Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Słońce już kierowcy nie oślepi, a inteligetna osłona nie przesłoni widoku

Rekomendowane odpowiedzi

Osłony przeciwsłoneczne zadebiutowały w samochodach w 1924 roku w fordzie Model T. I od 100 lat praktycznie się nie zmieniły. Z jednej strony pomagają, zapobiegając oślepianiu kierowcy przez słońce, z drugiej zaś strony przeszkadzają, zasłaniając częściowo widok. Rozwiązaniem problemu może być osłona LCD zaprezentowana na targach CES.

Bosch Virtual Visor to dzieło inżyniera Ryana Todda. Codziennie rano jedzie on na wschód, a z pracy wraca na zachód, zatem podczas każdej podróży słońce świeci mu prosto w twarz. Gdy podczas takiej podróży zastanawiał się nad kupnem nowego telewizora, uświadomił sobie, że o ile OLED generuje światło, to LCD światło blokuje. Pomyślał, że przydałoby się mieć w samochodzie LCD, który blokowałby oślepiające światło słońca. Trzy lata później Bosch zaprezentował panel LCD, który osłania oczy kierowcy przed słońcem i nie ogranicza przy tym widoczności.

Nowatorska osłona przeciwsłoneczna to wyświetlacz LCD z wzorem w kształcie plastra miodu połączony z kamerą zwróconą w stronę kierowcy oraz elektronicznym modułem sterującym (ECU), na którym działa algorytm sztucznej inteligencji. Kamera filmuje twarz kierowcy, a obraz jest przesyłany do ECU. Tam algorytm rozpoznaje pozycję oczu, nosa, ust i czoła oraz bada rozkład cieni na twarzy. W ten sposób określa pozycję słońca w stosunku do głowy kierowcy. Jest więc w stanie określić, skąd słońce wpada do samochodu, niezależnie od kierunku jazdy. Na tej podstawie ECU odpowiednio ustawia osłonę przeciwsłoneczną i przyciemnia tylko taki jej fragment, by światło nie raziło kierowcy.

Zastosowany algorytm świetnie sobie radzi z zadaniem i chroni kierowcę przed oślepieniem, a jednocześnie pozostawia 90% pola widzenia wolnym od zakłóceń. Całość pracuje w czasie rzeczywistym. Kierowca nie musi więc bez przerwy przesuwać osłony czy ruszać głową, by uniknąć oślepiania przez słońce.

Dodatkową zaletą całego systemu jest fakt, że można go podłączyć do elementów już stosowanych w samochodach luksusowych. Na przykład w Cadillacu CT6 obserwująca kierowcę kamera wspomaga pracę półautonomicznego systemu sterowania. W takim przypadku wystarczy do oprogramowania dopisać odpowiedni kod, a w samochodzie zainstalować sam panel LCD.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

To już można pójść krok dalej i całą przednią szybę tak zrobić, boczne i lusterka. Przyciemniało by nie tylko słońce ale też drogowe światła nie uważnych kierowców w nocy.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

"Wynalazek" sprzed 8-10 lat, aktualnie w szuflandii. Bardzo ciężko na czymś takim zarobić niezależnej osobie a koszty patentu są zaporowe.
Ciekawszym rozwiązaniem jest zrobienie okularów zacieniających źrenice, chroni zarówno przed słońcem jak i przed światłami aut z naprzeciwka.

Bardziej zaawansowany układ z kamerą może robić pełny tone-mapping otoczenia. Lepiej zadziała przy wysokim poziomie jasności, przy niskim rozmiar źrenic robi się duży i halo wokół obiektów robią się większe. Pierwszym oczywistym klientem takiej technologii są siły powietrzne.

Edytowane przez peceed

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

W masce do spawania za 40zł mam taką jedną komórkę LCD. I tutaj ma to sens. W samochodzie raczej najlepszym mechanizmem jest po prostu źrenica wspomagana ewentualnie powieką. Nie wyobrażam sobie żeby np. prawa strona szyby stała się nieprzeźroczysta bo słoneczko z boku przyświecało. Albo cała szyba stała się czarna bo ktoś długimi poświęcił

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
25 minut temu, tempik napisał:

Nie wyobrażam sobie żeby np. prawa strona szyby stała się nieprzeźroczysta bo słoneczko z boku przyświecało.

