Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Rolls-Royce zapowiada budowę kieszonkowych elektrowni jądrowych

Rekomendowane odpowiedzi

Rolls-Royce zapowiada, że do roku 2029 uruchomi pierwsze niewielkie reaktory jądrowe. Mają być one znacznie mniejsze i tańsze niż tradycyjne elektrownie jądrowe, a ich budowa ma trwać znacznie krócej. Mini reaktory będą masowo produkowane w częściach, które można będzie dostarczać na ciężarówkach. Zwolennicy tej technologii przekonują, że mini-reaktory atomowe będą cenowo porównywalne z budową morskich elektrowni wiatrowych.

Rolls-Royce stoi na czele konsorcjum, które proponuje małe reaktory modułowe (SMR – small modular reactors) i zapowiada, że w samej tylko Wielkiej Brytanii wybuduje 10–15 takich instalacji.

Każdy z reaktorów zajmie 0,5 hektara terenu i będzie posadowiony na 15-hektarowej działce. Będzie zatem potrzebował 16-krotnie mniej terenu niż duża elektrownia atomowa. SMR są na tyle małe, że praktycznie każde miasto mogłoby mieć własną miniaturową elektrownię atomową. Rolls-Royce zapowiada jednak, że – przynajmniej początkowo – będzie budował mini-reaktory w miejscach nieczynnych elektrowni atomowych, gdyż istnieje tam już infrastrukturą zabezpieczająca przed atakiem terrorystycznym.

Budowa niewielkich reaktorów jądrowych może być nadzieją dla przemysłu atomowego, który ostatnio jest w defensywie. Ceny infrastruktury do energii odnawialnej bardzo mocno spadły, w związku z czym wycofano się z projektów budowy nowych elektrowni atomowych, a te, które są budowane, często znacząco przekraczają założony budżet.

Jak mówi Paul Stein, prezes ds. technologicznych Rolls-Royce'a, cała sztuczka polega na budowie z prefabrykatów, zastosowanie zaawansowanych metod spawania oraz robotów przemysłowych. Następnie takie gotowe części dostarcza się na miejsce budowy i łączy. To będzie prowadziło do znacznego obniżenia kosztów budowy.

Jednak Paul Dorfman z University College London sceptycznie podchodzi do tych twierdzeń. Potencjalne obniżenie kosztów na linii produkcyjnej w porównaniu z budową elektrowni na miejscu mogą być przesadzone. Błędy popełniane na linii produkcyjnej będą bowiem dotyczyły wszystkich produkowanych tam reaktorów, a ich poprawienie będzie kosztowne. Poza tym bardziej opłaca się wybudować jedną 1,2-gigawatową elektrownię niż dwanaście 100-megawatowych, mówi naukowiec.

Warto w tym miejscu przypomnieć, że niejednokrotnie już w ostatnich latach donosiliśmy o badaniach związanych z miniaturowymi reaktorami jądrowymi (vide tekst Osobista elektrownia atomowa). Przed kilkoma miesiącami pisaliśmy, że chińskie Ministerstwo Środowiska prowadzi ocenę wpływu na środowisko budowy małego reaktora modułowego ACP100. Z kolei w notce Minireaktory nadzieją energetyki atomowej? informowaliśmy, że z dokumentów Międzynarodowej Agencji Energii Atomowej wynika, że na całym świecie w różnych fazach rozwoju i planowania znajduje się około 50 różnych projektów SMR. Bardzo interesująco wygląda też koncepcja nowatorskiego reaktora z falą wędrującą, a firma Babcock and Wilcox, która buduje reaktory atomowe na potrzeby US Navy zaprojektowała reaktor mPower, który można wyprodukować w fabryce.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      KGHM i amerykańska firma NuScale podpisały umowę na budowę małych reaktorów modułowych (SMR), które miałyby zasilać polskiego producenta miedzi. Pierwszy taki reaktor atomowy ma rozpocząć w Polsce pracę w 2029 roku. Reaktor VOYGR dostarczy prąd, którego wyprodukowanie z węgla wiązałoby się z wyemitowaniem 8 milionów ton CO2 rocznie.
