Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Powstaje największe na świecie prywatne centrum testowe rakiet kosmicznych

Rekomendowane odpowiedzi

W Australii Południowej powstaje największe na świecie prywatne centrum testowe rakiet kosmicznych. Tworzy je firma Southern Launch, która jest już właścicielem podobnego miejsca – Orbital Launch Complex. Oba miejsca mają zachęcić firmy prywatne oraz uczelnie do testowania swoich technologii rakietowych właśnie w Australii.

W Orbital Launch Complex rakiety wystrzeliwane są w stronę oceanu. Nowy centrum będzie zupełnie inne. Koonibba Test Range będzie miało powierzchnię 145 km2 i znajdzie się o 600 kilometrów na północny-zachód od Adelajdy, w pobliżu miasteczka Ceduna. Wystrzeliwane tam rakiety będą opadały na ląd, zatem ich właściciele będą mogli je zebrać i zbadać.

Współpracujemy z różnymi firmami, uniwersytetami, organizacjami i agencjami kosmicznymi za całego świata. Mogą one przywieźć swoje rakiety tutaj, my pomożemy im w uzyskaniu pozwolenia na start, a oni mogą przeprowadzić stąd bezpieczne starty i podejmować to, co wylądowało, mówi dyrektor wykonawczy firmy Southern Lauch, Lloyd Damp.

Rząd Australii utworzył w 2018 roku Australijską Agencję Kosmiczną z siedzibą w Adelajdzie. Postawiono przed nią zadanie, by do roku 2030 trzykrotnie zwiększyła wartość australijskiego przemysłu kosmicznego. Ma ona sięgnąć 12 miliardów dolarów australijskich (8 miliardów USD).

Southern Launch zaoferuje kompleksowe usługi. Na Koonibba Test Range Site można będzie testować i rozwijać technologie rakietowe, a z Orbital Launch Complex gotowe już rakiety będą mogły polecieć w przestrzeń kosmiczną.

Koonibba Test Range Site powstaje na ziemi należącej do liczącego 200 członków ludu Koonibba. Stojąca na jego czele Kevina Ware powiedziała: będziemy pierwszym rdzennym ludem Australii, na którego terenie znajduje się komercyjny kosmodrom. To historyczne osiągnięcie.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Dzięki Teleskopowi Hubble'a, niezwykle rzadkie, tajemnicze eksplozje kosmiczne, stały się jeszcze bardziej tajemnicze. Historia LFBOT (Luminous Fast Blue Optical Transient) rozpoczęła się od słynnej Krowy (AT2018cow), gdy zaobserwowano eksplozję podobną do supernowych, którą wyróżniała wyjątkowa jasność początkowa, bardzo szybkie tempo zwiększania jasności oraz błyskawiczne tempo przygasania. Najpierw naukowcy ogłosili, że rozwiązali zagadkę, rok później przyznali, że nie wiadomo, z czym mamy do czynienia, a w 2020 roku ogłoszono odkrycie nowej klasy eksplozji kosmicznych. Minęły kolejne trzy lata i tajemnica tylko się pogłębiła.
      Obecnie znamy 7 LFBOT. Najnowszym tego typu zjawiskiem jest Zięba, oficjalnie zwana AT2023fhn. Wydarzenie ma wszelkie cechy LFBOT: gwałtownie zwiększająca się jasność, intensywna emisja w paśmie światła niebieskiego, szybkie osiągnięcie maksymalnej jasności i przygaśnięcie w ciągu kilku dni. Jednak – w przeciwieństwie to wszystkich innych zjawisk tego typu – Zięba nie narodziła się w galaktyce. Analizy przeprowadzone za pomocą Teleskopu Hubble'a wykazały, że do eksplozji doszło pomiędzy dwiema galaktykami. Zięba była oddalona o 50 000 lat świetlnych od większej galaktyki spiralnej i 15 000 lat świetlnych od mniejszej galaktyki.
      Analizy Hubble'a były kluczowe, gdyż dzięki nim zobaczyliśmy, że to zjawisko różniło się od innych. Bez Hubble'a byśmy się tego nie dowiedzieli, mówi Ashley Chrime, główny autor artykułu, w którym opisano wyniki badań.
