Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Kolejność chorowania na grypę w dzieciństwie decyduje o odporności na całe życie

Rekomendowane odpowiedzi

Dlaczego organizmy jednych ludzi lepiej sobie radzą z grypą niż innych? Okazuje się, że decyduje tutaj to, jaki szczep grypy zaatakował nas jako pierwszy w życiu. Naukowcy z Uniwersytetu Kalifornijskiego w Los Angeles (UCLA) i University of Arizona stwierdzili, że nasza zdolność do zwalczenia wirusa grypy zależy nie tylko, z jakimi wirusami zetknęliśmy się w życiu, ale też w jakiej kolejności to nastąpiło.

Odkrycie to może wyjaśniać, dlaczego organizmy jednych radzą sobie z wirusem grypy A znacznie gorzej niż innych. To właśnie wirus grypy A najczęściej wywołuje epidemie i to on odpowiadał za hiszpankę, grypę azjatycką czy hongkong.

Już w 2016 roku naukowcy z UCLA i Arizony donieśli, że wystawienie w dzieciństwie na wirusa grypy daje ludziom na całe życie częściową ochronę nawet przed daleko spokrewnionymi szczepami grypy. Mówimy tutaj o „wdrukowaniu immunologicznym”.

Podczas najnowszych badań ci sami naukowcy postanowili sprawdzić, czy wdrukowanie immunologiczne może wyjaśniać różnice w reakcji ludzi na już istniejące szczepy wirusa grypy oraz na ile wyjaśnia to obserwowane różnice pomiędzy grupami wiekowymi.
Naukowcy przeanalizowali dane udostępnione im przez Wydział Usług Zdrowotnych stanu Arizona.

W ciągu ostatnich kilku dekad najbardziej rozpowszechnionymi szczepami grypy na świecie są H3N2 oraz H1N1. Szczep H3N2 powoduje większość ciężkich zachorowań u osób starszych i odpowiada za większość zgonów z powodu grypy. Z kolei H1N1 atakuje przede wszystkim młodych dorosłych oraz osoby w średnim wieku i rzadziej jest przyczyną zgonów.

Analiza ujawniła występowanie wyraźnego wzorca. Osoby, które w dzieciństwie zetknęły się ze szczepem H1N1 z mniejszym prawdopodobieństwem trafiają do szpitala gdy w późniejszym wieku zaraża się tym szczepem, niż osoby, które w dzieciństwie najpierw zetknęły się ze szczepem H3N2. Z kolei osoby, które jako dzieci najpierw zaraziły się H3N2 były lepiej chronione w późniejszym wieku przed tym szczepem.

Uczeni przeanalizowali też pokrewieństwo pomiędzy oboma szczepami. Zauważyli, że należą one do dwóch osobnych gałęzi drzewa ewolucyjnego grypy. Stwierdzili również, że jeśli w dzieciństwie zachorujemy na grypę, to nasz organizm będzie lepiej przygotowany do walki z grypą w przyszłości, ale ochrona taka jest lepsza, jeśli wirus, który zaatakuje nas w przyszłości, należy do tej samej grupy, co wirus z przeszłości.

Zauważono jednak inny, trudniejszy do wyjaśnienia fenomen. Okazało się bowiem, że osoby, które jako dzieci zostały najpierw zarażone bliskim kuzynem szczepu H1N1 – szczepem H2N2 – nie były później lepiej chronione przed H1N1. To zaskakujące odkrycie, gdyż szczepy te są blisko spokrewnione, a wcześniejsze analizy pokazały, że wystawienie na jeden szczep powinno w niektórych okolicznościach chronić przed jego bliskim kuzynem.