      Zgodnie z podpisaną umową, w pierwszym etapie współpracy zostaną zidentyfikowane i ocenione miejsca, w których reaktor może powstać oraz określone zostaną poszczególne etapy jego budowy i koszty planowania.
      NuScale jest pierwszą firmą, której projekt małego reaktora modułowego został dopuszczony do użycia przez U.S. Nuclear Regulatory Commission (NCR). Firma przez lata rozwijała swój projekt dzięki pomocy Departamentu Energii, który sfinansował prace kwotą niemal 300 milionów dolarów. Dzięki temu powstał projekt reaktora o mocy 50 MW, który w 2020 roku został zatwierdzony przez NCR. Urządzenia NuScale można łączyć w grupy do 12 sztuk, dzięki czemu uzyskamy elektrownię o mocy 600 MW, wystarczającej do zasilenia niewielkiego miasta.
      Firmy takie jak NuScale mają być nadzieją dla podupadającej energetyki atomowej. Co prawda USA pozostają największym na świecie producentem energii elektrycznej z elektrowni atomowych, jednak nowe reaktory powstałe po 1990 można policzyć na palcach jednej ręki. Olbrzymie koszty i długi czas budowy tradycyjnych dużych elektrowni atomowych spowodowały, że atom zaczął w USA przegrywać z gazem łupkowym, a taniejąca energetyka odnawialna stanowi dodatkową konkurencję.
      W 2020 roku spodziewano się, że w roku 2022 NuScale złoży wniosek o dopuszczenie do użycia minireaktorów o mocy 60 MW. Tymczasem NCR prowadzi analizy dotyczące 77-megawatowego reaktora NuScale NPM-20, który może być łączony większe bloki po 12 (o łącznej mocy 924 MW), sześć (462 MW) i cztery (308 MW). Urząd spodziewa się, że jeszcze w bieżącym roku NuScale złoży formalny wniosek o zatwierdzenie NPM-20.
      Zaletą reaktorów NuScale ma być ich niższa cena oraz modułowość, dzięki czemu można je produkować w częściach w fabryce i dostarczać do złożenia na miejscu budowy. Jednak część ekspertów uważa, że korzyści wynikające z architektury SMR są przesadzone. Błędy popełnione na linii produkcyjnej będą bowiem dotyczyły wszystkich reaktorów i gdy się je zauważy, nie będzie łatwo ich naprawić w już dostarczonych i uruchomionych urządzeniach, a problem będzie dotyczył wielu z nich.
      NuScale nie jest jedyną firmą, która zapowiada tworzenie niewielkich reaktorów atomowych. Ambicje takie ma konsorcjum GE-Hitachi Nuclear Energy, a znana głównie z produkcji samochodów firma Rolls Royce zapowiedziała, że do roku 2029 wybuduje pierwsze niewielkie reaktory atomowe.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      NASA i Idaho National Laboratory (INL) ogłosiły, że szukają pomysłów nad zapewnieniem dostępu do energii atomowej na Księżycu. Uruchomienie na Księżycu stabilnego systemu dostarczania energii jest kluczowym elementem w załogowej eksploracji kosmosu. To cel, który znajduje się w naszym zasięgu, mówi Sebastian Corbisiero, odpowiedzialny za prowadzenie projektu.
      NASA, która chce wykorzystać Księżyc w roli etapu załogowej podróży na Marsa, uważa, że niezależna od dostępu do promieni słonecznych elektrownia atomowa zapewni dostateczną ilość energii, niezależnie od warunków środowiskowych na Księżycu czy Marsie. Amerykański Departament Energii i NASA od pewnego czasu mówią o koncepcji fission surface power. To reaktor atomowy o mocy liczonej w kilowatach. Dzięki rozszczepieniu jąder uranu miałby on zapewniać co najmniej 10 kilowatów mocy.
      W porównaniu z ziemskimi reaktorami nie wydaje się to dużo, jednak jest to wystarczająca ilość energii na potrzeby misji kosmicznych. Tym bardziej, że system taki miałby być skalowalny, zapewniając stałą ilość energii np. niewielkim bazom kosmicznym czy miejscom produkcyjnym.
      Myślę, że taki system odegra olbrzymią rolę na Księżycu i Marsie, a podczas jego opracowywania powstaną rozwiązania, które przydadzą się również na Ziemi, mówi Jim Reuter z Dyrektoriatu Technologii Misji Kosmicznych NASA. Reaktor miałby powstać na Ziemi, skąd zostanie przetransportowany na Księżyc.
