Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Amerykańska Narodowa Fundacja Nauki (NSF) chwali się najbardziej szczegółowymi zdjęciami Słońca, jakie kiedykolwiek udało się wykonać. Fotografie to dzieło nowego instrumentu badawczego Daniel K. Inouye Solar Telescope, który właśnie rozpoczął pracę. To największy na Ziemi teleskop wyspecjalizowany w badaniu Słońca. Apertura jego lustra wynosi imponujące 424 centymetry. To aż dwuipółkrotnie więcej niż drugiego największego Goode Solar Telescope.

Inouye Solar Telescope stoi na szczycie Haleakala na Hawajach. Pierwsze wykonane przezeń zdjęcia pokazują powierzchnię naszej gwiazdy w niespotykanej dotychczas rozdzielności. Widzimy na nich, że Słońce pokryte jest „ziarnami” obszarów gotującej się plazmy. Taki wzorzec pokrywa całą jego powierzchnię. Na fotografii widzimy ciasno ułożone „komórki” – każda z nich ma powierzchnię dwukrotnie większą od powierzchni Polski – które są dowodem na intensywny transport ciepła z wnętrza gwiazdy ku jej powierzchni. Gorąca plazma wypływa na powierzchnię, schładza się i ponownie zanurza wgłąb Słońca. Do zanurzania się dochodzi w miejscach widocznych ciemnych linii. Cały ten proces zwany jest konwekcją.

Od kiedy NSF zaczęła budować ten teleskop, z niecierpliwością czekaliśmy na pierwsze obrazy. Teraz możemy pokazać zdjęcia i materiały wideo. To najbardziej szczegółowe obrazy naszego Słońca w historii. Inouye Solar Telescope stworzy mapę pól magnetycznych korony słonecznej, miejsca, w którym zachodzą procesy mające wpływ na życie na Ziemi. Polepszy on nasze rozumienie pogody kosmicznej i pomoże lepiej przewidywać burze na Słońcu, stwierdził France Cordova, dyrektor NSF.
W każdej sekundzie Słońce spala około 5 milionów ton paliwa. Minimalna część energii z tego procesu trafia na Ziemię. W latach 50. ubiegłego wieku naukowcy zauważyli, że od naszej gwiazdy wieje wiatr słoneczny. Stwierdzili również, że żyjemy wewnątrz atmosfery Słońca. Jednak o zjawiskach w niej zachodzących wciąż niewiele wiemy.

Jeśli chodzi o atmosferę ziemską, to jesteśmy w stanie z dużym prawdopodobieństwem przewidzieć, czy i gdzie będzie padało. W odniesieniu do pogody kosmicznej takich umiejętności nie mamy. Nasze możliwości przewidywania pogody kosmicznej są o co najmniej 50 lat opóźnione w stosunku do umiejętności przewidywania pogody na Ziemi. Musimy zrozumieć zjawiska fizyczne stanowiące podstawę pogody kosmicznej, a ta zaczyna się na Słońcu. Teleskop Słoneczny Inouye będzie je badał przez następne dekady, dodaje Matt Mountain, prezydent Association of Universities for Research in Astronomy, które zarządza teleskopem.

Daniel K. Inouye Solar Telescope to imponujące urządzenie. Już samo kierowanie 4-metrowego lustra w stronę Słońca wiąże się z dostarczeniem doń olbrzymiej ilości ciepła, które trzeba w jakiś sposób usunąć. Teleskop korzysta ze specjalnego systemu chłodzącego, na który składa się ponad 11 kilometrów rur z chłodziwem, od którego część ciepła jest odbierana przez lód, tworzący się na szczycie w ciągu nocy.

Kopuła nad teleskopem została wykonana z cienkich chłodzących płyt stabilizujących temperaturę wokół teleskopu, a specjalny system osłon pozawala na regulowanie przepływu powietrza i zapewnia cień. Specjalny wysoko zaawansowany zespół chłodzący składający się z metali i chłodziwa otacza główne lustro, blokując większość zbieranej przez nie energii. Teleskop wykorzystuje też zaawansowane układy optyczne kompensujące zakłócenia wywoływane obecnością ziemskiej atmosfery.

