Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Hydrożelowa powłoka zapobiega oblodzeniu aż na 3 sposoby

Recommended Posts

Dzięki amerykańsko-chińskiej współpracy powstała hydrożelowa powłoka, która zapobiega tworzeniu się lodu aż na trzy sposoby. Naukowcy podkreślają, że inspirowali się naturalnymi mechanizmami, które nie dopuszczają do zamarzania krwi kilku gatunków ryb z Antarktyki.

Autorzy artykułu z pisma Matter sugerują, że nowa powłoka będzie tanim i wszechstronnym sposobem na zapobieganie oblodzeniu skrzydeł samolotów czy rur. To pierwszy materiał, który zapobiega tworzeniu się lodu, wpływając na 3 różne procesy.

Choć dysponujemy rozmaitymi rozwiązaniami antyoblodzeniowymi, są one tak pomyślane, by wpływać tylko na niektóre aspekty tego złożonego procesu albo działać tylko na pewnych rodzajach powierzchni. Nowa powłoka jest rozwiązaniem kompleksowym, które zapobiega powstawaniu lodu na wielu różnych powierzchniach, od tworzyw, przez metale, po ceramikę, w dodatku w różnych warunkach - opowiada Ximin He z Uniwersytetu Kalifornijskiego w Los Angeles. Poza tym materiał łatwo uzyskać i jest ponoć bardzo wytrzymały.

Żel składa się głównie z wody, ale jego kluczowym składnikiem jest poli(dimetylosiloksan), polimer z grupy silikonów, używany m.in. do produkcji soczewek kontaktowych czy jako dodatek do kosmetyków (E900).

Gdy nasprejuje się go na powierzchnię, tworzy cienką przezroczystą powłokę, która zapobiega oblodzeniu na 3 różne sposoby: obniża temperaturę zamarzania wody na powierzchni (hamuje nukleację), opóźnia wzrost kryształów lodu (rozprzestrzenianie się lodu), a także utrudnia jego przywieranie, czyli adhezję.

Akademicy przetestowali powłokę na różnych materiałach, w tym na plastiku, szkle, ceramice i metalach. Ustanowili rekord, zapobiegając tworzeniu się lodu do momentu, aż temperatura osiągnęła -31°C. Poprzedni rekord padł w 2016 r. i wynosił -28°C; różne powłoki nanoszono m.in. na szkło. Pracami zespołu kierował wtedy Jianjun Wang z Chińskiej Akademii Nauk; jest on współautorem również ostatniego badania.

Oprócz tego hydrożel pozwolił na ustanowienie rekordu odnośnie do czasu odroczenia tworzenia lodu w temperaturze -25°C. By na spryskanych nim powierzchniach z tworzywa, szkła, ceramiki i metalu utworzył się w tej temperaturze lód, musiało minąć ponad 65 min, a więc o ponad 40 min więcej niż przy poprzednim rekordzie, który także padł podczas studium z 2016 r.

Nawet jeśli na powierzchni, na której zastosowano hybrydowy antyoblodzeniowy hydrożel, utworzy się lód, łatwo go usunąć za pomocą szczotki czy dmuchawy (nie trzeba skrobać czy podgrzewać).

W latach 60. naukowcy odkryli, że kilka gatunków ryb antarktycznych wytwarza białka zapobiegające zamarzaniu (ang. anti-freeze proteins, AFP) krwi. Później stwierdzono, że także owady wytwarzają AFP, dzięki czemu ich płyny ustrojowe nie zamarzają. U bakterii AFP stwierdzono po raz pierwszy w 1993 r. W następnych latach opisano wiele bakterii zdolnych do syntezy takich białek. Wiadomo, że dysponują nimi także rośliny.

Nowa powłoka jest bioinspirowana (działa po części dlatego, że naśladuje molekularną strukturę tych białek).