      Warunki graniczne, jakie określiły NASA i INL, mówią o tym, że system powinien składać się z rdzenia wypełnionego uranem, systemem konwersji energii w użyteczną formę, systemami chłodzenia oraz dystrybucji energii. Całość ma w systemie ciągłym zapewniać 40 KW mocy i pracować na Księżycu przez 10 lat. Ponadto reaktor powinien pracować bez nadzoru człowieka, być w stanie samodzielnie włączać się i wyłączać, musi mieć możliwość pracy z pokładu księżycowego lądownika, ale jednocześnie musi znajdować się namobilnej platformie, którą można będzie ustawić w dowolnym miejscu. Dodatkowe wymagania dotyczą jego wagi i wymiarów. W czasie wystrzelenia z Ziemi reaktor powinien zmieścić się w obudowie o średnicy 4 i długości 6 metrów. Nie może ważyć więcej niż 6000 kilogramów.
      Wstępne propozycje dotyczące konstrukcji takiego systemu powinny być zgłoszone do 19 lutego przyszłego roku.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      U.S. Nuclear Regulatory Commission (NRC) zatwierdziła projekt małego reaktora modułowego (SMR) firmy NuScale Power. To wielka chwila nie tylko dla NuScale, ale dla całego amerykańskiego sektora energetyki jądrowej, mówi dyrektor wykonawczy NuScale John Hopkins.
      Zwolennicy SMR od dawna mówią, że mogą stać się one realną alternatywą dla wielkich kosztownych elektrowni atomowych. Tym bardziej w czasach, gdy amerykańska energetyka jądrowa przeżywa kryzys spowodowany konkurencją ze strony gazu oraz energetyki odnawialnej.
      Zatwierdzenie projektu oraz związany z tym finalny raport oceny bezpieczeństwa (FSER) nie oznacza jeszcze, że NuScale może rozpocząć budowę małych reaktorów. Jednak pozwala to przedsiębiorstwom produkującym energię na składanie do NRC wniosków o pozwolenie na budowę i uruchomienie reaktora wykonanego według projektu NuScale. Co prawda USA pozostają największym na świecie producentem energii elektrycznej z elektrowni atomowych, jednak nowe reaktory powstałe po 1990 można policzyć na palcach jednej ręki. Obecnie trwa budowa 2 nowych reaktorów, budowę 2 innych wstrzymano. Jednocześnie na terenie USA są obecnie 23 wyłączone reaktory podlegające nadzorowi NRC, które znajdują się na różnych etapach likwidacji. W tej sytuacji pojawienie się małych reaktorów modułowych może ożywić ten rynek.
      NuScale rozwijało swój projekt dzięki pomocy Departamentu Energii, który sfinansował prace kwotą niemal 300 milionów USD. Reaktor ma moc 50 MW. To znacznie mniej niż obecnie stosowane duże reaktory, których może przekraczać 1000 MW. Reaktory NuScale można łączyć w grupy do 12 sztuk, co pozwala na osiągnięcie mocy do 600 MW, a to wystarczy do zasilenia miasta średniej wielkości. Ponadto sama NRC spodziewa się, że w roku 2022 NuScale poprosi o zatwierdzenie projektu 60-megawatowego reaktora.
      Przemysł jądrowy mówi, że SMR można budować szybciej i taniej niż standardowe reaktory. Główną zaletą małych reaktorów modułowych jest fakt, że można jest produkować w fabrykach i dostarczać na miejsce przeznaczenia. Standardowe reaktory budowane są na miejscu. Rozwiązanie takie jest bardziej elastyczne, gdyż odbiorca może zamawiać i łączyć ze sobą różną liczbę takich jednostek, w zależności od lokalnego zapotrzebowania.
      Zwolennicy SMR mówią, że to najlepsza możliwość szybkiego zbudowania infrastruktury potrzebnej do produkcji dużej ilości bezemisyjnej energii. Jej przeciwnicy zauważają, że wciąż pozostaje nierozwiązany problem radzenia sobie z odpadami, ponadto każda technologia wykorzystania energii jądrowej jest droga, a jej wdrożenie wymaga dużo czasu w porównaniu z energetyką odnawialną.