Prace nad teleskopem rozpoczęły się ponad 20 lat temu. Jego budowa ruszyła w styczniu 2013 roku, a we wrześniu gotowy był już budynek teleskopu. W sierpniu 2017 na miejsce dostarczono główne lustro. W 2019 roku urządzenie zostało testowo uruchomione, a w styczniu 2020 rozpoczęło pracę i dostarczyło wyjątkowe zdjęcia.


« powrót do artykułu

Share this post


Link to post
Share on other sites
2 godziny temu, KopalniaWiedzy.pl napisał:

kierowanie 4-metrowego lustra w stronę Słońca wiąże się z dostarczeniem doń olbrzymiej ilości ciepła, które trzeba w jakiś sposób usunąć. Teleskop korzysta ze specjalnego systemu chłodzącego, na który składa się ponad 11 kilometrów rur z chłodziwem, od którego część ciepła jest odbierana przez lód, tworzący się na szczycie w ciągu nocy.

A czy tego ciepła z teleskopu nie można by było wykorzystać np. do produkcji energii elektrycznej zasilającej stację, zamiast topić lód na szczycie góry? Czy zamiast kłaść 11 km rur nie lepiej byłoby zainwestować w jakieś agregaty zamieniające ciepło na prąd? Kiedy ludzie zaczną myśleć racjonalnie, ekonomicznie i ekologicznie?

Share this post


Link to post
Share on other sites
11 minut temu, Sławko napisał:

A czy tego ciepła z teleskopu nie można by było wykorzystać np. do produkcji energii elektrycznej zasilającej stację, zamiast topić lód na szczycie góry? Czy zamiast kłaść 11 km rur nie lepiej byłoby zainwestować w jakieś agregaty zamieniające ciepło na prąd? Kiedy ludzie zaczną myśleć racjonalnie, ekonomicznie i ekologicznie?

Nie wystarczy energia, trzeba jeszcze energii o odpowiedniej temperaturze. To coś z entropią - źródła niskotemperaturowe mają jej za dużo ;) Zgaduję że teleskop nie chce robić jako teleskop w temperaturach użytecznych energetycznie - musiałbyś dopuścić do rozgrzania lustra do coś ponad 400K żeby mieć parę i to słabą.

Edited by Jajcenty

Share this post


Link to post
Share on other sites
25 minut temu, Jajcenty napisał:

Nie wystarczy energia, trzeba jeszcze energii o odpowiedniej temperaturze.

Nie tylko parę można zamieniać na energię elektryczną.

Swoją drogą, to chyba za mało pracujemy (jako ludzkość) nad wymyśleniem lepszej metody zamiany ciepła w elektryczność niż za pomocą pary i turbin.

Edited by Sławko

Share this post


Link to post
Share on other sites
2 godziny temu, Sławko napisał:

Nie tylko parę można zamieniać na energię elektryczną.

No tak, ale tam mamy zaledwie 13KW w postaci letniej wody (zgaduję) nic poza hodowlą glonów na ropę nie przychodzi mi do głowy. To co? Mały konkurs? Jak wykorzystać trochę letniej wody? Może do okolicznych pryszniców? 

  • Haha 1

Share this post


Link to post
Share on other sites

Trochę pomyślałem i pogooglałem. Silnik Stirlinga + jakaś prądnica, zjawisko Peltiera (ogniwo Peltiera), zjawisko Thomsona i zjawisko Seebecka (termopara). I to chyba wszystko. Ogólnie przyznaję, słabo to wygląda.

Share this post


Link to post
Share on other sites
Godzinę temu, Sławko napisał:

Silnik Stirlinga + jakaś prądnica, zjawisko Peltiera (ogniwo Peltiera), zjawisko Thomsona i zjawisko Seebecka (termopara)

O! Silnik Stirlinga to zdecydowanie mój faworyt, ale kiedyś, już nie pamiętam kto, tu na KW mi nawrzucał, że Stirling wymaga ~500K do w miarę efektywnej pracy. Ja tam oczami wyobraźni widzę pola silników zasilanych koncetratem słonecznym z soczewek czy zwierciadełek parabolicznych. Co do reszty, to energetycznie chyba mocno pod kreską, niestety.