Nasz układ odpornościowy ma często problem z rozpoznaniem i obroną przed blisko spokrewnionymi szczepami grypy sezonowej, nawet jeśli to bliscy bracia i siostry szczepu, który krążył zaledwie kilka lat temu. To zaskakujące odkrycie, gdyż nasze badania nad ptasią grypą pokazują, że nasza pamięć immunologiczna sięga naprawdę głęboko. Układ odpornościowy jest w stanie rozpoznać i bronić się przed krewniakami dalszego rzędu wirusów, z którymi zetknęliśmy się w dzieciństwie, mówi główna autorka badań, Katelyn Gostic.

Naukowcy zauważyli, że na przykład osoby, które jako dzieci zaraziły się grypą w roku 1955 – gdy krążył wirus H1N1, ale nie wirus H3N2 – z większym prawdopodobieństwem trafiali w ubiegłym roku do szpitali, gdy w populacji były obecne oba szczepy. Nie zyskujemy tak dobrej i trwałej odporności na drugi szczep, z którym się stykamy, mówi współautor badań, Michael Worobey.

Uczeni mają nadzieję, że ich odkrycie powoli lepiej przewidzieć, które grupy wiekowe będą szczególnie narażone podczas kolejnych sezonów grypowych. To zaś pozwoli systemom opieki zdrowotnej lepiej zdecydować, kto jaką szczepionkę powinien otrzymać.

Ze szczegółami badań można zapoznać się na łamach PLOS Pathogens.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Czyli podsumowując - do tej pory myśleliśmy że nasz układ odpornościowy może bronić się przed bliskimi krewniakami danego szczepu wirusów, ale to najwyraźniej nie dotyczy wirusa grypy. 

Ciekawe czy dotyczy koronawirusa z Wuhan, bo jeśli ten zmutuje w coś gorszego to teraz nie wiadomo czy lepiej się zarazić czy nie ;P 

 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Ale to może obniżać odporność tylko jeśli już istniejące przeciwciała hamują powstawanie nowych potencjalnie bez tej wady.
 

 