Większość eksperymentów przeprowadzono w laboratorium, ale jeden test odbył się na dworze, w Pekinie, w temperaturach ujemnych.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Przed testami na organizmach leki przeciwnowotworowe są testowane na hodowlach komórek. Naukowcy starają się odtworzyć warunki panujące w ciele. Nad symulującymi tkankę guza rusztowaniami 3D dla komórek czerniaka pracuje od jakiegoś czasu doktorantka z Politechniki Wrocławskiej - mgr inż. Agnieszka Jankowska. Do ich wytworzenia używa hydrożelowego biopolimeru – alginianu sodu, polimeru pochodzenia naturalnego, pozyskiwanego z morskich wodorostów.
      Naukowcy podkreślają, że gdy odpowiednio dobierze się parametry, hydrożel może mieć zbliżone właściwości do tkanki, w której zachodzi namnażanie komórek nowotworu. Oprócz tego cechuje go biokompatybilność, mała toksyczność i niska cena. Co ważne, można go też formować. Nic więc dziwnego, że często stosuje się go do tworzenia rusztowań czy nośników leków.
      Odtwarzanie warunków panujących w żywych organizmach
      Jest pewien paradoks w moich badaniach. Robię teraz wszystko, żeby stworzyć jak najlepsze warunki dla komórek nowotworowych. Tak by jak najszybciej się rozwijały i namnażały podobnie jak w ludzkim ciele. Wszystko po to, by potem potraktować je lekami, które – mamy nadzieję – je zniszczą i pozwolą na opracowanie spersonalizowanych terapii - mówi Jankowska.
      Promotorami pracy doktorskiej mgr inż. Jankowskiej są naukowcy z PWr i Uniwersytetu Medycznego im. Piastów Śląskich we Wrocławiu: dr hab. inż. Jerzy Detyna i dr hab. n. med. inż. Julita Kulbacka.
      Doktorantka wyjaśnia, że przez to, że są płaskie (mają postać 2D), hodowle nie odzwierciedlają zbyt dokładnie warunków panujących w żywych organizmach. Komórki nowotworowe inaczej w nich funkcjonują. Mają ze sobą kontakt tylko na krawędziach, zmieniają swój kształt i zupełnie inaczej współpracują z sąsiadującymi komórkami, nie będąc w stanie stworzyć mikrośrodowiska - podkreślono w komunikacie prasowym uczelni.
      Ma to poważne konsekwencje, ponieważ niejednokrotnie okazuje się, że leki, które w laboratorium sprawowały się bardzo dobrze, w organizmach żywych mają już niższą skuteczność. Nic więc dziwnego, że z myślą o skróceniu badań klinicznych naukowcy z różnych ośrodków dążą do badań na trójwymiarowych strukturach.
      Prace nad parametrami
      Rusztowanie 3D mgr inż. Jankowskiej składa się ze wspomnianego alginianu sodu, a także żelatyny i różnych innych dodatków. Doktorantka stara się ustalić odpowiednie parametry. To bardzo ważne, bo odchylenia procesu drukowania będą oddziaływać na zwartość konstrukcji czy przeżycie komórek.
      [...] Uzyskanie z hydrożeli struktur o konkretnym kształcie to duże wyzwanie. Podobnie jak zagwarantowanie warunków, w których komórki nowotworowe przeżyją proces biodruku. Trzeba więc ustalić właściwe stężenie, rodzaje dodatków, wilgotność, temperaturę otoczenia i tuszu w głowicy oraz stołu drukarki, ale także m.in. prędkość druku, ciśnienie, średnicę dyszy albo igły drukującej, ścieżkę drukowania i wiele innych parametrów - wylicza Jankowska, dodając, że znalezienie właściwych parametrów wymaga czasu, to praca na lata.
      W przyszłości doktorantka chce drukować za pomocą dwóch głowic drukarki naraz. Pierwszą warstwę utworzy hydrożel z lekiem przeciwnowotworowym (terapeutykiem), drugą - hydrożel z komórkami nowotworowymi.