Share this post


Link to post
Share on other sites

Chciałem właśnie zauważyć, że autor trochę przesadził z olbrzymimi ilościami ciepła. Chodziło chyba o to, że to są relatywnie spore ilości ciepła jak na teleskop. Powierzchnia lustra to 12.56 m2, co przy założeniu 1000 W/m2 daje wspomniane 12 kW. Z tego co się orientuję, to ogniwo Peltiera ma bardzo słabą wydajność rzędu 5-10% ;)

Zerknąłem z ciekawości na Alledrogo i pierwszy z brzegu kolektor o powierzchni 2 m2 kosztuje 5k PLN. Taki budżet to mają tam na kawę :)

Edited by cyjanobakteria

Share this post


Link to post
Share on other sites

Tak, a pod startującymi rakietami SpaceX tez powinny być jakies wymienniki ciepła odzyskujące energię. Nie wszystko jest ekonomicznie uzasadnione w taki sposób jak nam się wydaje.

Share this post


Link to post
Share on other sites

Ale to przecież nie jest tak, że cała energia cieplna, jest absorbowana w zwierciadle. Zwierciadło skupia promień słoneczny na małej powierzchni i tam występuje znaczne podgrzanie, które trzeba schłodzić. Jednakże brak jakichkolwiek parametrów umożliwia jedynie gdybanie, a stwierdzenie o ogromnych ilościach ciepła, skutecznie i z wysoką sprawnością podgrzewa atmosferę :)