Z pozycji kierowcy tylko słoneczko zostanie przyciemnione i ewentualnie "korona" wokół niego. Słońce to pół minuty kątowej. Na szybie pojawią się dwa niewielkie ciemne placki.
Rozwiązanie z fasetkami jest niewiarygodnie prymitywne, najcenniejszy jest patent na funkcjonalność jeśli dostał.

 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Koło mojego miasta jest droga tak usytuowana że wiedzie lekko pod górę w kierunku zachodnim. Już kilka razy miałam tak że słońce dosłownie "leżało" na drodze przede mną. Zaciemnienie musiałoby być bardzo precyzyjne i zmieniać się według ruchów głowy.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Paliwa, których używamy, nie są zbyt bezpieczne. Parują i mogą się zapalić, a taki pożar trudno jest ugasić, mówi Yujie Wang, doktorant chemii na Uniwersytecie Kalifornijskim w Riverside. Wang i jego koledzy opracowali paliwo, które nie reaguje na płomień i nie może przypadkowo się zapalić. Pali się jedynie wtedy, gdy przepływa przez nie prąd elektryczny. Palność naszego paliwa jest znacznie łatwiej kontrolować, a pożar można ugasić odcinając zasilanie, dodaje Wang.
      Gdy obserwujemy pożar współcześnie używanych paliw płynnych, to w rzeczywistości widzimy nie palący się płyn, a jego opary. To molekuły paliwa w stanie gazowym zapalają się pod wpływem kontaktu z ogniem i przy dostępie tlenu. Gdy wrzucisz zapałkę do pojemnika z benzyną, to zapalą się jej opary. Jeśli możesz kontrolować opary, możesz kontrolować pożar, wyjaśnia doktorant inżynierii chemicznej Prithwish Biswas, główny autor artykułu opisującego wynalazek.
      Podstawę nowego paliwa stanowi ciesz jonowa w formie upłynnionej soli. Jest podobna do soli stołowej, chlorku sodu. Nasza sól ma jednak niższą temperaturę topnienia, niższe ciśnienie oparów oraz jest organiczna, wyjaśnia Wang. Naukowcy zmodyfikowali swoją ciecz jonową zastępując chlor nadchloranem. Następnie za pomocą zapalniczki spróbowali podpalić swoje paliwo.
      Temperatura płomienia zapalniczki jest wystarczająco wysoka. Jeśli więc paliwo miałoby płonąć, to by się zapaliło, stwierdzają wynalazcy. Gdy ich paliwo nie zapłonęło od ognia, naukowcy przyłożyli doń napięcie elektryczne. Wtedy doszło do zapłonu paliwa. Gdy odłączyliśmy napięcie, ogień gasł. Wielokrotnie powtarzaliśmy ten proces: przykładaliśmy napięcie, pojawiał się dym, podpalaliśmy dym, odłączaliśmy napięcie, ogień znikał. Jesteśmy niezwykle podekscytowani opracowaniem paliwa, które możemy podpalać i gasić bardzo szybko, mówi Wang. Co więcej, im większe napięcie, tym większy pożar, co wiąże się z większym dostarczaniem energii z paliwa. Zjawisko to można więc wykorzystać do regulowania pracy silnika spalinowego. W ten sposób można kontrolować spalanie. Gdy coś pójdzie nie tak, wystarczy odciąć zasilanie, mówi profesor Michael Zachariah.
      Teoretycznie ciecz jonowa nadaje się do każdego rodzaju pojazdu. Jednak zanim nowe paliwo zostanie skomercjalizowane, konieczne będzie przeprowadzenie jego testów w różnych rodzajach silników. Potrzebna jest też ocena jego wydajności.
      Bardzo interesującą cechą nowej cieczy jonowej jest fakt, że można ją wymieszać z już istniejącymi paliwami, dzięki czemu byłyby one niepalne. Tutaj jednak również trzeba przeprowadzić badania, które wykażą, jaki powinien być stosunek cieczy jonowej do tradycyjnego paliwa, by całość była niepalna.