      Wedle jednej z hipotez LFBOT to rzadki rodzaj wybuchów zwanych kolapsem rdzenia gwiazdy (core-collapse supernowae). Ten typ eksplozji związany jest nierozerwalnie z olbrzymimi młodymi gwiazdami. Zatem do takich zdarzeń nie może dochodzić z dala od miejsc powstawania gwiazd, gdyż młoda gwiazda nie miałaby czasu na migrację. Wszystkie wcześniejsze LFBOT miały miejsce w ramionach galaktyk spiralnych. Natomiast Zięba pojawiła się z dala od jakiejkolwiek galaktyki. Im więcej dowiadujemy się o LFBOT, tym bardziej nas zaskakują. Wykazaliśmy, że LFBOT może mieć miejsce z dala od centrum najbliższej galaktyki, a lokalizacja Zięby jest inna, niż można by się spodziewać po jakiejkolwiek supernowej, dodaje Chrimes.
      Zjawisko AT2023fhn, Zięba, zostało zauważone przez Zwicky Transient Facility. To naziemny aparat o niezwykle szerokim kącie widzenia, który co dwa dni skanuje niebo nad całą półkulą północną. Automatyczny alert o zaobserwowaniu nowego zjawiska trafił do astronomów 10 kwietnia 2023 roku. Zespoły, które czekały na pojawienie się nowego LFBOT, natychmiast skierowały nań swoje instrumenty badawcze. Badania spektroskopowe przeprowadzone przez teleskop Gemini South wykazały, że temperatura Zięby wynosi niemal 20 000 stopni Celsjusza. Teleskop pozwolił też na oszacowanie odległości Zięby od Ziemi, dzięki czemu można było określić jasność zjawiska. Te informacje w połączeniu z danym z Chandra X-ray Observatory i Very Large Array pozwoliły na potwierdzenie, że mamy do czynienia z nowym LFBOT.
      Teraz dzięki Hubble'owi można wykluczyć, że LFBOT to kolaps rdzenia gwiazdy. Być może zjawiska te są spowodowane rozerwaniem gwiazdy przez czarną dziurę o masie od 100 do 1000 mas Słońca. Tutaj przydałoby się zbadanie miejsca wystąpienia Zięby za pomocą Teleskopu Webba. Mógłby on pomóc w stwierdzeni, czy Zięba nie pojawiła się w gromadzie kulistej lub halo jednej z dwóch sąsiadujących galaktyk. Gromady kuliste to najbardziej prawdopodobne miejsca występowania średnio masywnych czarnych dziur.
      Tak czy inaczej, wyjaśnienie zagadki LFBOT będzie wymagało odkrycia i zbadania większej liczby zjawisk tego typu.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      NASA i DARPA ujawniły szczegóły dotyczące budowy silnika rakietowego o napędzie atomowym. Jądrowy silnik termiczny (NTP) DRACO (Demonstration Rocket for Agile Cislunar Operations) powstaje we współpracy z Lockheed Martinem i BWX Technologies. Najpierw zostanie zbudowany prototyp, następnie silnik do pojazdów zdolnych dolecieć do Księżyca, w końcu zaś silnik dla misji międzyplanetarnych. Jeszcze przed kilkoma miesiącami informowaliśmy, że DRACO może powstać w 2027 roku. Teraz dowiadujemy się, że test prototypu w przestrzeni kosmicznej zaplanowano na koniec 2026 roku.
      To niezwykłe przyspieszenie prac – trzeba pamiętać, że zwykle projekty związane z przestrzenią kosmiczną i nowymi technologiami mają spore opóźnienie – było możliwe dzięki częściowemu połączeniu prac, które zwykle odbywają się osobno, w drugiej i trzeciej fazie rozwoju projektu. To zaś jest możliwe dzięki wykorzystaniu sprzętu i doświadczeń z dotychczasowych misji w głębszych partiach kosmosu. Budujemy stabilną i bezawaryjną platformę, w której wszystko, co nie jest silnikiem, to technologie o niskim ryzyku, mówi Tabitha Dodson, odpowiedzialna z ramienia DARPA za projekt DRACO.