Ok, w końcu mogą blokować ekspozycję antygenu. Pewnie tak musi działać mechanizm homeostatyczny.
 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Naukowcy z MIT, Massachusetts General Hospital i Uniwersytetu Harvarda pracują nad uniwersalną szczepionką na grypę, która byłaby skuteczna przeciwko każdemu szczepowi. Na łamach Cell naukowcy opisują szczepionkę wywołującą reakcję układu immunologicznego przeciwko pewnemu fragmentowi proteiny wirusa grypy, który rzadko ulega mutacjom. Zwykle układ odpornościowy nie bierze na cel tego fragmentu.
      Nowa szczepionka składa się z nanocząstek pokrytych proteinami wirusa grypy. Podczas badań na myszach, które zmanipulowano genetycznie tak, by ich układ odpornościowy przypominał układ odpornościowy człowieka, wykazano, że szczepionka powoduje atak układu odpornościowego na wspomniany fragment proteiny. To daje nadzieję, że szczepionka taka mogłaby być skuteczna przeciwko każdemu szczepowi grypy.
      Repertuar przeciwciał jest niemal nieskończenie zróżnicowany, dzięki czemu układ odpornościowy może dopasować się do każdego antygenu. Jednak cała „przestrzeń antygenów” jest nierównomiernie sprawdzana, przez co niektóre patogeny, jak np. wirus grypy są w stanie opracować złożone strategie immunodominancji, przez co układ odpornościowy nie zwraca uwagi na tego typu pięty achillesowe wirusa, stwierdzają naukowcy.
      Najpierw uczeni stworzyli model komputerowy, który pozwolił zaprojektować im techniki pokonania strategii wirusa, polegającej na „odwracaniu uwagi” układu odpornościowego od jego „pięt achillesowych”. Następnie przystąpili do testów na odpowiednio zmodyfikowanych myszach.
      Uzyskane przez nas wyniki są o tyle ekscytujące, że jest to mały krok w kierunku stworzenia szczepionki na grypę, którą będzie można przyjąć raz lub kilka razy i zyskać odporność zarówno na sezonowe, jak i pandemiczne szczepy grypy, mówi profesor Arup K. Chakraborty z MIT.
      Większość szczepionek przeciwko grypie wykorzystuje nieaktywne wirusy grypy. Wirusy grypy wykorzystują hemaglutyninę (HA) do przyłączania się do powierzchni komórki. Szczepionki powodują, że układ odpornościowy rozpoznaje hemaglutyninę i wytwarza przeciwciała, które biorą ją na cel. Jednak przeciwciała te niemal zawsze łączą się z przednią częścią, główką, hemaglutuniny. A jest to część, która najszybciej ulega mutacją. Z kolei w tylnej części HA znajdują się fragmenty, które mutują bardzo rzadko.
      Nie rozumiemy jeszcze całości, ale z jakiegoś powodu układ odpornościowy nie potrafi skutecznie wyszukiwać tych nieulegających mutacjom części proteiny, mówi profesor Daniel Lingwood z Harvard Medical School. Dlatego też naukowcy poszukują strategii, które pozwolą na zwrócenie uwagi układu odpornościowego na rzadko zmieniające się fragmenty HA.
      Jednym z czynników, dla których układ odpornościowy bierze za cel przednią część HA, a nie tylną, jest prawdopodobnie fakt, że wirus grypy jest gęsto upakowany hemaglutyniną. Tak gęsto, że przeciwciałom znacznie łatwiej jest łączyć się z „główką” HA, niż przecisnąć się i uzyskać dostęp do tylnej części. Wysunęliśmy hipotezę, że kluczem do uchronienia przed przeciwciałami wrażliwych części i do przetrwania wirusa jest geometria jego powierzchni, wyjaśnia doktor Assaf Amitai z MIT.
      Najpierw więc badali wpływ geometrii wirusa na immunodominację za pomocą molekularnej symulacji dynamicznej. Następnie modelowali proces zwany dojrzewaniem powinowactwa przeciwciał. To proces, który zachodzi po tym, gdy komórka B napotka na wirusa i określa, które przeciwciała będą decydujące w odpowiedzi immunologicznej.