      Co po badaniach podstawowych?
      [...] Gdy zakończę badania podstawowe, kolejną ścieżką badań mogłyby być próby wytworzenia struktur przepływowych. Rusztowanie, nad którym teraz pracuję, będzie strukturą stałą. Do otoczonych lekiem komórek, które znajdą się w środku, nic już więcej nie będziemy mogli dostarczyć. Natomiast struktura przepływowa mogłaby symulować cały system odprowadzania i doprowadzania krwi w organizmie, z odpowiednim ciśnieniem i w odpowiednim cyklu. Dzięki temu badania leków jeszcze lepiej oddawałyby ich działanie w naszym ciele - wskazuje badaczka.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Od czasu przełomowego odkrycia fal grawitacyjnych amerykańskie obserwatorium LIGO we współpracy ze swoim europejskim odpowiednikiem Virgo zarejestrowały dziesiątki zdarzeń, które wygenerowały zmarszczki czasoprzestrzeni. W przyszłości obserwatoria fal grawitacyjnych będą udoskonalane, co  pozwoli na wykrycie większej liczby fal pochodzących z głębszych regionów wszechświata, a co za tym idzie, pozwoli nam lepiej zrozumieć wszechświat i poznać jego tajemnice.
      Fale grawitacyjne powinny ściskać i rozciągać przestrzeń o 1 część na 1021, co oznacza, że cała Ziemia jest ściskana lub rozciągana o 1/100000 nanometra, czyli mniej więcej o grubość jądra atomu. W ramach eksperymentu LIGO zbudowano dwa interferometry ułożone w kształt litery L o długości 4 kilometrów każdy. Na końcach tuneli umieszczono lustra odbijające światło. W stronę luster wystrzeliwany jest promień lasera, który odbija się i powraca do detektorów. Jeśli promienie przebyły drogę o różnej długości, pomiędzy promieniami dojdzie do interferencji. Badając interferencję naukowcy są w stanie zmierzyć relatywną długość obu ramion z dokładnością do 1/10 000 szerokości protonu. To wystarczająca dokładność, by wykryć ewentualne zmiany długości obu ramion interferometrów spowodowane obecnością fal grawitacyjnych. W skład LIGO wchodzą dwa laboratoria - w stanach Luizjana i Waszyngton.
      Jednym z niezwykle ważnych elementów wpływających na czułość obu detektorów wchodzących w skład LIGO jest powłoka wspomnianych luster. Każde z nich waży 40 kilogramów, a w każdym z detektorów znajdują się 4 takie lustra. Im większy współczynnik odbicia luster, tym bardziej czuły interferometr. Jednak te same powłoki, dzięki którym lustra odbijają światło, mogą prowadzić do zwiększenia szumu tła, a to z kolei może zagłuszać sygnał z fal grawitacyjnych. A trzeba wiedzieć, że LIGO jest wrażliwy na ruch uliczny, ruchy tektoniczne czy uderzenia fal na odległym wybrzeżu. Dlatego też ciągle trwają prace nad odpowiednimi powłokami luster.
      Teraz specjaliści z California Institute of Technology (Caltech), pracujący przy LIGO, poinformowali o opracowaniu nowej powłoki wykonanej z tlenku tytanu i tlenku germanu. Za jej pomocą można będzie 2-krotnie zmniejszyć szum tła z luster, co pozwoli na 8-krotnie powiększenie przestrzeni wszechświata, z której LIGO może zbierać sygnały. Poszukujemy najdoskonalszego z obecnie dostępnych materiałów. Nasza zdolność do badania tego, co dzieje się w astronomicznej skali wszechświata jest ograniczona zjawiskami zachodzącymi w mikroskopijnej przestrzeni [powłoki luster - red.], mówi Gabriele Vajente, główna autorka badań nad nową powłoką. Mamy nadzieję, że dzięki nowej powłoce będziemy mogli zwiększyć częstotliwość wykrywania fal grawitacyjnych z obecnej raz na tydzień do raz na dzień lub częściej, dodaje dyrektor LIGO Laboratory na Caltech David Reitze.