      Twórcy nowego paliwa mówią, że z pewnością, przynajmniej na początku, będzie ono droższe niż obecnie stosowane paliwa. Cieczy jonowych nie produkuje się bowiem w masowych ilościach. Można się jednak spodziewać, że masowa produkcja obniżyłaby koszty produkcji. Główną zaletą ich paliwa jest zatem znacznie zwiększone bezpieczeństwo. Warto bowiem mieć na uwadze, że w ubiegłym roku w Polsce straż pożarna odnotowała 8333 pożary samochodów spalinowych.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Grecja to bardzo popularne miejsce wśród polskich turystów. Najchętniej wybieranymi miastami przez naszych rodaków są Santorini, Korfu oraz Kreta, acz warto pamiętać, że tam dolecieć można jedynie samolotem. Wiele ciekawych miejsc w Grecji znajduje się jednak także w części kontynentalnej, do której możesz dojechać samochodem. O czym warto pamiętać przed wybraniem się w podróż? Sprawdźmy!
      Dlaczego warto pojechać samochodem do Grecji?
      Podróż samochodem do Grecji będzie dobrym rozwiązaniem dla osób, które boją się latać lub chcą po drodze zwiedzić także inne państwa i ich atrakcje. Choć jazda autem do tego kraju sama w sobie trwa długo, to po drodze można zajechać do Słowacji, Serbii, Macedonii lub Węgier. Warto w tych miejscach zatrzymać się na nocleg i zwiedzić najatrakcyjniejsze miasta.
      Jak dojechać autem do Grecji?
      Ze stolicy Polski, Warszawy, do Grecji dojedziesz dwoma trasami. Wybierając krótszą trasę, na podróż poświęcisz około 21 godzin. Jadąc przez Czechy, potrwa ona do 2-3 godziny dłużej. Wszystko zależy jednak także od innych elementów – aktualnych remontów, korków, prędkości jazdy czy ilości postojów, na jakie się zdecydujesz. Trasy mogą wyglądać następująco:
      Czechy – Słowacja – Węgry – Serbia – Macedonia – Grecja, Słowacja – Węgry – Serbia – Macedonia – Grecja. Jeśli ciekawią Cię przykładowe trasy, którymi konkretnie warto się poruszać, przeczytaj w tym poradniku, na jak długą podróż będziesz musiał się przygotować, wyruszając z konkretnego miasta.
      Przejeżdżając przez wyżej wymienione kraje, trzeba będzie też kupić winietę. Możesz tego dokonać online, co ułatwia organizację podróży. Są w tym wypadku jednak wyjątki, czyli Serbia oraz Macedonia. Tam opłatę za przejazd autostradą opłacisz wyłącznie na bramkach.
      Ile kosztuje podróż samochodem do Grecji?
      Koszt podróży zależy głównie od samochodu (pojemności silnika), stylu jazdy, osiąganych prędkości oraz kosztów paliwa. Zakładając, że wybierasz się autem z silnikiem 1,6 litra i wyruszasz z Warszawy do Aten (2300 kilometrów), zapłacisz do 2000 zł w jedną stronę. Pamiętaj, że koszty paliwa mogą być inne każdego dnia, dlatego też dobrze zapoznać się z aktualnymi cenami na stacjach i obliczyć potrzebny budżet.
      Podróż do Grecji samochodem – co warto zobaczyć?
      Jadąc do Grecji autem, warto dobrze wszystko zaplanować, aby skorzystać z różnych atrakcji po drodze i zobaczyć ciekawe miejsca. Dzięki temu przed dotarciem do celu zapewnisz sobie interesujący urlop.
      Jakie przystanki warto zrobić?
      Bratysława (Słowacja) – urocze stare miasto z wąskimi uliczkami i kawiarniami jest zachwycające, a do tego warto też zajrzeć do katedry św. Marcina. Koszyce (Słowacja) – katedra św. Elżbiety, starówka i panorama Koszyc to miejsca, których nie warto pomijać. Budapeszt (Węgry) – w dzielnicy Peszt zajrzyj na Plac Bohaterów i obejrzyj Parlament, a w Budzie zachwyci Cię Góra Gellerta, Zamek Królewski oraz Punkt Widokowy. Skopje (Macedonia) – atrakcjami, które warto zobaczyć, są na pewno Kamienny Most, Twierdza oraz stary bazar. Ubezpieczenie do Grecji
