością ponad 800 km/h i przeciążenia dochodzące do 9G. Każdy z wirtualnych samolotów był uzbrojony w laser, który symulował broń pokładową.
      Chociaż SI odniosła miażdżące zwycięstwo, eksperci mówią, że niekoniecznie stałoby się tak w rzeczywistej walce. Warunki eksperymentu były bowiem ściśle kontrolowane. Pułkownik Daniel Javorsek, który nadzoruje w DARPA projekt rozwojów SI pilotujących samoloty stwierdził: My piloci, nigdy nie wierzymy do końca samym symulacjom i modelom komputerowym.
      Jednym z celów prowadzenia tego typu badań jest rozwój systemów sztucznej inteligencji, które będą wspomagały pilotów w walce. Program komputerowy potrafi bowiem znacznie szybciej niż człowiek zareagować na manewry przeciwnika. Systemy SI mogą też zwiększyć możliwości wojskowych dronów, które wciąż wymagają zdalnego pilotażu.
      Jak zauważyli specjaliści, jednym z elementów, który zapewnił SI Heron Systems zwycięstwo, była umiejętność lepszego celowania podczas szybko odbywającego się pojedynku. Jednak nie tylko. Jak przyznał „Banger” system był trudnym przeciwnikiem. Standardowe manewry, jakie wykorzystują piloci myśliwców, nie działały. Pilot zauważył, że SI potrafiła znacznie łatwiej usiąść mu na ogonie, niż jest to w stanie wykonać ludzki przeciwnik.
      Przed czterema laty sensacją było doniesienie, że algorytm sztucznej inteligencji pokonał doświadczonego pilota i wykładowcę taktyki walki myśliwców, pułkownika Lee.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Fizycy z Chin zaprezentowali wersję gry go opierającą się na mechanice kwantowej. W swojej symulacji naukowcy wykorzystali splątane fotony do ustawiania kamieni na planszy, zwiększając w ten sposób trudność gry. Ich technologia może posłużyć jako pole testowe dla sztucznej inteligencji.
      Wielkim wydarzeniem końca XX wieku było pokonanie arcymistrza szachowego Garry'ego Kasparowa przez superkomputer Deep Blue. Jednak go stanowiło znacznie trudniejsze wyzwanie. Ta gra o bardzo prostych zasadach posiada bowiem więcej kombinacji niż szachy. Jednak 20 lat później, w 2016 roku dowiedzieliśmy się, że SI pokonała mistrza go.
      Jednak szachy i go to gry o tyle łatwe dla komputerów, że na bieżąco znany jest stan rozgrywki. Nie ma tutaj ukrytych elementów. Wiemy co znajduje się na planszy i co znajduje się poza nią. Zupełnie inne wyzwanie stanowią takie gry jak np. poker czy mahjong, gdzie dochodzi element losowy, nieznajomość aktualnego stanu rozgrywki – nie wiemy bowiem, co przeciwnik ma w ręku – czy też w końcu blef. Także i tutaj maszyny radzą sobie lepiej. Przed rokiem informowaliśmy, że sztuczna inteligencja wygrała w wieloosobowym pokerze.
      Xian-Min Jin z Szanghajskiego Uniwersytetu Jiao Tong i jego koledzy postanowili dodać element niepewności do go. Wprowadzili więc doń mechanikę kwantową. „Kwantowe go” zostało po raz pierwszy zaproponowane w 2016 roku przez fizyka Andre Ranchina do celów edukacyjnych. Chińczycy wykorzystali tę propozycję do stworzenia systemu, który ma podnosić poprzeczkę sztucznej inteligencji wyspecjalizowanej w grach.
      W standardowej wersji go mamy planszę z 19 liniami poziomymi i 19 pionowymi. Na przecięciach linii gracze na przemian układają swoje kamienie, starając się ograniczyć nimi jak największy obszar planszy. W kwantowej wersji go ustawiana jest natomiast para splątanych kamieni. Oba kamienie pozostają na planszy dopóty, dopóki nie zetkną się z kamieniem z sąsiadującego pola. Wówczas dochodzi do „pomiaru”, superpozycja kamieni zostaje zniszczona i na planszy pozostaje tylko jeden kamień, a nie splątana para.
      W go gracz może zbić kamienie przeciwnika wówczas, gdy ustawi swoje kamienie na wszystkich sąsiadujących z przeciwnikiem polach. Jednak by do takiej sytuacji doszło w „kwantowym go” wszystkie otoczone kamienie przeciwnika muszą być kamieniami klasycznymi, żaden z nich nie może pozostawać w superpozycji z innym kamieniem na planszy. Jednak gracze nie wiedzą, który z kamieni w jakim stanie się znajduje, dopóki nie dokonają pomiaru.