      Wiemy, że niedawno zakończyła się pierwsza faza projektu, w ramach którego powstał projekt nowego reaktora. Nie ujawniono, ile faza ta kosztowała. Kolejne dwie fazy mają budżet 499 milionów USD. Jeśli prototyp zda egzamin, powstanie silnik dla misji na Księżyc. Przyniesie on spore korzyści. Napędzane nim rakiety będą przemieszczały się szybciej, zatem szybciej dostarczą ludzi, sprzęt i materiały na potrzeby budowy bazy na Księżycu. Jednak największe korzyści z nowego silnika ujawnią się podczas misji na Marsa.
      Okno startowe misji na Czerwoną Planetę otwiera się co 26 miesięcy i jest dość wąskie. Dzięki lepszym silnikom i szybszym rakietom okno to można poszerzyć, co ułatwi planowanie i przeprowadzanie marsjańskich misji. Nie mówiąc już o tym, że skrócenie samej podróży będzie korzystne dla zdrowia astronautów poddanych promieniowaniu kosmicznemu. Prędkość obecnie stosowanych silników jest ograniczona przez dostępność paliwa i utleniacza. Silnik z reaktorem atomowym działałby dzięki ogrzewaniu ciekłego wodoru z temperatury -253 stopni Celsjusza do ponad 2400 stopni Celsjusza i wyrzucaniu przez dysze szybko przemieszczającego się rozgrzanego gazu. To on nadawałby ciąg rakiecie.
      Pomysłodawcą stworzenia napędu atomowego jest polski fizyk Stanisław Ulam, który przedstawił go w 1946 roku. Dziesięć lat później rozpoczęto Project Orion. Efektem prac było powstanie prototypowego silnika, który został przetestowany na ziemi. Obecnie takie testy nie wchodzą w grę. Zgodnie z dzisiejszymi przepisami naukowcy musieliby przechwycić gazy wylotowe, usunąć z nich materiał radioaktywny i bezpiecznie go składować. Dlatego też prototyp zostanie przetestowany na orbicie 700 kilometrów nad Ziemią. Ponadto w latach 50. wykorzystano wzbogacony uran-235, taki jak w broni atomowej. Obecnie użyty zostanie znacznie mniej uran-235. Można z nim bezpieczne pracować i przebywać w jego pobliżu, mówi Anthony Calomino z NASA. Drugi z podobnych projektów, NERVA (Nuclear Engine for Rocket Vehicle Application), doprowadził do stworzenia dobrze działającego silnika. Ze względu na duże koszty projekt zarzucono.
      Reaktor będzie posiadał liczne zabezpieczenia, które nie dopuszczą do jego pełnego działania podczas pobytu na ziemi. Dopiero po opuszczeniu naszej planety będzie on w stanie w pełni działać.
      W czasie testów zostaną sprawdzone liczne parametry silnika, w tym jego ciąg oraz impuls właściwy. Impuls właściwy obecnie stosowanych silników chemicznych wynosi około 400 sekund. W przypadku silnika atomowego będzie to pomiędzy 700 a 900 sekund. NASA chce też sprawdzić, na jak długo wystarczy 2000 kilogramów ciekłego wodoru. Inżynierowie mają nadzieję, że taka ilość paliwa wystarczy na napędzanie rakiety przez wiele miesięcy. Obecnie górny człon rakiety nośnej ma paliwa na około 12 godzin. Silniki NTP powinny być od 2 do 5 razy bardziej efektywne, niż obecne silniki chemiczne. A to oznacza, że napędzane nimi rakiety mogą lecieć szybciej, dalej i zaoszczędzić paliwo.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Australijski Dingo Fence to najdłuższy płot na świecie. Budowany od drugiej połowy XIX wieku i ukończony w latach 50. XX wieku ma długość ponad 5600 kilometrów, a jego zadaniem jest ochrona owiec wypasanych na południowo-wschodnich obszarach Australii przed psami dingo. Olbrzymi płot rozciąga się od południowo-wschodniego Queensland po południowo-zachodnią Australię Południową i stał się niezamierzonym eksperymentem pokazującym, jak wykluczenie drapieżnika wpływa na ekosystem.
      Płot prowadzi do pofragmentowania habitatów, wpływa na wzorce rozprzestrzeniania się gatunków, zakłóca procesy zachodzące w ekosystemie. Wiele badań prowadzonych w ostatniej dekadzie pokazało, że płot wpływa na równowagę w przyrodzie, prowadzi do zmniejszania się liczebności jednych gatunków, a wzrostu liczebności innych, w wyniku czego zachodzą m.in. zmiany w szacie roślinnej, obiegu substancji odżywczych w glebie czy samej morfologii krajobrazu. Na chronionym obszarze rozrosła się populacja kangurów i królików, które konkurują z owcami o trawę. Ponadto utrzymanie płotu kosztuje rocznie ponad 10 milionów dolarów australijskich. Te i inne zjawiska powodują, że coraz częściej pojawiają się głosy o konieczności likwidacji bariery.
