Sign in to follow this
Followers
0

Energetyzujące spojrzenie ćmy
By
KopalniaWiedzy.pl, in Technologia
-
Similar Content
-
By KopalniaWiedzy.pl
Sharp opracował najbardziej wydajne ogniwo słoneczne w historii. Jest ono w stanie zamienić na prąd elektryczny aż 36,9% energii padających nań promieni słonecznych. Wydajność urządzenia została niezależnie potwierdzona przez japoński Narodowy Instytut Zaawansowanych Nauk Przemysłowych i Technologii (AIST).
Nowe ogniwo składa się z trzech warstw ułożonych na krzemowym podłożu. Warstwę pierwszą, patrząc od podłoża, stanowi arsenek indowo-galowy (InGaAs). Warstwa środkowa została stworzona z indu i galu (InGa), a warstwa najwyższa to fosforek indowo-galowy (InGaP).
Sharp od lat jest liderem w rozwoju technologii ogniw słonecznych. W 2003 roku trójwarstwowe ogniwo tej firmy, bez wspomagania koncentracją promieni, osiągnęło wydajność 31,5%. Już rok później z ogniw Sharpa korzystał satelita Reimei.
W roku 2007 dzięki skoncentrowaniu promieni słonecznych na ogniwie osiągnięto wydajność 40%.
Dwa lata później trójwarstwowe ogniwo Sharpa pozyskało 35,8% energii z nieskoncentrowanych promieni. Obecnie poprawiono ten wynik o 1,1 punktu procentowego.
-
By KopalniaWiedzy.pl
Firma Cree poinformowała o poprawieniu własnego rekordu wydajności oświetlenia LED. Prototypowe urządzenie osiągnęło 231 lumenów na wat przy temperaturze koloru rzędu 4500 kelwinów.
Jeszcze niedawno za teoretyczną granicę wydajności LED uznawano 200 lumenów na wat. Przekroczyliśmy tę granicę w 2010 roku - powiedział współzałożyciel Cree, John Edmond.
Cree nie dostarcza na rynek aż tak wydajnych produktów. Klienci mogą na razie kupić kilkukrotnie mniej wydajne oświetlenie. Jednak z czasem z pewnością w sklepach pojawią się LED-y o wydajności przekraczającej 200 lumenów/wat.
-
By KopalniaWiedzy.pl
Szybko postępujący rozwój elektroniki powoduje, że do naszych domów trafiają urządzenia o coraz większej mocy obliczeniowej. Obecne notebooki mają moc porównywalną z superkomputerami sprzed 15 lat. Jak twierdzi Jack Dongarra z University of Tennessee, w ciągu najbliższych 10 lat telefony komórkowe osiągną moc obliczeniową sięgającą teraflopsa.
Do roku 2020 wszystkie systemy na liście TOP500 będą oferowały wydajność liczoną w petaflopsach. Telefony komórkowe będą miały teraflopsową wydajność, a laptopy osiągną 10 teraflopsów. Naukowcy będą wiedzieli jak budować exaflopsowe komputery i skupią się na badaniach nad maszynami zettaflopsowymi [1021 operacji zmiennoprzecinkowych na sekundę - red.] - stwierdza Dongarra.
W przeciwieństwie do wielu specjalistów, którzy wieszczą koniec prawa Moore'a, Dongarra uważa, że nadal będziemy w stanie dwukrotnie zwiększać liczbę tranzystorów w procesorze co mniej więcej 18 miesięcy.
Spoglądając wstecz nie można wykluczyć, że Dongarra ma rację. Wystarczy przecież wspomnieć, że przed dziesięcioma laty pojawienie się gigahercowego procesora było wielkim krokiem na drodze rozwoju pecetów. Obecnie tak wydajne układy są często wykorzystywane w komórkach.
-
By KopalniaWiedzy.pl
Ryby boją się swojego odbicia w lustrze. Gdy samce afrykańskiej pielęgnicy patrzyły na siebie w zwierciadle, aktywność mózgu w rejonach związanych ze strachem wzrastała bardziej niż podczas spotkania z innym osobnikiem znajdującym się za szybą.
Biolodzy zauważyli jednak, że w obu przypadkach zwierzęta reagowały tak samo – chcąc odpędzić rywala, wykonywały zastraszające gesty, np. nadymały wargi, by pokazać, jak duże mogą być.
Wyglądają, jakby niczego nie rozumiały. Myślę, że ten rodzaj bodźca tak dalece wykracza poza ich zwykłe doświadczenie, że skutkuje czymś w rodzaju emocjonalnej reakcji – przekonuje dr Julie Desjardins z Uniwersytetu Stanforda.
Desjardins i Russell Fernald urządzali 20-minutowe spotkania terytorialnych pielęgnic. Akwarium przedzielano na pół przezroczystym przepierzeniem. Samce nigdy się nie spotykały fizycznie, a czasem ściankę zastępowano lustrem. Ryby zawsze próbowały zwalczyć rywala i zachowywały się tak samo, bez względu na to, czy próbowały wszcząć bijatykę z drugą rybą, czy ze sobą.