      Jin i jego koledzy wyjaśniają, że ich symulacja pozwala na dostrojenie procesu pomiaru poprzez manipulacje splątaniem. Jeśli kamienie w danej parze są splątane w sposób maksymalny, to wynik pomiaru będzie całkowicie przypadkowy, nie potrafimy przewidzieć, który z kamieni po pomiarze pozostanie na planszy. Jeśli jednak splątanie będzie mniej doskonałe, jeden z kamieni będzie miał większą szansę na pozostanie na planszy. To prawdopodobieństwo będzie znane tylko temu graczowi, do którego kamień należy. Gra traci w tym momencie swoją całkowitą nieprzewidywalność, jednak pozostaje w niej duży element niedoskonałej informacji.
      Chińczycy przekuli teorię na praktykę tworząc pary splątanych fotonów, które były wysyłane do rozdzielacza wiązki, a wynik takiego działania był mierzony za pomocą czterech wykrywaczy pojedynczych fotonów. Jeden zestaw wyników reprezentował „0” a inny „1”. W ten sposób oceniano prawdopodobieństwo zniknięcia jednej z części pary wirtualnych kamieni ustawianych na przypadkowo wybranych przecięciach linii przez internetowe boty.
      Poprzez ciągłe generowanie splątanych fotonów i przechowywaniu wyników pomiarów naukowcy zebrali w ciągu godziny około 100 milionów możliwych wyników zniknięcia stanu splątanego. Taka ilość danych pozwala na przeprowadzenie dowolnej rozgrywki w go. Uczeni, analizując rozkład zer i jedynek w czasie potwierdzili, że nie występuje znacząca korelacja pomiędzy następującymi po sobie danymi. Tym samym, dane są rzeczywiście rozłożone losowo.
      Jin mówi, że rzeczywista złożoność i poziom trudności kwantowego go pozostają kwestią otwartą. Jednak, zwiększając rozmiary wirtualnej planszy i włączając do tego splątanie, można – jego zdaniem – zwiększyć trudność samej gry do takiego stopnia, by dorównywała ona takim grom jak mahjong, gdzie większość informacji jest ukrytych. Dzięki temu kwantowe go może stać się obiecującą platformą do testowania nowych algorytmów sztucznej inteligencji.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Przeglądarka Chrome dołączyła do elitarnego klubu browserów, które zdobyły ponad 70% rynku. Z danych firmy analitycznej Net Application wynika, że w czerwcu do Chrome'a należało 70,2% światowego rynku przeglądarek. Program od pół roku ciągle zwiększał swoje udziały rynkowe, zyskując od stycznia 3,6 punktu procentowego.
      Chrome stał się tym samym trzecią przeglądarką w historii, która uzyskała tak silną pozycję na rynku. Pierwszą był Netscape Navigator, który zdominował lata 90. ubiegłego wieku, a druga to Internet Explorer, którego czasy dominacji rynkowej przypadły na pierwszą dekadę wieku obecnego.
      Wszystko wskazuje na to, że udziały Chrome'a nadal będą rosły. Analitycy przypuszczają, że do końca bieżącego roku do przeglądarki Google'a może należeć ponad 72% rynku.
      Patrząc na obecny rynek przeglądarek można stwierdzić, że jedynym potencjalnym zagrożeniem dla pozycji Chrome'a może stać się Edge Microsoftu. A i to po warunkiem, że zostanie on szeroko zaakceptowany przez biznes i uczelnie.
      Pozycja Microsoftu na rynku przeglądarek pozostaje jednak tajemnicą. Z danych Net Applications wynika, że udziały Edge'a wzrosły w ciągu miesiąca o rekordowe 0,2 punktu procentowego i obecnie do przeglądarki tej należy 8,1% rynku. Jednocześnie spadły udziały weterana, Internet Explorera, który obecnie ma rekordowo mało rynku, bo 4,5%. Trzeba jednak pamiętać, że IE jest wykorzystywany w wielu firmach, a dane Net Applications mogą go nie doszacowywać, gdyż przedsiębiorstwa często wykorzystują jeden lub kilka adresów IP wychodzących na zewnątrz. Pozycja przeglądarek Microsoftu może być więc być silniejsza, niż widać to w danych. Z drugiej jednak strony, Microsoft raczej nie stara się o wzmacnianie pozycji IE. Co prawda pozycja Edge'a powoli rośnie, ale jest to prawdopodobnie związane wyłącznie z rozpowszechnianiem się systemu Windows 10, a nie z przechodzeniem na Edge'a użytkowników innych przeglądarek. Przy obecnym tempie wzrostu udziały tej przeglądarki powinny wynieść 10,1% w lipcu przyszłego roku.
      Na trzecim miejscu znalazł się niezwykle niegdyś popularny Firefox. Również jego udziały powoli rosną i wynoszą obecnie 7,6%. Jednak, jak przewidują analitycy, przewaga Edge'a nad Firefoksem będzie rosła i w przyszłym roku wyniesie niemal 4 punkty procentowe.
      Niezaprzeczalnym liderem rynku jest zatem Chrome, który właśnie został trzecią przeglądarką w historii z ponad 70-procentowym udziałem w rynku. W tej chwili na horyzoncie nie widać nikogo, kto byłby mu w stanie w najbliższym czasie zagrozić.

      « powrót do artykułu
×
×
  • Create New...