      Nawet najmniejsze zakłócenia z otoczenia, takie jak wibracje atomów wywołane temperaturą, mogą wpłynąć na czas odbicia światła lasera od luster i zakłócić pracę interferometru.
      Najważniejsze w naszej pracy było stworzenie lepszych metod testowania różnych materiałów. Teraz możemy sprawdzić ich właściwości w około 8 godzin, a praca taka jest w pełni zautomatyzowana. Wcześniej zajmowało to około tygodnia. Dzięki temu mogliśmy szybciej testować różne połączenia różnych materiałów. Niektóre z nich zupełnie się nie sprawdzały, ale dało nam to wgląd w to, jakich właściwości powinniśmy poszukiwać, wyjaśnia Vajente. W końcu uczeni zauważyli, że odpowiednia kombinacja tlenku tytanu i tlenku germanu najlepiej redukuje wibracje wywołane zmianami temperatury.
      Lustra z nową powłoką mogą zostać zastosowane już w czasie 5. kampanii badawczej LIGO, która ruszy w połowie dekady w ramach programu Advanced LIGO Plus. Latem przyszłego roku rozpocznie się zaś 4. kampania badawcza, ostatnia z programu Advanced LIGO.
      O tym, jak ważne był opracowanie nowej powłoki mówi dyrektor Reitze. To zmieni badania prowadzone w ramach Advanced LIGO Plus. To wspaniały przykład, jak bardzo LIGO jest uzależnione od najnowocześniejszych osiągnięć optyki i badań materiałowych. To największy od 20 lat postęp w optyce wykorzystywanej w LIGO.
      Przydatność przeprowadzonych właśnie badań nie ogranicza się jedynie do wykorzystania ich wyników przy wykrywaniu fal grawitacyjnych. W przyszłości ich wyniki mogą zostać wykorzystane w telekomunikacji czy przemyśle półprzewodnikowym.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Kanadyjscy i grenlandzcy Inuici od ponad 200 lat przekazują historie o niedźwiedziach polarnych, które rzucają w morsy kamieniami lub bryłami lodu, by je zabić. Polarnicy i badacze od zawsze traktują takie opowieści z przymrużeniem oka. Okazuje się jednak, że w przekazach może tkwić niejedno ziarno prawdy.
      Ważące nawet ponad 1500 kilogramów morsy, chronione przez grubą skórę i potężne kły, stanowią dla niedźwiedzia polarnego łakomy kąsek i poważne wyzwanie.
      Emerytowany profesor Ian Stirling, jeden z najwybitniejszych znawców niedźwiedzi polarnych, postanowił przyjrzeć się informacjom o zwierzętach zabijających morsy za pomocą narzędzi. Tym, co skłoniło go do przeprowadzenia badań była powtarzalność przekazów, relacja inuickiego myśliwego z końca lat 90. ubiegłego wieku oraz zdjęcia niedźwiedzia polarnego GoGo z japońskiego ogrodu zoologicznego, na którym widać jak używa narzędzi, by sięgnąć mięsa. Wiem, że jeśli doświadczony inuicki łowca mówi, że coś widział, to warto go wysłuchać, bo najprawdopodobniej ma rację, stwierdził Stirling.
      Uczony wraz z kolegami przejrzał historyczne zapiski, w których podróżnicy i naukowcy opisywali narzędzia, jakie pokazywali im Inuici, a które miały służyć niedźwiedziom do zabicia morsa. Przeanalizowali też współczesne doniesienia i badania na ten temat oraz udokumentowane obserwacje GoGo i niedźwiedzi brunatnych używających w niewoli narzędzi. Po badaniach poinformowali na łamach pisma Arctic, że okazjonalnie takie przypadki mogą mieć miejsce. Sądzimy, że możliwe wykorzystywanie narzędzi przez niedźwiedzie polarne zdarza się rzadko i jest głównie ograniczone do polowania na morsy ze względu na ich rozmiary, trudność z zabiciem oraz posiadanie przez nie potencjalnie śmiercionośnej broni, którą mogą wykorzystać zarówno w obronie, jak i do ataku na drapieżcę.