      NuScale wierzy jednak, że uda się jej uniknąć drożyzny i wieloletnich opóźnień, czyli problemów trapiących sektor tradycyjnej energetyki atomowej. Diana Hughes, wiceprezes firmy ds. marketingu twierdzi, że w latach 2023–2042 uda się sprzedać od 574 do 1682 SMR. Sprzedaż niemal 1700 reaktorów oznaczałaby, że uzyskiwano by z nich 80 GW, a to już blisko do obecnych 98 GW wytwarzanych przez amerykańską energetykę jądrową.
      Firma NuScale podpisała już umowy o możliwym rozpoczęciu współpracy z wieloma potencjalnymi partnerami z USA i zagranicy. Pierwszym projektem, który ma zostać zrealizowany jest umowa z Utah Associated Municipal Power Systems (UAMPS), organizacją, która dostarcza energię do niewielkich operatorów w kilku stanach. Pierwszy reaktor ma trafić do UAMPS w 2027, które realizuje zlecenie Idaho National Laboratory. Reaktor ma rozpocząć pracę w 2029 roku. Z kolei do roku 2030 ma zostać uruchomionych 11 połączonych ze sobą reaktorów, które będą wchodziły w skład 720-megawatowego projektu. Część energii z nich będzie kupował Departament Energii, reszta trafi do komercyjnych klientów UAMPS. Niektóre samorządy terytorialne, w obawie o wysokie koszty, wycofały się z tego projektu.
      Eksperci wyrażają powątpiewanie odnośnie bezpieczeństwa i kosztów NuScale SMR. Jednym z takich krytyków jest profesor M. V. Ramana, ekspert ds. energetyki atomowej z University of British Columbia. To, co oni planują jest ryzykowne i kosztowne, mówi uczony. Zauważa, że w ciągu ostatnich 5 lat szacunkowe koszty projektu realizowanego przez UAMPS wzrosły z około 3 do ponad 6 miliardów USD. Przypomina też, że początkowe plany NuScale mówiły, iż pierwszy SMR rozpocznie pracę w 2016 roku. Już w tej chwili wiemy, że opóźnienie przekroczy dekadę. Dobrze oddaje to problemy, z jakimi boryka się energetyka jądrowa. Ramana mówi, że cena energii produkowanej przez SMR może być dla konsumentów znacznie wyższa niż energii ze Słońca, wiatru czy innych źródeł odnawialnych.
      Pozostają też kwestie bezpieczeństwa. Jak przypomina Edwin Lyman z Union of Concerned Scientist, NuScale złożyło raport o bezpieczeństwie mimo zastrzeżeń wnoszonych zarówno przez ekspertów NRC jak i zewnętrznej komisji doradczej. W lipcu 2020 roku Shanlai Lu z NRC złożył raport, w którym opisywał problem znany jako rozcieńczenie boru, co może spowodować problemy z paliwem i doprowadzić do pojawienia się niebezpiecznej sytuacji. W jej wyniku, nawet jeśli zabezpieczenia zadziałają i reaktor zostanie wyłączony, reakcja może samodzielnie się rozpocząć i dojdzie do niebezpiecznego wzrostu mocy. W innym raporcie NRC’s Advisory Committee on Reactor Safeguards wspomina o innych ryzykach, ale rekomenduje NRC wydanie dokumentu o bezpieczeństwie. NRC zastrzega jednak, że te nierozwiązane kwestie będą podlegały ocenie na etapie wydawania zgody na budowę reaktorów w konkretnych miejscach. Pani Hughes zapewnia, że NRC i NuScale przyjrzały się problemowi rozcieńczania boru i uznały, iż projekt reaktora jest bezpieczny.
      NRC ponownie przyjrzy się projektowi, gdy NuScale złoży wniosek o zatwierdzenie 60-megawatowego reaktora.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Chińskie Ministerstwo Środowiska prowadzi ocenę wpływu na środowisko budowy małego reaktora modułowego ACP100, który miałby stanąć w powiecie Changjiang w prowincji Hajnan. Prace budowlane miałyby rozpocząć się jeszcze w bieżącym roku.