      Wyjeżdżając do Grecji, pamiętaj o ważnym ubezpieczeniu OC. Warto też zaopatrzyć się w AC, które gwarantuje szerszy zakres ochrony. Dobrym pomysłem będzie też ubezpieczenie turystyczne lub karta EKUZ, dzięki której otrzymasz bezpłatną pomoc na takich samych zasadach, co mieszkańcom Grecji. Do tego warto zdecydować się na ubezpieczenie sprzętu sportowego - jakie wybrać? To zależy od zakresu ochrony, której potrzebujesz. Każde towarzystwo ubezpieczeniowe określa, jaki sprzęt może być nim objęty i kiedy wypłacone zostanie odszkodowanie.
      Przepisy drogowe w Grecji – co warto wiedzieć?
      Otrzymanie mandatu na wakacjach nie należy do najprzyjemniejszych i może skutecznie zepsuć wakacje. Dlatego też, zanim wyruszysz samochodem do Grecji, zapoznaj się z podstawowymi przepisami drogowymi, które tam obowiązują. Warto wiedzieć, że na terenie całego państwa obowiązuje ograniczenie prędkości:
      do 50 km/h w terenie zabudowanym, do 90 km/h na terenie niezabudowanym, do 110 km/h na drogach ekspresowych, do 130 km/h na autostradach. Każda osoba w samochodzie musi zapiąć pasy bezpieczeństwa. Do tego w Grecji nie ma obowiązku jazdy w ciągu dnia z włączonymi światłami mijania. Występuje on w nocy i w momencie, gdy warunki na drodze nie są wystarczająco dobre. Ponadto w Twoim bagażniku powinna znaleźć się apteczka, trójkąt ostrzegawczy oraz gaśnica. Polskie prawo jazdy jest oczywiście honorowane.
      Co warto zobaczyć w Grecji?
      Gdy już dojedziesz na miejsce, Twoim obowiązkowym punktem docelowym powinny być Ateny. Stolica Grecji oferuje mnóstwo ciekawych atrakcji, w tym Akropol Ateński, na którym znajdziesz dobrze zachowane świątynie Partenon, Erechtejon, Propyleje, a także Teatr Dionizosa i Odeon Heroda Atticusa. Warto zajrzeć także do Starożytnej Agory i na Plac Syntagma.
      Innym miastem wartym odwiedzenia są Saloniki, czyli druga największa metropolia Grecji. Promenada nadmorska, która się tam znajduje, ma niemal 5 kilometrów. Do tego dobrym pomysłem jest także przejażdżka do Meteorów, czyli 13 klasztorów znajdujących się nad Równiną Tesalską.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Indie nie ustają w podboju kosmosu. Przed 9 laty kraj zadziwił świat wprowadzając przy pierwszej próbie swojego satelitę na orbitę Marsa, a przed dwoma tygodniami umieścił na Księżycu lądownik i łazik. Teraz dowiadujemy się, że Indyjska Organizacja Badań Kosmicznych (ISRO) z powodzeniem wystrzeliła pierwszą indyjską misję w kierunku Słońca.
      Misja Aditya-L1, nazwana tak od boga Słońca, zostanie umieszczona – jak wskazuje drugi człon jej nazwy – w punkcie libracyjnym L1. Znajduje się on pomiędzy Słońcem a Ziemią, w odległości około 1,5 miliona kilometrów od naszej planety. Dotrze tam na początku przyszłego roku. Dotychczas pojazd z powodzeniem wykonał dwa manewry orbitalne.
      Na pokładzie misji znalazło się siedem instrumentów naukowych. Jej głównymi celami jest zbadanie korony słonecznej, wiatru słonecznego, zrozumienie procesów inicjalizacji koronalnych wyrzutów masy, rozbłysków i ich wpływów na pogodę kosmiczną w pobliżu Ziemi, zbadanie dynamiki atmosfery Słońca oraz rozkładu wiatru słonecznego i anizotropii temperatury.
