Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Fizycy wciąż nie potrafią wyjaśnić sygnałów znad Antarktydy. Cząstka spoza Modelu Standardowego?

Recommended Posts

Tajemnicze sygnały zarejestrowane nad Antarktydą nadal nie doczekały się wyjaśnienia, a opublikowany właśnie kolejny artykuł naukowy wskazuje, że sygnały te mogą pochodzić od cząstek spoza Modelu Standardowego. Coraz bardziej prawdopodobne staje się, że znaleziono coś, co nie pasuje do najbardziej rozpowszechnionej teorii fizycznej.

Jak informowaliśmy przed dwoma laty w tekście zatytułowanym Tajemnicze sygnały wstrząsną współczesną fizyką?, w roku 2016 zależący do NASA Antarctic Impulsive Transient Antenna (ANITA), dryfujący nad Antarktyką balon z anteną wykrywającą promieniowanie kosmiczne, zarejestrował dwa impulsy promieniowania kosmicznego, które... pochodziły z Ziemi. Wówczas minęły 2 lata od wykrycia tych sygnałów, a nikt nie potrafił ich przekonująco wyjaśnić. Część naukowców już wtedy oceniała, że szansa, iż sygnały są zgodne z Modelem Standardowym wynosi 1/3.500.000.

ANITA jest bowiem instrumentem, który jest w stanie wykryć neutrina o dużym przekroju czynnym, czyli o dużej energii. Urządzenie wykryło dwa sygnały pochodzące z Ziemi, co sugerowałoby, że wykryło neutrina, która przeszły przez planetę. Jednak neutrina o dużym przekroju czynnym nie przedostaną się przez Ziemię, zatem ANITA mogła wykryć nieznane dotychczas cząstki.

Od czasu dokonania niezwykłego odkrycia przez ANITĘ wielu naukowców sugerowało, że może istnieć intensywne źródło neutrin. Być może spośród wielu wyemitowanych przezeń neutrin kilku udało się, mimo wszystko, przedostać przez Ziemię i zostały one zarejestrowane przez ANITĘ.

Taki scenariusz postanowił sprawdzić Alex Pizzuto z University of Wisconsin-Madison i inni członkowie zespołu IceCube. IceCube wykorzystuje 5160 optycznych wykrywaczy neutrin. Gdy przechodzące przez lód neutrino wejdzie w interakcję z atomem wodoru lub tlenu, dochodzi do emisji sygnału, który IceCube wykrywa. IceCube jest znacznie bardziej czułe niż ANITA. Dlatego też naukowcy przejrzeli swoje archiwum danych, szukając w nich sygnału pochodzącego z potencjalnego źródła neutrin znajdującego się w kierunku, w którym sygnały zostały wykryte przez ANITĘ. Przeanalizowali dane z ośmiu lat, szukają podobieństw pomiędzy lokalizacją sygnałów zarejestrowanych przez ANITĘ, a lokalizacją sygnałów rejestrowanych przez IceCube.

Wykorzystali przy tym trzy różne i uzupełniające się metody analizy danych, podczas których wzięli pod uwagę niewiadome związane z odkryciem dokonanym przez ANITĘ. Ponadto symulowali neutrina przechodzące przez Ziemię, by dowiedzieć się, ile z nich powinno ruszyć w drogę, by jedno mogło zostać wykryte przez ANITĘ. Takich samych obliczeń dokonali dla IceCube'a.

Analizy pokazały, że w kierunku, z którego pochodziły sygnały zarejestrowane przez ANITĘ nie ma żadnego źródła neutrin. Jest to tym bardziej zaskakujące, że, ze względu na zjawisko znane jako regeneracja neutrin tau, wysokoenergetyczne neutrina, które nie mają szans dotrzeć do ANITY, wciąż powinny być wykrywane przez IceCube. Zjawisko to powoduje, że IceCube jest niezwykle przydatnym narzędziem do potwierdzania obserwacji dokonanych przez ANITĘ, gdyż na każdy anomalny sygnał wykryty przez ANITĘ IceCube powinno wykryć wielokrotnie więcej takich sygnałów. W tym przypadku nie wykrył niczego, mówi Anastasia Barbano z Uniwersytetu w Genewie.

To zaś oznacza, że możemy odrzucić pomysł, iż sygnały pochodzą z intensywnego pojedynczego źródła, gdyż szansa, że sygnał taki zarejestruje ANITA, a nie zauważy go IceCube są bardzo małe, dodaje.