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Teleskop Webba wykonał pierwsze zdjęcia planety pozasłonecznej. Na fotografiach widzimy gazowego olbrzyma HIP65426b. To planeta o masie od 5 do 10 razy większej od Jowisza, która powstała zaledwie 15–20 milionów lat temu. Znajduje się w odległości 385 lat świetlnych od Ziemi.
      Na czele zespołu badawczego, który wykonał zdjęcia, stał profesor Sasha Hinkley z University of Exeter. To bardzo ważny moment nie tylko dla Webba, ale dla astronomii. Dzięki Webbowi, obserwując za jego pomocą skład chemiczny planet, możemy bowiem opisywać zjawiska fizyczne na nich zachodzące, stwierdza uczony. Planeta została odkryta w 2017 roku za pomocą urządzenia SPHERE na Very Large Telescope. Dysponowaliśmy jedynie jej obrazami wykonanymi w krótkich falach podczerwieni, które pokazywały dość wąski zakres emisji z planety.
      Większość planet pozasłonecznych wykrywamy metodami pośrednimi, np. rejestrując regularne spadki jasności ich gwiazd, świadczące o tym, że na tle gwiazdy przeszła planeta. Wykonanie bezpośredniego obrazowania planety jest znacznie trudniejszym wyzwaniem, gdyż gwiazdy są wielokrotnie jaśniejsze od planet, więc ich blask przesłania nam krążące wokół nich planety. W przypadku HIP65426b różnica jasności między planetą a jej gwiazdą wynosiła od kilku do ponad 10 tysięcy.
      Nowe zdjęcia wykonano w kilku różnych zakresach podczerwieni: 3,00 mikrometrów (to zdjęcie wykonało urządzenie NIRCam), 4,44 mm (NIRCam), 11,4o mm (MIRI) oraz 15,50 (MIRI). Fotografii takich nie można wykonać z Ziemi, gdyż przeszkadza światło podczerwone emitowane przez naszą atmosferę.
      Bezpośrednie obrazowanie planety było możliwe dzięki temu, że znajduje się ona 100-krotnie dalej od swojej gwiazdy macierzystej niż Ziemia od Słońca. Do pozwoliło Webbowi odróżnić ją od gwiazdy. Instrumenty NIRCam i MIRI są wyposażone w koronografy. To zestaw niewielkich masek, które blokują światło gwiazd, pozwalając dojrzeć obiekty, które w innym przypadku byłyby niewidoczne przez blask gwiazdy.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Zespół naukowców z Wielkiej Brytanii, Australii i USA opisuje na łamach Nature Astronomy wyniki swoich badań nad asteroidami, z których wynika, że ważnym źródłem wody dla formującej się Ziemi był kosmiczny pył. A w procesie powstawania w nim wody główną rolę odegrało Słońce.
      Naukowcy od dawna szukają źródeł wody na Ziemi. Jedna z teorii mówi, że pod koniec procesu formowania się naszej planety woda została przyniesiona przez planetoidy klasy C. Już wcześniej naukowcy analizowali izotopowy „odcisk palca” planetoid typu C, które spadły na Ziemię w postaci bogatych w wodę chondrytów węglistych. Jeśli stosunek wodoru do deuteru byłby w nich taki sam, co w wodzie na Ziemi, byłby to silny dowód, iż to właśnie one były źródłem wody. Jednak uzyskane dotychczas wyniki nie są jednoznaczne. Woda zawarta w chondrytach w wielu przypadkach odpowiadała wodzie na Ziemi, jednak w wielu też nie odpowiadała. Częściej jednak ziemska woda ma nieco inny skład izotopowy niż woda w chondrytach. To zaś oznacza, że oprócz nich musi istnieć w Układzie Słonecznym co najmniej jeszcze jedno źródło ziemskiej wody.
      Naukowcy pracujący pod kierunkiem specjalistów z University of Glasgow przyjrzeli się teraz planetoidom klasy S, które znajdują się bliżej Słońca niż planetoidy C. Przeanalizowali próbki pobrane z asteroidy Itokawa i przywiezione na Ziemię w 2010 roku przez japońską sondę Hayabusa. Dzięki najnowocześniejszym narzędziom byli w stanie przyjrzeć się strukturze atomowej poszczególnych ziaren próbki i zbadać pojedyncze molekuły wody. Wykazali, że pod powierzchnią Itokawy, w wyniku procesu wietrzenia, powstały znaczne ilości wody. Odkrycie to wskazuje, że w rodzącym się Układzie Słonecznym pod powierzchnią ziaren pyłu tworzyła się woda. Wraz z pyłem opadała ona na Ziemię, tworząc z czasem oceany.
      Wiatr słoneczny to głównie strumień jonów wodoru i helu, które bez przerwy przepływają przez przestrzeń kosmiczną. Kiedy jony wodoru trafiały na powierzchnię pozbawioną powietrza, jak asteroida czy ziarna pyłu, penetrowały ją na głębokość kilkudziesięciu nanometrów i tam mogły wpływać na skład chemiczny skład i pyłu. Z czasem w wyniku tych procesów jony wodoru mogły łączyć się z atomami tlenu obecnymi w pyle i skałach i utworzyć wodę.