      Autorzy najnowszych badań zauważają, że płot istnieje od ponad 100 lat, mógł więc znacząco wpłynąć na rozwój biologiczny gatunków, na które polują psy dingo.Jest to temat bardzo słabo poznany, dlatego też australijscy naukowcy postanowili zbadać tę kwestię. Przyjrzeli się więc populacjom ulubionej ofiary dingo – kangura rudego – po obu stronach płotu.
      Naukowcy spodziewali się, że kangury na północ od płotu, narażone na ataki dingo, będą różniły się od tych z południa. Szczególnie samice i młode, które częściej niż dorosłe samce padają ofiarą dingo.
      Rzeczywiście uczeni zauważyli różnice. Okazało się, że młode kangury na południu, do wieku około 4 lat, rozwijają się wolniej niż młode z północy. Te z południa były mniejsze i lżejsze, niż ich pobratymcy narażeni na ataki dingo. Naukowcy zaczęli się więc zastanawiać, czy brak dingo nie spowodował spowolnienia rozwoju kangurów. Postanowili jednak sprawdzić, czy przyczyną takiego stanu rzeczy nie jest mniejszy dostęp do żywności na południu. Okazało się jednak, że jest wręcz przeciwnie. To kangury z północy, na które dingo mogą polować, miały prawdopodobnie mniejszy dostęp do pożywienia. To zaś silna sugestia wskazująca, że różne tempo rozwoju przedstawicieli tego samego gatunku było spowodowane obecnością lub nieobecnością drapieżnika, a nie dostępem do żywności.
      Co więcej, badań dokonano na obszarze, na którym płot aż do roku 1975 był w fatalnym stanie i najprawdopodobniej do tego czasu dingo i kangury mogły swobodnie go przekraczać. A skoro tak, to zaobserwowane zmiany zaszły w ciągu zaledwie 17 pokoleń kangurów. To oznaczałoby błyskawiczną ewolucyjną adaptację do nowych warunków. Być może zmiany zaszły tak szybko przez mniejsze wydzielanie hormonów stresu u kangurów, żyjących na obszarach chronionych przed dingo. Wiemy, że hormony stresu wpływają na stan zdrowia ssaków, tutaj zaś mogły wpłynąć na tempo wzrostu zwierząt.
      Uczeni zaobserwowali jeszcze jedno zjawisko. Po przekroczeniu 4. roku życia, kangury z południa, które były dotychczas mniejsze i lżejsze, doganiały pod względem rozmiarów i masy kangury z północy. To zaś oznacza, że musiały w tym czasie zainwestować więcej zasobów w zmianę rozmiarów ciała. Zjawisko takie może mieć dwie, przeciwne konsekwencje. Ten szybszy rozwój rozmiarów i masy może powodować, że mniej energii jest przeznaczanych na rozwój innych ważnych funkcji, jak układ odpornościowy lub rozrodczy. Być może kangury te gromadzą mniejsze zapasy tłuszczu. Z drugiej jednak strony, wolniejszy przyrost masy ciała przez pierwsze 4 lata życia może powodować, że kangury na południu są zdrowsze lub bardziej płodne.
      Autorzy badań mówią, że zaobserwowane zjawiska i postawione hipotezy wymagają dalszych badań. Nie dotyczy to zresztą kangurów, bo warto przyjrzeć się, jak płot wpłynął na ewolucję innych zwierząt. Jeśli zaś zostanie usunięty, warto będzie sprawdzić, jaki będzie to miało wpływ na południowe populacje zwierząt, które nagle zetkną się z dingo.