      Andrew Derocher, dyrektor Polar Bear Science Lab na University of Alberta, który nie był zaangażowany w badania grupy Stirlinga, nie wyklucza, że niektóre niedźwiedzie mogły nauczyć się używania narzędzi. Jeśli np. matka zauważyła, że w ten sposób uda się zabić morsa, może tę wiedzę przekazać swoim dzieciom.
      Wiele gatunków zwierząt używa narzędzi, a ich wykorzystywanie jest uznawane za przejaw wyższej inteligencji. Tymczasem niewiele wiemy o inteligencji niedźwiedzi polarnych. Nie prowadzono bowiem takich badań. Nic nie wiemy na ten temat. Mamy jednak bardzo dużo danych obserwacyjnych, które sugerują, że niedźwiedzie polarne są bardzo inteligentne, mówi Stirling. Nie od dzisiaj wiemy, że niedźwiedzie mają duże zdolności poznawcze, a badania z 2012 roku sugerują, że niedźwiedzie czarne mogą w niektórych zadaniach na inteligencję dorównywać małpom.
      Gabriel Nirlungayuk, inuicki myśliwy, mówi, że od 7 roku życia widuje i obserwuje niedźwiedzie. Widział np. i takie, które udają, że śpią, by skłonić młode foki do podejścia bliżej. Najsprytniejszymi myśliwymi są zwykle samice, stwierdza.
      Po tym, jak Stirling opublikował swoje badania, na jego maila przyszedł film, przysłany przez Anthony'ego Pagano, naukowca z US Geological Survey, który na potrzeby swojego projektu naukowego wyposażył samicę niedźwiedzia w kamerę, która zarejestrowała, jak przepycha ona bryłę lodu, a następnie rzuca nią w foki.
      Obecnie w Arktyce żyje około 26 000 niedźwiedzi polarnych. Ich głównym pożywieniem są foki, na które niedźwiedzie polują wyczekując przy dziurach w lodzie, przez które foki wynurzają się, by zaczerpnąć powietrza. W związku z globalnym ociepleniem lód morski zanika. Naukowcy uważają, że wiele populacji niedźwiedzi wyginie do końca wieku.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Wiele terapii przeciwnowotworowych pozwala skutecznie usunąć guzy czy komórki nowotworowe. Problem jednak stanowią nowotworowe komórki macierzyste (CSC), które mogą się reprodukować i doprowadzić do nawrotu choroby. Stworzenie leków, które byłyby w stanie zidentyfikować i niszczyć CSC poprawiłoby efektywność leczenia przeciwnowotworowego.
      CSC są obecne w guzach w bardzo małej liczbie, przez co trudno je odnaleźć. Dlatego też naukowcy z Uniwersytetu Hokkaido oraz japońskiego Narodowego Instytutu Badań nad Rakiem stworzyli nowatorski hydrożel, który – jak się okazało – błyskawicznie zmienia komórki nowotworowe w nowotworowe komórki macierzyste.
      Żel zawiera dwie sieci polimerowe o różnych właściwościach mechanicznych. Pierwszą sieć tworzy sztywny żel polielektrolitowy, drugą zaś elastyczny naturalny żel polimerowy.
      Nowatorski żel służy jako sztuczne mikrośrodowisko do wzbudzania reakcji w CSC. Główny autor badań, Shinya Tanaka mówi, że żel ten może stać się potencjalną bronią do zwalczania nowotworów i może mieć unikatowego zastosowania w medycynie regeneracyjnej.
      Elastyczność żelu przypomina środowisko wymagane przez CSC, przez co może pobudzać macierzyste komórki nowotworowe do odnawiania się i tworzenia nowej generacji komórek macierzystych, co może ułatwić wykrywanie CSC, poprawić diagnostykę oraz umożliwić wytwarzanie zindywidualizowanych leków.