      Co bardzo ważne, taka woda pochodząca z wiatru słonecznego, składa się z lekkich izotopów. To zaś mocno wskazuje, że poddany oddziaływaniu wiatru słonecznego pył, który opadł na tworzącą się Ziemię, jest brakującym nieznanym dotychczas źródłem wody, stwierdzają autorzy badań.
      Profesor Phil Bland z Curtin University powiedział, że dzięki obrazowaniu ATP (Atom Probe Tomography) możliwe było uzyskanie niezwykle szczegółowego obrazu na głębokość pierwszych 50 nanometrów pod powierzchnią ziaren pyłu Itokawy, który okrąża Słońce w 18-miesięcznych cyklach. Dzięki temu zobaczyliśmy, że ten fragment zwietrzałego materiału zawiera tyle wody, że po przeskalowaniu było by to około 20 litrów na każdy metr sześcienny skały.
      Z kolei profesor John Bradley z University of Hawai‘i at Mānoa przypomniał, że jeszcze dekadę temu samo wspomnienie, że źródłem wody w Układzie Słonecznym może być wietrzenie skał spowodowane wiatrem słonecznym, spotkałoby się z niedowierzaniem. Teraz wykazaliśmy, że woda może powstawać na bieżąco na powierzchni asteroidy, co jest kolejnym dowodem na to, że interakcja wiatru słonecznego z pyłem zawierającym tlen prowadzi do powstania wody.
      Pył tworzący mgławicę planetarną Słońca był poddawany ciągłemu oddziaływaniu wiatru słonecznego. A z pyłu tego powstawały planety. Woda tworzona w ten sposób jest zatem bezpośrednio związana z wodą obecną w układzie planetarnym, dodają autorzy badań.
      Co więcej, odkrycie to wskazuje na obfite źródło wody dla przyszłych misji załogowych. Oznacza to bowiem, ze woda może znajdować się w na pozornie suchych planetach. Jednym z głównych problemów przyszłej załogowej eksploracji kosmosu jest problem znalezienia wystarczających ilości wody. Sądzimy, że ten sam proces wietrzenia, w wyniku którego woda powstała na asteroidzie Itokawa miał miejsce w wielu miejscach, takich jak Księżyc czy asteroida Westa. To zaś oznacza, że w przyszłości astronauci będą mogli pozyskać wodę wprost z powierzchni planet, dodaje profesor Hope Ishii.
       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy od dawna wiedzą, że duży koronalny wyrzut masy na Słońcu może poważnie uszkodzić sieci energetyczne, doprowadzając do braków prądu, wody, paliwa czy towarów w sklepach. Znacznie mniej uwagi przywiązują jednak do tego, jak takie wydarzenie wpłynie na internet. Jak się okazuje, skutki mogą być równie katastrofalne, a najsłabszym elementem systemu są podmorskie kable łączące kraje i kontynenty.
      Przed kilkunastu laty amerykańskie Narodowe Akademie Nauk przygotowały na zlecenie NASA raport dotyczący skutków wielkiego koronalnego wyrzutu masy, który zostałyby skierowany w stronę Ziemi. Takie wydarzenie mogłoby pozbawić ludzi wody, towarów w sklepach, transportu publicznego i prywatnego, uniemożliwić działanie szpitali i przedsiębiorstw, doprowadzić do wyłączenia elektrowni. Jak wówczas informowali autorzy raportu same tylko Stany Zjednoczone poniosłyby w ciągu pierwszego roku straty rzędu 2 bilionów dolarów. Przywrócenie stanu sprzed katastrofy potrwałoby 4-10 lat.
      Katastrofy naturalne zwykle są najbardziej odczuwane przez najbiedniejsze państwa. Wielki koronalny wyrzut masy jest zaś tym bardziej niebezpieczny, im bardziej rozwinięte państwo i im bardziej uzależnione jest od sieci energetycznej i – jak się okazuje – internetu.
      Koronalne wyrzuty masy to gigantyczne obłoki plazmy, które co jakiś czas są wyrzucane przez Słońce w przestrzeń kosmiczną. Mają one masę miliardów ton i posiadają silne pole magnetyczne, które może uszkadzać satelity, sieci energetyczne i zakłócać łączność radiową.
      Ludzkość nie ma zbyt wielu doświadczeń z tego typu wydarzeniami. W marcu 1989 roku w Kanadzie 6 milionów osób było przez 9 godzin pozbawionych prądu właśnie z powodu burzy na Słońcu. Jednak wiemy, że wyrzuty koronalne mogą być znacznie silniejsze. Najpotężniejsze znane nam tego typu zjawisko to wydarzenie Carringtona z 1859 roku. Kilkanaście godzin po tym, jak brytyjski astronom Richard Carrington zaobserwował dwa potężne rozbłyski na Słońcu, Ziemię zalało światło zórz polarnych.