      Każdy z receptorów limfocytu B łączy się z inną proteiną wirusa. Gdy konkretny receptor konkretnego limfocytu połączy się silnie z HA, limfocyt B zostaje aktywowany i szybko się namnaża. W procesie tym limfocyt B ulega mutacjom, dzięki czemu niektóre jego receptory jeszcze silniej wiążą się z HA. Następnie te limfocyty, które najsilniej powiązały się z HA przeżywają, a pozostałe, giną. W ten sposób po pewnym czasie powstaje duża populacja limfocytów B, które bardzo silnie wiążą się z HA. Z czasem przeciwciała te coraz lepiej i lepiej biorą na cel konkretny antygen, mówi Charkaborty.
      Modelowanie komputerowe wykazało pewną słabość tego procesu. Okazało się, że gdy podamy człowiekowi typową szczepionkę przeciwko grypie, te limfocyty B, które potrafią silnie połączyć się z tylną częścią HA są podczas procesu dojrzewania powinowactwa w gorszej sytuacji, niż limfocyty wiążące się silnie z główką HA. Po prostu dotarcie do tylnej części hemaglutyniny jest trudniejsze. Do modelu dodano więc symulację działania szczepionki, która jest właśnie opracowywana przez NIH i znajduje się w I fazie badań klinicznych. W szczepionce tej wykorzystano wirusa z rzadziej upakowanymi HA na powierzchni. Okazało się, że wówczas limfocyty B docierające do tylnej części HA radzą sobie znacznie lepiej i dominują pod koniec procesu dojrzewania powinowactwa.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Osoby urodzone pod koniec lat 60. i w latach 70. ubiegłego wieku mogą znajdować się w stanie ciągłego narażenia na infekcję wirusem grypy H3N2, wynika z badań przeprowadzonych na Perelman School of Medicine University of Pennsylvania. Dzieje się tak, gdyż co prawda ich przeciwciała łącza się z wirusem H3N2, ale nie zapobiegają infekcji. Odkryliśmy, że u ludzi w różnym wieku przeciwciała przeciwko H3N2 różnie działają, mówi profesor Scott Hensley.
      Nasze badania wykazały, że infekcje, jakie przeszliśmy w dzieciństwie, mogą wytworzyć odporność na całe życie, a odporność ta decyduje o tym, jak w ciągu życia nasze organizmy reagują na antygenowo odległe szczepy tego samego wirusa, dodaje.
      Większość ludzi przechodzi infekcję grypą nie później niż do 4. roku życia. I to zachorowaniem może nam nadać silną odporność na całe życie. Szczep H3N2 zaczął krążyć wśród ludzi w 1968 roku i w ciągu ostatnich 5 dekad znacząco się zmienił. Na podstawie roku urodzenia można z bardzo dużym prawdopodobieństwem stwierdzić, z jakim szczepem H3N2 się zetknęliśmy w dzieciństwie.
      Naukowcy z University of Pennsylvania przeprowadzili badania przeciwciał w krwi pobranej w sezonie letnim, przed sezonem grypowym z lat 2017/2018. Przebadano krew 140 dzieci w wieku o 1 do 17 lat oraz 212 dorosłych w wieku od 18 do 90 lat. Najpierw sprawdzono samą reakcję przeciwciał na obecność różnych szczepów H3N2, następnie zaś zmierzono poziom przeciwciał, które neutralizowały i tych, które nie neutralizowały wirusa. Przeciwciała, które neutralizują, pomagają zapobiec zachorowaniu, natomiast przeciwciała, które nie neutralizują, pomagają już po infekcji.
      Okazało się, że w krwi osób w wieku 3-10 lat występowało najwięcej przeciwciał neutralizujących współcześnie występujące szczepy H3N2. U większości osób w średnim wieku, urodzonych pod koniec lat 60. i w latach 70. występowały przeciwciała, które nie neutralizowały wirusa, zatem nie zapobiegały zachorowaniu. Większość osób urodzonych w tamtym czasie zyskało odporność na wirusy H3N2, które bardzo różniły się od współczesnych szczepów. U takich osób, gdy dojdzie do kontaktu z wirusem, powstają przeciwciała działające na te regiony współczesnych szczepów, które zostały odziedziczone po starszych szczepach. A takie przeciwciała zwykle nie zapobiegają zachorowaniu, stwierdzają naukowcy.