Następnie Amerykanie zbadali próbki krwi pod kątem stężenia testosteronu i innych hormonów związanych z agresją. Przeprowadzono także badanie mózgu ze szczególnym uwzględnieniem ciała migdałowatego, czyli obszaru związanego ze strachem i jego warunkowaniem. U wszystkich zwierząt stwierdzono wysokie stężenie testosteronu, ale tylko u osobników oglądających się w lustrze wystąpiła wzmożona aktywność amygdala.
Obserwowane zjawisko sugeruje, że niższe kręgowce umieją dokonywać subtelniejszych różnicowań niż dotąd sądzono, a ich ciała migdałowate, choć znacznie prostsze od ludzkich, mają z nimi nieco wspólnych cech.
Desjardins wyjaśnia, na czym polega niecodzienność sytuacji z lustrem. W zwykłych okolicznościach pielęgnice gryzą się nawzajem, ale odpowiedź na każde działanie przychodzi z pewnym opóźnieniem, którego nie było w przypadku zwierciadła. Idealne zestrojenie w czasie powodowało, że ryba nie widziała żadnej zwrotnej reakcji rywala.
Biolodzy z Uniwersytetu Stanforda nie spodziewali się ujrzeć innej aktywności mózgu u "lustrzanych" pielęgnic, ponieważ fizyczne zachowania i poziom hormonów były porównywalne.
-
By KopalniaWiedzy.pl
Irytujące działanie odblasków światła poznał każdy, kto musiał pracować na komputerze w słońcu, albo źle ustawionym oświetleniu. Szczęśliwi posiadacze matowych matryc w laptopach są grupą nieliczną, a przecież im także zdarza się męczyć z odbitym od ekranu światłem. Refleksy, czyli odbicia świetlne to jednak kłopot nie tylko dla posiadaczy komputerów. Mogą być one zmorą wszędzie tam, gdzie stosuje się optykę: okulary, lunety, aparaty fotograficzne i wszędzie tam, gdzie są jakiekolwiek szyby. Powłoki antyrefleksyjne są dość drogie - dlatego producenci laptopów niechętnie je stosują - i pogarszają optyczne właściwości. Być może jednak pojawi się w tej dziedzinie przełom - dzięki naukowcom ze znanego niemieckiego Instytutu Fraunhofera.
Opracowany przez nich nanofiltr będzie mógł być stosowany na wyświetlaczach, czy szkle okularów. Miejsc i chętnych do wdrożenia nie zabraknie, bo warstwa grubości rzędu nanometrów pozwala na niemal całkowitą eliminację odbić i odbłysków. Co więcej, produkcja z wykorzystaniem nowego wynalazku będzie bardzo tania w porównaniu z dotychczas stosowanymi filtrami. Dziś trzeba takie filtry nakładać w oddzielnym kroku technologicznym, nowe są w prosty sposób aplikowane na polimerowe powierzchnie podczas ich odlewania. Nowe filtry w wersji hybrydowej będą ponadto odporne na zadrapania i łatwe do czyszczenia. Brzmi jak bajka?
Kto wymyślił taką cudowną powierzchnię? Sama natura, która obdarzyła nią... ćmy. A dokładniej ćmie oczy. Ćmy już wcześniej były znane jako mistrzynie kamuflażu: ich futerko pochłania ultradźwięki, dzięki czemu mogą ukrywać się przed polującymi na nie nietoperzami. Ćmy, zupełnie jak nowoczesne bombowce, są „niewykrywalne". Ale nie tylko nietoperze polują na ćmy. Inne drapieżniki potrafią lokalizować owady w ciemnościach dzięki rozbłyskom światła na ich fasetkowych oczach. Ćmy w drodze ewolucji poradziły sobie i z tym. Powierzchnię ich oka pokrywają mikroskopijne, chaotyczne zniekształcenia mniejsze od długości fali światła. Ich struktura tworzy łagodne przejście między załamującymi światło ośrodkami: powietrzem a rogówką oka. Oczy innych owadów odbijają światło, podczas gdy oczy ciem nie, pozostają doskonale matowe.
I właśnie oko ćmy było wzorem i prototypem dla inżynierów Instytutu Mechaniki i Materiałów Fraunhofera we Freiburgu (Fraunhofer Institute for Mechanics of Materials IWM in Freiburg). Opracowali oni twardą powierzchnię, odtwarzającą optyczne właściwości ćmiego oka. Tworzy się ją w matrycach odlewniczych, dzięki czemu odlewane z polimeru elementy kopiują miniaturowy wzór - którego grubość wynosi około jednej tysięcznej milimetra - bez dodatkowych zabiegów technologicznych, co redukuje czas i koszty praktycznie do zera.
Niemieckim inżynierom udało się również zlikwidować inną wadę dotychczasowych powłok antyrefleksyjnych: delikatność i wrażliwość na zarysowania. Nowe powierzchnie są odporne i nieścieralne. Uzyskuje się to również w prosty sposób, poprzez oblanie wtrysku bardzo cienką warstwą organicznej substancji, wytwarzanej z poliuretanu. Poliuretanowa nanowarstwa odtwarza strukturę warstwy antyrefleksyjnej, zachowując jej własności, a dodając odporność na zarysowania. Trwa już współpraca z przedstawicielami przemysłu, mająca wdrożenie wynalazku do produkcji.
-
-
Recently Browsing 0 members
No registered users viewing this page.