      Zbadanie tych kwestii pomoże nam w zrozumieniu, w jaki sposób zwierzęta radzą sobie z szybkimi zmianami w środowisku.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Ekosfera jest tradycyjnie definiowana, jako odległość pomiędzy gwiazdą, a planetą, która umożliwia istnienie wody w stanie ciekłym na planecie. To obszar wokół gwiazdy, w którym na znajdujących się tam planetach może istnieć życie. Jednak grupa naukowców z University of Georgia uważa, że znacznie lepsze byłoby określenie „ekosfery fotosyntezy”, czyli wzięcie pod uwagi nie tylko możliwości istnienia ciekłej wody, ale również światła, jakie do planety dociera z gwiazdy macierzystej.
      O życiu na innych planetach nie wiemy nic pewnego. Jednak poglądy na ten temat możemy przypisać do jednej z dwóch szkół. Pierwsza z nich mówi, że na innych planetach ewolucja mogła znaleźć sposób, by poradzić sobie z pozornie nieprzekraczalnymi barierami dla życia, jakie znamy z Ziemi. Zgodnie zaś z drugą, życie w całym wszechświecie ograniczone jest uniwersalnymi prawami fizyki i może istnieć jedynie w formie podobnej do życia na Ziemi.
      Naukowcy z Georgii rozpoczęli swoje badania od przyznania racji drugiej ze szkół i wprowadzili pojęcie „ekosfery fotosyntezy”. Znajdujące się w tym obszarze planety nie tylko mogą utrzymać na powierzchni ciekłą wodę – zatem nie znajdują się ani zbyt blisko, ani zbyt daleko od gwiazdy – ale również otrzymują wystarczająca ilość promieniowania w zakresie od 400 do 700 nanometrów. Promieniowanie o takich długościach fali jest na Ziemi niezbędne, by zachodziła fotosynteza, umożliwiające istnienie roślin.
      Obecność fotosyntezy jest niezbędne do poszukiwania życia we wszechświecie. Jeśli mamy rozpoznać biosygnatury życia na innych planetach, to będą to sygnatury atmosfery bogatej w tlen, gdyż trudno jest wyjaśnić istnienie takiej atmosfery bez obecności organizmów żywych na planecie, mówi główna autorka badań, Cassandra Hall. Pojęcie „ekosfery fotosyntezy” jest zatem bardziej praktyczne i dające szanse na znalezienie życia, niż sama ekosfera.
      Nie możemy oczywiście wykluczyć, że organizmy żywe na innych planetach przeprowadzają fotosyntezę w innych zakresach długości fali światła, jednak istnieje pewien silny przekonujący argument, że zakres 400–700 nm jest uniwersalny. Otóż jest to ten zakres fal światła, dla którego woda jest wysoce przezroczysta. Poza tym zakresem absorpcja światła przez wodę gwałtownie się zwiększa i oceany stają się dla takiego światła nieprzezroczyste. To silny argument za tym, że oceaniczne organizmy w całym wszechświecie potrzebują światła w tym właśnie zakresie, by móc prowadzić fotosyntezę.
      Uczeni zauważyli również, że życie oparte na fotosyntezie może z mniejszym prawdopodobieństwem powstać na planetach znacznie większych niż Ziemia. Planety takie mają bowiem zwykle bardziej gęstą atmosferę, która będzie blokowała znaczną część światła z potrzebnego zakresu. Dlatego też Hall i jej koledzy uważają, że życia raczej należy szukać na mniejszych, bardziej podobnych do Ziemi planetach, niż na super-Ziemiach, które są uważane za dobry cel takich poszukiwań.
      Badania takie, jak przeprowadzone przez naukowców z University of Georgia są niezwykle istotne, gdyż naukowcy mają ograniczony dostęp do odpowiednich narzędzi badawczych. Szczegółowe plany wykorzystania najlepszych teleskopów rozpisane są na wiele miesięcy czy lat naprzód, a poszczególnym grupom naukowym przydziela się ograniczoną ilość czasu. Dlatego też warto, by – jeśli ich badania polegają na poszukiwaniu życia – skupiali się na badaniach najbardziej obiecujących obiektów. Tym bardziej, że w najbliższych latach ludzkość zyska nowe narzędzia. Od 2017 roku w Chile budowany jest europejski Extremely Large Telescope (ELT), który będzie znacznie bardziej efektywnie niż Teleskop Webba poszukiwał tlenu w atmosferach egzoplanet. Z kolei NASA rozważa budowę teleskopu Habitable Exoplanet Observatory, który byłby wyspecjalizowany w poszukiwaniu biosygnatur na egzoplanetach wielkości Ziemi. Teleskop ten w 2035 roku miałby trafić do punktu L2, gdzie obecnie znajduje się Teleskop Webba.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      O kosmicznym górnictwie rozmawia z nami dr inż. Adam Jan Zwierzyński. Pracownik Wydziału Wiertnictwa, Nafty i Gazu AGH. Zajmuje się technologiami kosmicznymi od 2012 roku. Prywatnie CEO i współzałożyciel Solar System Resources Corporation sp. z o.o. – start-upu zajmującego się górnictwem kosmicznym. Zarejestrowany w Polsce i przy Parlamencie Europejskim lobbysta w zakresie górnictwa kosmicznego oraz technologii kosmicznych. Działa aktywnie na rzecz wzmocnienia współpracy Polska-USA w obszarze technologii kosmicznych. Miłośnik muzyki elektronicznej (trance, psytrance, techno), sauny i ceremonii saunowych. Od 2015 roku wegetarianin, miłośnik zwierząt.