      Naukowcy przeprowadzili testy efektywności swojego żelu. W tym celu hodowali w laboratorium linie komórek sześciu ludzkich nowotworów: mięsaka, nowotworu macicy, płuc, okrężnicy, pęcherza i mózgu. Okazało się, że zaledwie po 24 godzinach od nałożenia komórek na żel wszystkie komórki uformowały sferyczne struktury. Struktury zawierały one dużą liczbę CSC. Tymczasem w guzach pierwotnych komórki tego typu rzadko występują. Eksperyment wskazuje, że dzięki interakcji zróżnicowanych komórek nowotworowych z żelem dochodzi do ich przeprogramowania w nowotworowe komórki macierzyste.
      Badacze dodatkowo zajęli się glejakiem, bardzo śmiertelnym złośliwym nowotworem mózgu. Po kontakcie z żelem komórki nowotworowe pobrane od czterech pacjentów bardzo szybko zmieniły się w CSC. Naukowcy zauważyli, że w komórkach tych doszło do bardzo intensywnej ekspresji proteiny Sox2, która odpowiada za przeprogramowywanie komórek nowotworowych. Odkrycie tego mechanizmu pozwala na lepsze zrozumienie działania żelu.
      Obecnie japońscy naukowcy badają, w jaki sposób właściwości ich żelu wpływają na komórki, szczególnie zaś na tym, w jaki sposób jego właściwości chemiczne wpływają na proces przeprogramowywania komórek.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Na całym świecie żyją dziesiątki milionów osób, które w różnym stopniu utraciły sprawność fizyczną po urazowym uszkodzeniu mózgu. Nadzieją dla nich może być „klej do mózgu”, czyli specjalny hydrożel, opracowany w Regenerative Biosceinces Center na University of Georgia.
      Twórcy hydrożelu wykazali właśnie, że nie tylko chroni on przed dalszą utratą tkanki mózgowej po poważnym urazie, ale może również pomagać w regeneracji nerwów.
      Wyniki badań, opisanych na łamach Science Advances, dostarczają pierwszych wizualnych i funkcjonalnych dowodów na to, że pod wpływem „kleju do mózgu” następuje naprawa obwodów nerwowych. Nasze badania dają nam wgląd w to, jak przebiega regeneracja uszkodzonych regionów mózgu u zwierząt, przed którymi postawiono specyficzne zadania dotyczące sięgnięcia i schwytania przedmiotu, mówi profesor Lohitash Karumbaiah.
      Uczony stworzył specjalny hydrożel w 2017 roku. Został on zaprojektowany tak, by naśladował strukturę i funkcję cukrów w komórkach mózgu. Żel zawiera kluczowe struktury pozwalające mu na łączenie się z czynnikiem wzrostu fibroblastów i neurotroficznym czynnikiem pochodzenia mózgowego, dwoma ważnymi białkami, które zwiększają przeżywalność i regenerację komórek mózgu po urazie.
      Przeprowadzone długoterminowe badania wykazały, że po 10 tygodniach u zwierząt, u których zastosowano hydrożel "doszło do naprawy poważnie uszkodzonej tkanki mózgowej. Zwierzęta te szybciej się rehabilitowały, niż te, u których materiału tego nie stosowano".
      Badania trwały 4-5 lat. Wszystko jest tak szczegółowo udokumentowane, że po przeczytaniu wszystkich zebranych przez nas informacji, każdy uwierzy, iż pojawiła się nowa nadzieja dla ludzi z poważnym uszkodzeniem mózgu, mówi Charles Latchoumane, główny autor badań, który pracuje też w centrum NeurRestore w Lozannie. Centrum to skupia się na badaniach nad odwróceniem utraty funkcji neurologicznych u ludzi cierpiących na chorobę Parkinsone oraz inne schorzenia neurologiczne, do których doszło w wyniku urazu lub udaru.
       


      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...