      Przestały działać telegrafy, a Ameryce Północnej, gdzie była noc, ludzie mogli bez przeszkód czytać gazety, doszło do kilku pożarów drewnianych budynków telegrafów, igły kompasów poruszały się w sposób niekontrolowany, a zorze polarne widać było nawet w Kolumbii. Jednak wydarzenie to miało miejsce na długo przed rozwojem sieci energetycznych. Obecnie tak silny rozbłysk miałby katastrofalne skutki.
      Podczas zakończonej niedawno konferencji SIGCOMM 2021 profesor Sangeetha Abdu Jyothi z University of California Irvine, wystąpiła z odczytem Solar Superstorms. Planning for an Internet Apocalypse. Przedstawiła w nim wyniki swoich badań nad wpływem wielkiej chmury szybko poruszających się namagnetyzowanych cząstek słonecznych na światowy internet.
      Z badań wynika, że nawet gdyby stosunkowo szybko udało się przywrócić zasilanie, to problemów z internetem doświadczalibyśmy przez długi czas. Dobra wiadomość jest taka, że lokalna i regionalna infrastruktura internetowa nie powinna zbytnio ucierpieć. Światłowody same w sobie są odporne na tego typu wydarzenia. Znacznie gorzej byłoby z przesyłaniem danych w skali całego globu.
      Największe zagrożenie czyha na kable podmorskie. Przesyłają one dane przez tysiące kilometrów, a co 50–150 kilometrów są na nich zainstalowane wzmacniacze. I o ile sam podmorski kabel nie byłby narażony, to wielka burza słoneczna mogłaby uszkodzić te wzmacniacze. Gdy zaś doszłoby do uszkodzenia odpowiednich ich liczby, przesyłanie danych stałoby się niemożliwe. Co więcej, kable podmorskie są uziemiane co setki lub tysiące kilometrów, a to stwarza dodatkowe zagrożenie dla wzmacniaczy. Jakby jeszcze tego było mało, budowa geologiczna morskiego dna jest bardzo różna, i w niektórych miejscach wpływ burzy słonecznej na kable będzie silniejszy niż w innych. Zapomnijmy też o przesyłaniu danych za pomocą satelitów. Wielki rozbłysk na Słońcu może je uszkodzić.
      Obecnie nie mamy modeli pokazujących dokładnie, co mogłoby się stać. Lepiej rozumiemy wpływ koronalnego wyrzutu masy na sieci energetyczne. Jednak one znajdują się na lądach. Jeszcze trudniej jest przewidywać, co może stać się na dnie morskim, mówi Abdu Jyothi.
      Koronalne wyrzuty masy są bardziej niebezpieczne dla wyższych szerokości geograficznych, tych bliższych biegunom. Zatem Polska czy USA ucierpią bardziej niż położony w pobliżu równika Singapur. A Europa i Ameryka Północna będą miały większe problemy z internetem niż Azja.
      Internet zaprojektowano tak, by był odporny na zakłócenia. Gdy dojdzie do awarii w jednym miejscu, dane są automatycznie kierowane inną drogą, by omijać miejsce awarii. Ale jednoczesna awaria w kilku czy kilkunastu kluczowych punktach zdestabilizuje całą sieć. Wszystko zależy od tego, gdzie do niej dojdzie. Wspomniany tutaj Singapur jest hubem dla wielu azjatyckich podmorskich kabli telekomunikacyjnych. Jako, że położony jest blisko równika, istnieje tam mniejsze ryzyko awarii w razie wielkiej burzy słonecznej. Ponadto wiele kabli w regionie jest dość krótkich, rozciągają się z huba w różnych kierunkach. Tymczasem kable przekraczające Atlantyk czy Pacyfik są bardzo długie i położone na wyższych, bardziej narażonych na zakłócenia, szerokościach geograficznych.
      Niestety, podmorskie kable rzadko są zabezpieczane przed skutkami wielkich zaburzeń geomagnetycznych, takich jak burze słoneczne. Nie mamy doświadczenia z takimi wydarzeniami, a właściciele infrastruktury priorytetowo traktują cyberataki czy katastrofy naturalne mające swój początek na Ziemi i to przed nimi zabezpieczają swoje sieci.
      Abdu Jyothi zauważa jednak, że o ile wielkie koronalne wyrzuty masy są niezwykle rzadkie, a jeszcze rzadziej są one skierowane w stronę Ziemi, to stawka jest tutaj bardzo duża. Długotrwałe zaburzenie łączności w skali globalnej miałoby negatywny wpływ niemal na każdy dział gospodarki i niemal każdego człowieka na Ziemi.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W 2018 roku naukowcy z Cornell University zbudowali wysoko wydajny wykrywacz, połączyli go z ptychografią, specjalną metodą obrazowania mikroskopowego i ustanowili światowy rekord obrazowania, uzyskując trzykrotnie większą rozdzielczość obrazu niż najlepsze mikroskopy elektronowe. Teraz ten sam zespół pobił swój własny rekord, dwukrotnie poprawiając rozdzielczość obrazu.