      Po co komu górnictwo kosmiczne? Na Ziemi mamy wszystko, czego potrzebujemy. Nawet metale ziem rzadkich są nie tyle rzadkie, co ich wydobycie jest często nieopłacalne. Jak więc opłacalne ma być wydobycie poza Ziemią?
      Jest nas, ludzi, na Ziemi coraz więcej. Nasze potrzeby surowcowe i energetyczne rosną. Kosmos zaoferuje nam metale, surowce energetyczne, których potrzebujemy do rozwoju nowoczesnej cywilizacji, ale już bez dylematów natury ekologicznej.
      Czytelnicy zasługują na więcej: wyższe zarobki, godne emerytury, lepsze usługi publiczne i ciekawe życie. Górnictwo kosmiczne umożliwi Polsce skok ekonomiczny, technologiczny i cywilizacyjny. Norwegia, Zjednoczone Emiraty Arabskie, Kuwejt, Arabia Saudyjska to niegdyś biedne i zacofane kraje – zmieniły je surowce. Czas na Polskę.
      Górnictwo kosmiczne wymusi postęp nauki i związanej z nią technologii. W kosmosie można bezpośrednio pozyskiwać materiały trudno dostępne lub niemożliwe do uzyskania na Ziemi. Efekty przeszłych programów kosmicznych miały rewolucyjny wpływ na globalną ekonomię i życie społeczeństw. Dlaczego nie powtórzyć tego, ale na większą skalę i Polska nie miałaby na tym zarobić.
      Jakie obiekty miałyby być celem prac górniczych? Księżyc? Asteroidy? Inne planety?
      Wszystkie. Po co się ograniczać. Na Księżycu najprawdopodobniej zacznie się górnictwo kosmiczne. Byliśmy tam, znamy środowisko, jest blisko, możemy sterować z Ziemi wieloma urządzeniami na jego powierzchni. Wyobraź sobie, że jesteś górnikiem kosmicznym, ale nie musisz wstawać ze swojego fotela. Aby jednak mogło to mieć miejsce w skali, która nas interesuje, niezbędny jest postęp technologiczny, który zabezpieczy na docelowych obiektach odpowiednie zaplecze technologiczne. Dzisiejszy postęp w wynoszeniu ładunków na orbitę okołoziemską, m.in. przez firmę SpaceX, pozwala prognozować, że jest to kwestia najbliższej przyszłości.  
      Eksploatacja asteroid to nieco bardziej odległa przyszłość, ale również możliwa. Jest to znacznie większe wyzwanie technologiczne, potrzeba wysokiej autonomii urządzeń, mikrograwitacja eliminuje wiele ziemskich rozwiązań, a czas dotarcia jest obecnie nieakceptowalny dla biznesu. Są jednak start-upy pracujące nad szybszymi napędami (np. stosującymi fuzję termojądrową), a to prawdopodobnie umożliwi przemysłową eksploatację tych obiektów.
      Podobnie jest w przypadku Marsa. Jeśli jednak na Marsie pracowaliby ludzie, to znacząco zmienia to reguły gry. Na Marsie mogłyby być przetwarzane surowce w produkty high-tech i eksportowane na Ziemię. Jedno jest pewne - era górnictwa kosmicznego nastąpi szybciej, niż to się wydaje osobom sceptyczne nastawionym do technologii kosmicznych.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...