      Budowa ma potrwać 65 miesięcy. Jeśli wszystko pójdzie zgodnie z planem to, po uzyskaniu niezbędnych zezwoleń, 125-megawatowy reaktor powinien rozpocząć pracę 31 maja 2025 roku.
      Budowa ACP100 to jeden z najważniejszych projektów chińskiego 12. Planu Pięcioletniego. Projekt reaktora stworzono na bazie pełnowymiarowego reaktora typu PWR ACP1000. W miniaturowym reaktorze zintegrowano turbiny parowe oraz pasywne zabezpieczenia. Całe urządzenie zostanie zainstalowane pod ziemią. ACP100 zostanie zlokalizowany na północnym-zachodzie istniejącej elektrowni atomowej.
      Świat ma poważny problem. Z corocznego raportu środowiskowego BP dowiadujemy się, że w 2017 roku aż 38% światowej energii pochodziło z węgla. To dokładnie tyle samo, co przed 20 laty, kiedy to podpisano pierwszy międzynarodowy traktat o zapobieganiu zmianom klimatu. Co gorsza emisja gazów cieplarnianych rośnie i w 2018 roku zwiększyła się o 2,7%. To największy wzrost od siedmiu lat.
      W obliczu coraz poważniejszych zmian klimatycznych jasne jest, że dotychczasowe działania nie pomagają. Nawet specjaliści z ONZ, którzy w przeszłości nie byli przekonani do energetyki jądrowej, przyznają, że w obecnej sytuacji dobre jest każde rozwiązanie, które pozwoli na utrzymanie globalnego ocieplenia na poziomie mniejszym niż 1,5 stopnia Celsjusza powyżej średniej sprzed rewolucji przemysłowej. A w tej chwili jedynym rozwiązaniem wydaje się znaczne zwiększenie produkcji energii z energetyki atomowej.
      Jednak świat idzie w przeciwnym kierunku. Niemcy chcą do 2022 roku zamknąć wszystkie swoje elektrownie atomowe, a Włosi już w 2011 roku zdecydowali, że nie będą budowali kolejnych. Jednak nawet jeśli opinia publiczna popierałaby budowę elektrowni atomowych – a tak nie jest – to kolejne tego typu instalacje mogłyby nie powstać. Elektrownie takie są po prostu niezwykle drogie. W USA w ostatnich latach wiele elektrowni zamknięto, a z planowej budowy innych zrezygnowano, gdyż nie wytrzymywały one konkurencji z gazem łupkowym. Organizacja Union of Concerned Scientists (UCS), która sceptycznie odnosiła się do energetyki jądrowej, stwierdziła niedawno, że jeśli nic się nie zmieni, to prawdopodobnie dojdzie do zamknięcia kolejnych elektrowni atomowych, które zostaną zastąpione przede wszystkim gazem naturalnym, co doprowadzi do wzrostu emisji.
      Sytuacja jest tak dramatyczna, że, jak mówi dyrektor ds. bezpieczeństwa projektów atomowych UCS Edwin Lyman, kwestią do rozstrzygnięcia jest pytanie o to, czy w kolejnych dekadach realnie może powstać wystarczająca liczba elektrowni atomowych, by zaspokoić potrzeby.
      Obecnie w samej tylko Ameryce Północnej prowadzone są badania nad 75 różnymi projektami elektrowni atomowych.
      Kilkukrotnie zajmowaliśmy się już tym tematem, czy to pisząc o „Reaktorze z fabryki", „Osobistej elektrowni atomowej”, pytając czy „Minireaktory nadzieją energetyki atomowej” oraz wspominając, że „NuScale ogłosiło, kto wyprodukuje pierwszy mały reaktor atomowy".
      Niewielkie reaktory atomowe mają wiele zalet w porównaniu z tradycyjnymi elektrowniami. Są na tyle małe, że możńa je produkować w fabryce i przewieźć na miejsce montażu. Dzięki temu cały proces budowy trwa znacznie szybciej i jest znacznie tańszy, a więc i inwestycja jest znacznie mniej ryzykowna. Ponadto wiele tego typu projektów to reaktory bezobsługowe, które można np. zakopać pod ziemią i wydobywać raz na kilka lat, by wymienić paliwo. Rozwiązanie jest więc i tańsze w obsłudze i bardziej bezpieczne od tradycyjnych elektrowni.