      Uczeni nie wykluczają, że to właśnie obecność u osób w średnim wieku dużej liczby nieneutralizujących przeciwciał jest przyczyną, dla której H3N2 wciąż krąży w ludzkiej populacji. Ponadto ich badania mogą też wyjaśniać, dlaczego w sezonie 2017/2018 doszło do niezwykle dużej liczby zachorowań wśród osób w średnim wieku w porównaniu z zachorowaniami wśród dzieci i młodych dorosłych.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Zakażenie HIV od dawna nie oznacza już wyroku śmierci. Leki antyretrowirusowe pozwalają na zmniejszenie liczby wirusów w organizmie do takiego poziomu, że stają się one niewykrywalne, objawy choroby niemal nie występują, a osoba zarażona nie stanowi zagrożenia dla innych. Jednak leki trzeba przyjmować codziennie. Gdy przerwie się terapię, wirus pojawia się na nowo. Z badań opublikowanych w PLOS Pathogens dowiadujemy się, że jednym z miejsc, w których ukrywa się HIV mogą być astrocyty, komórki stanowiące 60% komórek mózgu.
      Autorzy najnowszych badań szacują, że wirus może ukrywać się w od 1 do 3 procent astrocytów. Nawet 1% może być znaczącym rezerwuarem wirusa. Jeśli chcemy znaleźć lekarstwo na HIV, nie możemy pomijać roli mózgu jako reserwuaru, mówi autorka badań, profesor Lena Al-Harthi z Rush University Mediacal Center w Chicago.
      Al-Harthi i jej zespół wyciągnęli takie wnioski na podstawie badań mysiego modelu z ludzkimi komórkami oraz badań post mortem ludzkiej tkanki mózgowej. Naukowcy wiedzą, że HIV przedostaje się do mózgu, ale rola wirusa w tym organie jest słabo poznana.
      Autorzy najnowszych badań najpierw pozyskali astrocyty z ludzkiego płodu. Następnie zarazili komórki wirusem HIV, a później wstrzyknęli je do mózgów dorosłych i nowo narodzonych myszy. Okazało się, że zainfekowane komórki przekazały wirusa komórkom układu odpornościowego CD4, które są tym typem komórek, które HIV atakuje najczęściej. Następnie zainfekowane CD4 wydostały się z mózgu i migrowały do innych tkanek. Gdy mózg jest zarażony, wirus może się z niego wydostać i zarazić inne organy, mówi Al-Harthi.
      Naukowcy postanowili się też upewnić, że wirus jest w stanie samodzielnie zainfekować astrocyty. W tym celu najpierw wstrzyknęli zdrowej myszy ludzkie astrocyty, a później zarazili zwierzę HIV. Okazało się, że rzeczywiście wirus przedostał się do części astrocytów i był w stanie infekować inne tkanki. Co istotne, nawet u myszy, której podawano leki antyretrowirusowe HIV przedostawał się z astrocytów do innych części ciała, chociaż, w porównaniu z myszami nieleczonymi, poziom infekcji był niewielki. Gdy zaprzestano podawania leków, dochodziło do gwałtownego rozwoju infekcji, której źródłem był mózg myszy.
      Chcąc potwierdzić swoje spostrzeżenia, naukowcy przyjrzeli się tkance mózgowej czterech osób, które były zarażone HIV i były leczone, a u których w chwili śmierci wirus był niewykrywalny. Badania wykazały, że niewielki odsetek astrocytów zawierał materiał genetyczny wirusa HIV w jądrach komórkowych, co wskazuje, że komórki te były zainfekowane.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Pierwsza od 50 lat nowa doustna szczepionka przeciwko polio może w końcu przyczynić się do całkowitej eradykacji tej choroby. Do niedawna wydawało się, że szybciej poradzimy sobie z chorobą, która pozostawia po sobie miliony sparaliżowanych dzieci. Niestety, w ostatnich latach szczepionki wywołały lokalne zachorowania, a obecnie ogólnoświatowy program szczepień został zahamowany przez COVID-19.
      W latach 2000–2017 liczbę przypadków polio udało się zmniejszyć o około 99%. Jak ocenia WHO, dzięki szerokiemu programowi szczepień uratowano przed zachorowaniem i potencjalnym paraliżem ponad 13 milionów dzieci.