      Uzyskano niezwykle wyraźny obraz, a jedyne rozmazane elementy pochodzą od zmian termicznych samych atomów. To nie jest po prostu nowy rekord. Wkroczyliśmy w obszar ostatecznych limitów rozdzielczości. Możemy teraz w bardzo prosty sposób wskazać, gdzie znajdują się atomy. To zaś otwiera całkiem nowe możliwości pomiaru, o których marzyliśmy od dawna. Rozwiązaliśmy też poważny problem, który Hans Bethe zauważył w 1928 roku, poradziliśmy sobie z rozpraszaniem promienia w próbce, mówi Muller.
      Dzięki nowym algorytmom jesteśmy teraz w stanie skorygować wszelkie rozmazane kształty do tego stopnia, że największy rozmazany obszar, jaki otrzymujemy wynika z faktu, że same atomy się poruszają, dodaje uczony. Niewykluczone, że obraz można jeszcze poprawić, używając cięższych atomów, które mniej się poruszają, lub też schładzając próbkę. Jednak nawet w temperaturze zera absolutnego w atomach wciąż będzie dochodziło do fluktuacji kwantowych, zatem poprawa nie będzie szczególnie duża w porównaniu z już uzyskanym obrazem.
      Najnowsze osiągnięcie naukowców z Cornell University oznacza, że specjaliści będą mogli zlokalizować indywidualne atomy w przestrzeni trójwymiarowej, co nie było możliwe za pomocą dotychczasowych metod. Możliwe będzie tez znalezienie zanieczyszczeń atomowych w różnych materiałach, co przełoży się na stworzenie doskonalszych półprzewodników, katalizatorów czy materiałów wykorzystywanych do budowy komputerów kwantowych. Możliwe będzie też analizowanie atomów na styku dwóch różnych połączonych materiałów.
      Bardzo ważnym elementem pracy jest fakt, że nową metodę można też wykorzystać do analizowania próbek biologicznych, a nawet połączeń pomiędzy synapsami w mózgu.
      Zastosowana metoda jest czasochłonna i wymaga dostępu do dużych mocy obliczeniowych, jednak w przyszłości dzięki potężniejszym komputerom, metodom maszynowego uczenia i szybszym czujnikom stanie się tańsza i łatwiej dostępna.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Na nowym zdjęciu czarnej supermasywnej czarnej dziury M87*, wykonanym przez naukowców pracujących przy Event Horizon Telescope (EHT), zobrazowano pola magnetyczne otaczające czarną dziurę. Strukturę magnetyczną zmapowano mierząc polaryzację światła emitowanego przez rozgrzaną materię znajdującą się wokół M87*.
      W 2019 roku EHT wykonał pierwsze w historii zdjęcia cienia czarnej dziury. To region, który najprawdopodobniej rozciąga się od horyzontu zdarzeń na odległość trzykrotnie większą niż średnica czarnej dziury. M87* znajduje się w odległości około 55 milionów lat świetlnych od Ziemi, a na podstawie zdjęć naukowcy wyliczyli, że jej masa wynosi około 6,5 miliarda mas Słońca. Jeszcze wcześniej, bo w 2012 roku ET zobrazował potężny dżet rozciągający się na odległość około 5000 lat świetlnych od M87*.
      Teraz dzięki EHT przeanalizowano polaryzację światła wokół czarnej dziury, co pozwoliło na zobrazowanie otaczających ją pól magnetycznych. To bardzo istotne z punktu widzenia badań nad czarnymi dziurami i zjawiskami obserwowanymi wokół nich.
      Monika Mościbrodzka z holenderskiego Uniwersytetu im. Radbounda mówi, że przeprowadzona przez nią i kolegów badania to kolejny kluczowy fragment układanki, pozwalający lepiej zrozumieć, jak pola magnetyczne zachowują się w pobliżu czarnych dziur i w jaki sposób ich aktywność w tak niewielkim obszarze przestrzeni może napędzać potężne dżety. Jason Dexter z University of Colorado dodaje, że obserwacje wskazują, iż pola magnetyczne na krawędziach czarnej dziury są na tyle potężne, że odpychają od niej gaz, pozwalając mu przezwyciężyć jej oddziaływanie grawitacyjne. Tylko gaz, który prześliźnie się między tymi polami może opaść na horyzont zdarzeń.
      Badania opisano w dwóch artykułach, opublikowanych na łamach The Astrophysical Journal Letters: First M87 Event Horizon Telescope Results. VII. Polarization of the Ring oraz First M87 Event Horizon Telescope Results. VIII. Magnetic Field Structure near The Event Horizon.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...