      APC100 to po prostu pomniejszona wersja dużych reaktorów jądrowych. Podobną technologię oferuje amerykańska firma NuScale, która podpisała już z koalicją 46 amerykańskich dostawców energii umowę na dostarczenie 12 małych reaktorów. Jednak projekt będzie kontynuowany, jeśli do końca bieżącego roku członkowie koalicji zdecydują się na jego finansowanie. To może nie być takie oczywiste. W 2011 roku firma Generation mPower, wspierana przez giganta Babcock & Wilcox podpisła umowę na budowę sześciu podobnych reaktorów, jednak po trzech latach z umowy zrezygnowano, gdyż nie znaleziono nowych klientów, co czyniło całe przedsięwzięcie nieopłacalnym.
      Jeszcze bardziej interesujące są miniaturowe reaktory, które nie są – jak ACP100 czy projekt NuScale – miniaturowymi wersjami dużych reaktorów typu PWR, ale nowatorskimi konstrukcjami chłodzonymi sodem. Projekt takiego reaktora ma firma TerraPower, której jednym z inwestorów jest Bill Gates. Opracowała ona nowatorki projekt reaktora z falą wędrującą i podpisała z Pekinem umowę na zbudowanie do roku 2022 prototypowego urządzenia w Państwie Środka. Nie wiadomo jednak, jak na plany te wpłynie pogorszenie się relacji pomiędzy Chinami a USA.
      Jeszcze inny pomysł to reaktory chłodzone stopionymi solami. Te są najbardziej bezpieczne, gdyż reaktor jest chłodzony nawet w przypadku całkowitego braku zasilania. Projekt takiego reaktora ma kanadyjska firma Terrestrial Energy. Chce ona wybudować 190-megawatową elektrownię w prowincji Ontario i obiecuje, że do roku 2030 zacznie dostarczać energię w cenie konkurencyjnej do ceny energii z gazu. Warto też przypomnieć, że olbrzymie postępy w dziedzinie reaktorów chłodzonych stopionymi solami poczyniły też Chiny, które zaskakująco szybko rozwinęły technologie udostępnione im przez Amerykanów.
      W chwili obecnej mamy więc do wyboru miniaturowe wersje dużych reaktorów PWR, czy SMR proponowane przez NuScale i Chińczyków. Reaktory takie mają zapewniać od 50 do 200 megawatów energii, mogą pracować przez 60 lat, stworzenie prototypu to koszt rzędu 100 milionów USD, a zbudowanie instalacji komercyjnej oznacza wydatkowanie nawet 2 miliardów USD. Pierwsze tego typu reaktory mogą rozpocząć pracę około roku 2025. Kolejna klasa projektów to reaktory bezpieczniejsze niż PWR i im podobne, czyli reaktory z rdzeniem usypanym (PBR), reaktory chłodzone sodem oraz reaktory chłodzone stopionymi solami. Reaktory takie mają dostarczać 190–600 megawatów energii i mają pracować 40-60 lat. Najbardziej zaawansowane są prace nad PBR, być może w bieżącym roku pierwszy taki reaktor zacznie pracę w Chinach. Prace rozwojowe nad PBR to koszt rzędu 400 milionów do 1,2 miliarda USD. Natomiast stworzenie prototypu reaktora chłodzonego sodem lub stopioną solą to koszt szacowany na 1 miliard USD. Pierwszy PBR ma ruszyć w bieżącym roku. Reaktory chłodzone sodem mogą zadebiutować w roku 2025, a chłodzone stopionymi solami – w roku 2030.
      W końcu należy wspomnieć krótko o fuzji jądrowej, czyli pozyskiwaniu energii nie w drodze rozszczepiania ciężkich jąder, a łączenia lżejszych jąder. Tutaj notuje się bardzo powolny postęp. Najbardziej znany projekt to ITER, chociaż nad fuzją pracują też inni. Reaktory fuzyjne mają dostarczać 100–600 megawatów i pracować przez 35 lat. Obecnie koszty rozwoju projektu ITER to 22 miliardy dolarów. Koszty wersji komercyjnej takiego reaktora nie są znane. Pierwszy tego typu reaktor pojawi się nie wcześniej niż w roku 2035.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...