      W październiku 2019 roku informowaliśmy, że eradykowano dziki szczep poliowirusa typu 3. Na świecie pozostał tylko typ 1 i pojawiła się nadzieja, że polio stanie się drugą, po ospie prawdziwej, atakującą ludzi chorobą, która będzie całkowicie wyeliminowana, a której patogen nie występuje w środowisku. Obok ospy, którą uznano za eradykowaną w 1980 roku, dotychczas udało się wyeliminować też księgosusz dotykający przeżuwaczy. W 2011 roku do walki z polio dołączył Bill Gates, a obecnie Fundacja Billa i Melindy Gatesów jest jednym z największych sponsorów Global Polio Eradication Initiative (GPEI).
      Jeszcze w 1988 roku, gdy startował GPEI, każdego roku notowano około 350 000 zachorowań na polio. W roku 2018 odnotowano 33 zachorowania. Z kolei w roku 2019 było ich w sumie 539. Z tego 175 przypadków odnotowano w Pakistanie i Afganistanie, dwóch z trzech krajów, w których polio występuje endemicznie. Trzecim jest Nigeria. Te 175 przypadków było wywołanych przez naturalnie krążącego wirusa. Z kolei aż 364 przypadki z 19 krajów zostały spowodowane przez szczepionkę.
      Z kolei w bieżącym roku zanotowano dotychczas 48 przypadków polio spowodowanych przez wirusa krążącego w środowisku (wszystkie przypadki zachorowań miały miejsce w Afganistanie i Pakistanie) oraz 93 przypadki spowodowane przez szczepionkę (w tym 40 przypadków w Pakistanie, po 10 w Czadzie i Etiopii, 1 w Nigerii, a pozostałe w Beninie, Burkina Faso, Kamerunie, Republice Środkowoafrykańskiej, na Wybrzeżu Kości Słoniowej, w Demokratycznej Republice Kongo, Ghanie, Nigrze, na Filipinach i w Togo).
      Podawany w doustnej szczepionce atenuowany wirus [więcej w artykule Kiedy szczepionka na koronawirusa. Wszystko, co powinniśmy wiedzieć o szczepionkach – red.] polio potrafi czasem wyewoluować i wywołać zarażenia w społecznościach o niewielkim odsetku wyszczepień.
      Teraz naukowcy finansowani przez Fundację Billa i Melindy Gatesów poinformowali o sukcesie I fazy testów klinicznych nowej szczepionki, która nie może wywołać zachorowań. To jednocześnie pierwsza od 50 lat nowa szczepionka doustna przeciwko polio.
      Jej autorami są profesor Raul Andino z Uniwersytetu Kalifornijskiego w San Francisco (UCSF) oraz Andrew Macaam z brytyjskiego Narodowego Instytutu Standardów Biologicznych i Kontroli (NIBSC).
      W 2017 roku Andino i jego zespół odkryli, że we wszystkich przypadkach, gdy to szczepionka wywołała zachorowania na polio, za każdym razem zawarty w niej wirus wykorzystał takie same trzy kroki ewolucyjne, dzięki któremu z nieszkodliwego patogenu stał się się zaraźliwy.
      Teraz na łamach Cell Host and Microbe ukazał się artykuł autorstwa Andino, Macadama oraz specjalistów z Gates Foundation, Center for Vaccine Innovation and Access w Seattle oraz Uniwersytetu w Antwerpii, którzy przygotowali szczepionkę przeciwko polio, z której wirus nie może wywołać zachorowania. Bazując na kilkudziesięciu latach studiów nad poliowirusem naukowcy ustabilizowali odpowiedzialny za mutacje region genomu wirusa, dzięki czemu nie może się on zmieniać. Co więcej, naukowcy upewnili się też, że poliowirus nie ulegnie groźnym zmianom nawet wówczas, jeśli wymieni materiał genetyczny ze spokrewnionymi z nim wirusami.
      O ile mi wiadomo, to pierwszy przypadek gdy doszło do celowego racjonalnie zaprojektowanego żywego atenuowanego wirusa. To przeciwieństwo standardowego podejścia, gdzie wirusy są hodowane na komórkach tkankowych, a ich wirulencja jest uzyskiwana metodą prób i błędów za pomocą słabo rozumianego mechanizmu, mówi Andino.