      Za badania korony naszej gwiazdy i dynamiki koronalnych wyrzutów masy odpowiadał będzie instrument VELC (Visible Emission Line Coronograph), z kolei SUI (Solar Ultra-violet Imaging Telescope) zobrazuje foto- i chromosferę gwiazd w bliskim ultrafiolecie i zbada zmiany irradiancji. APEX i PAPA (Aditya Solar wind Particle EXperiment i Plasma Analyser Package for Aditya) będą opowiadały za badania wiatru słonecznego, jonów i rozkładu energii, a dzięki instrumentom SoLEX i HEL1OS (Solar Low Energy X-ray Spectrometer, High Energy L1 Orbiting X-ray Spectrometer) pogłębimy naszą wiedzę o rozbłyskach w zakresie promieniowania rentgenowskiego. Ostatni z instrumentów, magnetometr, zbada pola magnetyczne w L1.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Astronomowie odkryli brązowego karła, którego powierzchnia jest znacznie bardziej gorąca niż powierzchnia Słońca. Tymczasem brązowe karły nie są gwiazdami. To obiekty gwiazdopodobne, których masa jest zbyt mała, by mógł w nich zachodzić proces przemiany wodoru w hel. Mają masę co najmniej 13 razy większą od Jowisza. Od olbrzymich planet różnie je to, że są zdolne do fuzji deuteru. Po jakimś czasie proces ten zatrzymuje się. Najgorętsze i najmłodsze brązowe karły osiągają temperaturę ok. 2500 stopni Celsjusza. Później stygną. Temperatura najstarszych i najmniejszych z nich to około -26 stopni.
      W najnowszym numerze Nature Astronomy naukowcy opisali brązowego karła, którego temperatura powierzchni sięga 7700 stopni Celsjusza. To znacznie więcej, niż 5500 stopni, jaką ma temperatura Słońca. Nic więc dziwnego, że gdy na początku XXI wieku po raz pierwszy zauważono ten obiekt, omyłkowo go sklasyfikowano. Dopiero powtórna analiza danych przeprowadzona przez Na'amę Hallakoun z izraelskiego Instytutu Naukowego Weizmanna i jej zespół pokazały, z czym mamy do czynienia.
      Nasz brązowy karzeł ma tan olbrzymią temperaturę, gdyż obiega po bardzo ciasnej orbicie białego karła WD 0032-317. To właśnie jego promieniowanie ogrzewa brązowego karła do tak olbrzymich temperatur. Brązowy karzeł znajduje się w obrocie sychronicznym wokół WD 0032-317, co oznacza, że jest cały czas zwrócony w jej kierunku tylko jedną stroną. To zaś powoduje olbrzymie różnice temperatur. Strona nocna brązowego karła jest aż o 6000 stopni Celsjusza chłodniejsza niż strona dzienna.
      Gdy układ ten po raz pierwszy zaobserwowano przed dwoma dziesięcioleciami, sądzono, że jest to układ podwójny dwóch białych karłów. Jednak gdy Hallakoun i jej zespół przyjrzeli się danym, zauważyli coś, co kazało im ponownie przyjrzeć się temu układowi. Mogli obserwować go rejestrując linie emisji pochodzące z dziennej strony brązowego karła. Dane były tak zaskakujące, że początkowo naukowcy sądzili, że nieprawidłowo je opracowali. Później zauważyli, że tak naprawdę obserwują układ składający się z białego karła, wokół którego krąży brązowy karzeł. Uczeni, którzy przed 20 laty zaobserwowali ten system, nie zauważyli tego, gdyż obserwowali nocną stronę brązowego karła.
      Autorzy odkrycia mówią, że przyda się ono do badania ultragorących Jowiszów, czyli olbrzymich planet krążących blisko swojej gwiazdy. Znalezienie takich planet nastręcza na tyle dużo trudności, że obecnie znamy pojedyncze planety tego typu. Dlatego też astronomowie nie od dzisiaj myślą o wykorzystaniu brązowych karłów krążących blisko gwiazd w roli modelu do badań ultragorących Jowiszów. Brązowe karły łatwiej jest obserwować.
      Układ WD 0032-317 rzuci też światło na ewolucję gwiazd. Na podstawie obecnie obowiązujących modeli naukowcy stwierdzili, że brązowy karzeł ma kilka miliardów lat. Z kolei niezwykle wysoka temperatura białego karła WD 0032-317 wskazuje, że istnieje on zaledwie od około miliona lat. Co więcej, ma on masę zaledwie 0,4 mas Słońca. Zgodnie z obowiązującymi teoriami, biały karzeł o tak małej masie nie może istnieć. Ewolucja gwiazdy do takiego stanu musiałaby bowiem trwać dłużej, niż istnieje wszechświat.