      W I fazie testów klinicznych wzięło udział 15 dorosłych ochotników. Była ona prowadzona na Uniwersytecie w Antwerpii. Test wykazał, że nowa szczepionka jest bardziej stabilna i efektywna niż licząca sobie 50 lat szczepionka Sabina, z której ona pochodzi. Nowa szczepionka wywoływała odpowiednią reakcję immunologiczną i mimo że zaszczepieni wydalali wirusa w stolcu, wirus ten nie był w stanie zainfekować myszy i wywołać u nich paraliżu. To kolosalny postęp w porównaniu ze standardową szczepionką Sabina. Bowiem w jej przypadku nawet 90% ulega paraliżowi, gdy zostaje wystawionych na wirusa wydalanego przez ludzi.
      Obecnie trwa II faza testów klinicznych nowej szczepionki. WHO już rozpoczęło planowanie fazy 3. Jeśli wszystko pójdzie zgodnie z planem i uda się szybko rozpocząć powszechne szczepienia za pomocą nowego środka, to jeszcze w bieżącej dekadzie polio powinno zostać całkowicie eradykowane.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Przedstawiciele Światowej Organizacji Zdrowia oświadczyli, że wciąż nie jest jasne, czy osoby wyleczony z COVID-19 są chronione przed kolejną infekcją. Nie ma obecnie jednoznacznej odpowiedzi na pytanie czy i na jak długo nabywamy odporności na koronawirusa SARS-CoV-2. Okazuje się bowiem, że nie u wszystkich wyleczonych stwierdzono obecność przeciwciał.
      Zwykle, gdy wyleczymy się z choroby wirusowej, jesteśmy odporni na ponowne zachorowanie. Układ odpornościowy zapamiętuje bowiem wirus i gdy zetknie się z nim po raz drugi, szybko przystępuje do ataku, niszcząc go, zanim pojawią się objawy choroby. Wiemy też, że w przypadku wielu chorób, jak na przykład świnki, odporność nie jest dana na całe życie, dlatego np. konieczne są szczepionki przypominające.
      Jako, że SARS-CoV-2 to nowy wirus, wielu rzeczy o nim nie wiemy. A jedną z najważniejszych z nich jest to, czy i na jak długo człowiek nabywa odporności. Zarówno u chorych, jak i u wyleczonych – chociaż jak się okazuje nie u wszystkich – występują przeciwciała, wskazujące na nabywanie odporności. Odporność taka, dla dłuższa lub krótsza, pojawia się w przypadku innych koronawirusów. Jednak odnośnie tego najnowszego nie mamy jeszcze takich danych. Jeśli chodzi o wyleczenie i możliwość późniejszej infekcji, to sądzę, że nie mamy jeszcze na to odpowiedzi. Nie wiemy tego, mówił na wczorajszej konferencji prasowej doktor Mike Ryan, dyrektor ds. sytuacji nadzwyczajnych WHO.
      Jak poinformowała doktor Maria Van Kerkhove, główny ekspert WHO ds. COVID-19, wstępne badania pacjentó z Szanghaju wykazały, że u niektórych poziom przeciwciał jest bardzo wysoki, a u niektórych nie ma ich w ogóle. Nie wiadomo też, czy pacjenci rozwiną odpowiedź immunologiczną w przypadku drugiej infekcji.
      Amerykańskie Centra Kontroli i Zapobiegania Chorobom (CDC) pracują nad testem na obecność przeciwciał, jednak – jak podkreśla WHO – test taki da nam odpowiedź, czy zetknęliśmy się już z wirusem. Nie zapewni nas jednak, że nie możemy się ponownie zarazić.
      Przedstawiciele WHO zauważyli też, że pandemia COVID-19 bardzo szybko się rozwija, a powoli ustępuje. Wirus jest znacznie bardziej śmiertelny od grypy, dlatego też przestrzegają przed zbyt wczesnym znoszeniem ograniczeń. Dobrze jest uświadomić sobie,że w 2009 roku na grypę H1N1 zachorowano ponad 60 milionów Amerykanów. W ciągu roku zmarło 12 500 obywateli USA. Tymczasem na COVID-19 zachorowało nieco poniżej 600 000 Amerykanów, a liczba zmarłych zbliża się do 24 000.
      Odpowiedź na pytanie, czy i na jak długo nabieramy odporności po zachorowaniu na COVID-19 jest niezwykle ważna. Przede wszystkim dlatego, że wyleczono już ponad 450 000 osób. Jeśli ludzie ci byliby odporni, mogliby wrócić do codziennych zajęć. Pytanie o sposób rozwijania odporności i czas jej trwania jest też niezwykle ważna z punktu widzenia prac nad szczepionką.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...