      Dlatego naukowcy sądzą, że brązowy karzeł przyspieszył ewolucję towarzyszącej mu gwiazdy. Hallakoun i jej zespół uważają, że przez pewien czas oba obiekty znajdowały się we wspólnej otoczce gazowej. Pojawiła się ona, gdy gwiazda macierzysta zmieniła się w czerwonego olbrzyma i pochłonęła brązowego karła. Z czasem wspólna otoczka została usunięta, w czym swój udział miał brązowy karzeł, co doprowadziło do szybszego pojawienia się białego karła.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Dzisiaj, 17 lat od wystrzelenia, pojazd STEREO-A po raz pierwszy przeleciał pomiędzy Ziemią a Słońcem, dokonując tym samym pierwszego przelotu w pobliżu naszej planety. Bliźniacza misja STEREO (Solar TErrestrial RElations Obserwatory) została wstrzelona 25 października 2006 roku.  Pierwszy leciał STEREO-A (Ahead), za nim zaś STEREO-B (Behind). Pojazdy ruszyły po podobnej do ziemskich orbitach wokół Słońca.
      Już w pierwszych latach misja osiągnęła swój główny cel – dostarczyła stereoskopowych obrazów Słońca. Natomiast pięć lat po wystrzeleniu, 6 lutego 2011 roku, separacja pomiędzy orbitami obu pojazdów wyniosła 180 stopni. Wówczas ludzkość po raz pierwszy zobaczyła Słońce jako kulę. Wcześniej byliśmy „uwiązani” na linii Ziemia-Słońce. W danym momencie widzieliśmy tylko jedną stronę Słońca. STEREO zerwała tę uwięź i zobaczyliśmy Słońce jako obiekt trójwymiarowy, mówi Lika Guhathakurta, pracująca przy misji STEREO.
      Misja osiągnęła wiele innych celów naukowych, aż w 2014 roku po planowanym resecie NASA utraciła kontakt z pojazdem STEREO-B. Jednak STEREO-A wciąż jest pod kontrolą i dzisiaj po raz pierwszy dogonił Ziemię w jej podróży wokół Słońca, dostarczając w międzyczasie danych niedostępnych z Ziemi. W ciągu ostatnich i kolejnych kilku tygodni kontrola naziemna będzie mogła postawić przed pojazdem nowe zadania. Pojazd dostarczy nowych obrazów stereoskopowych. Tym razy we współpracy z satelitami SOHO (Solar and Heliospheric Observatory) i SDO (Solar Dynamic Observatory). Co więcej, odległość pomiędzy STEREO-A a Ziemią będzie się zmieniała, co pozwoli na zoptymalizowanie obrazu.
      Naukowcy wykorzystają bliski przelot pojazdu do dokonania wielu różnych pomiarów, zidentyfikowania aktywnych magnetycznie regionów pod plamami słonecznymi. Mają nadzieję, że w ten sposób uda im się uzyskać trójwymiarowy obraz tych regionów. Przetestują też nową teorię dotyczącą pętli koronalnych, mówiącą, że nie są one tym, czym się dotychczas wydawały. Ostatnio pojawiła się hipoteza, że pętle koronalne to iluzje optyczne. Jeśli przyjrzymy im się z różnych punktów, powinno być to bardziej widoczne, mówi inny z naukowców, Terry Kucera.
      Naukowcy mają też nadzieję, że podczas przelotu STEREO-A w pobliżu Ziemi pojazd doświadczy koronalnego wyrzutu masy i dostarczy nam niedostępnych dotychczas informacji na jego temat. Tak wielkie nadzieje pokładane w przelocie w pobliżu Ziemi związane są z faktem, że ostatnio STEREO-A był równie blisko naszej planety wkrótce po wystrzeleniu. Jednak wówczaw mieliśmy do czynienia z minimum słonecznym, najniższą aktywnością naszej gwiazdy w jej 11-letnim cyklu. Obecnie zbliżamy się do maksimum słonecznego, które powinno mieć miejsce w 2025 roku. W tej fazie cyklu STEREO-A doświadczy zupełnie innego Słońca. To może nam dostarczyć olbrzymiej ilości nowych danych, wyjaśnia Guhathakurta.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...