Gdy ANITA zarejestrowała niezwykłe sygnały, wyjaśnienia ich pochodzenia można było pogrupować na trzy kategorie: istnienie intensywnego źródła neutrin, wystąpienie błędu w urządzeniu lub zarejestrowanie sygnału, którego nie opisuje Model Standardowy. Nasze analizy wykluczyły jedyne wyjaśnienie zgadzające się z Modelem Standardowym. Jeśli zatem sygnały są prawdziwe i nie pochodzą z błędów w urządzeniu, mogą one wskazywać na istnienie zjawiska fizycznego spoza Modelu Standardowego, mówi Pizzuto.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Pewnego dnia późno w nocy rozmawialiśmy z moją dziewczyną o wszechświecie wybiegając trochę w science fiction i zdumiało mnie co wtedy powiedziała: Planety mogłyby "porozumiewać" się miedzy sobą oraz Słońcem celem prawidłowych interakcji. Na przykład minimum słoneczne mogłoby być zapoczątkowane na Ziemi przez impuls informacji informujący o zbyt wysokich temperaturach. ... Wracając na Ziemię myślę, że jeszcze nasz wszechświat ma kilka asów w rękawie i nie raz nas zaskoczy swoją inteligencją.

Share this post


Link to post
Share on other sites

To bardziej fantastyka niż SF, ale jakby tak było to Jowisz miałby 317 razy więcej głosów i Ziemia miałaby niewiele do powiedzenia ;)

Żeby zmniejszyć jasność gwiazdy w ramach SF, to trzeba usunąć masę. To jest ciekawe zagadnienie i jest przynajmniej 5 powodów dla których zaawansowana cywilizacja może chcieć przeprowadzić taką operację.

Share this post


Link to post
Share on other sites

I to jest właśnie coś co pokazuje dokładnie że fizyka jest zbudowana na porównaniach tego co znamy. Tysiąc lat temu nikt nie wiedział co to elektromagnetyzm i jakieś tam promienie. Być może to kolejny skok do odkrycia czegoś nowego, a to co się pokazało to tylko przypadkowa interferencja czegoś zupełnie innego, a właściwego zjawiska jeszcze długo nie wykryjemy bo nadal operujemy na porównaniu cząstek z modelu z czasów Einsteina.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Podczas ostatnich badań w CERN zdobyto dane, które – jeśli zostaną potwierdzone – będą oznaczały, że doszło do naruszenia Modelu Standardowego. Dane te dotyczą potencjalnego naruszenia zasady uniwersalności leptonów. O wynikach uzyskanych w LHCb poinformowano podczas konferencji Recontres de Moriond, na której od 50 lat omawia się najnowsze osiągnięcia fizyki oraz w czasie seminarium w CERN.
      Podczas pomiarów dokonywanych w LHCb porównywano dwa typy rozpadu kwarków powabnych. W pierwszym z nich pojawiają się elektrony, w drugim miony. Miony są podobne do elektronów, ale mają około 200-krotnie większą masę. Elektron, mion i jeszcze jedna cząstka – tau – to leptony, które różnią się pomiędzy sobą zapachami. Zgodnie z Modelem Standardowym, interakcje, w wyniku których pojawiają się leptony, powinny z takim samym prawdopodobieństwem prowadzić do pojawiania się elektronów i mionów podczas rozpadu kwarka powabnego.
      W roku 2014 zauważono coś, co mogło wskazywać na naruszenie zasady uniwersalności leptonów. Teraz, po analizie danych z lat 2011–2018 fizycy z CERN poinformowali, że dane wydają się wskazywać, iż rozpad kwarka powabnego częściej dokonuje się drogą, w której pojawiają się elektrony niż miony.
      Istotność zauważonego zjawiska to 3,1 sigma, co oznacza, iż prawdopodobieństwo, że jest ono zgodne z Modelem Standardowym wynosi 0,1%. Jeśli naruszenie zasady zachowania zapachu leptonów zostanie potwierdzone, wyjaśnienie tego procesu będzie wymagało wprowadzenie nowych podstawowych cząstek lub interakcji, mówi rzecznik prasowy LHCb profesor Chris Parkes z University of Manchester.
      Rozpad kwarka powabnego prowadzi do pojawienia się kwarka dziwnego oraz elektronu i antyelektronu lub mionu i antymionu. Zgodnie z Modelem Standardowym w procesie tym pośredniczą bozony W+ i Z0. Jednak naruszenie zasady uniwersalności leptonów wskazuje, że zaangażowana w ten proces może być jakaś nieznana cząstka. Jedna z hipotez mówi, że jest to leptokwark, masywny bozon, który wchodzi w interakcje zarówno z leptonami jak i z kwarkami.
      Co istotne, dane z LHCb zgadzają się z danymi z innych anomalii zauważonych wcześniej zarówno w LHCb, jak i obserwowanych od 10 lat podczas innych eksperymentów na całym świecie. Nicola Serra z Uniwersytetu w Zurichu mówi, że jest zbyt wcześnie by wyciągać ostateczne wnioski. Jednak odchylenia te zgadzają się ze wzorcem anomalii obserwowanych przez ostatnią dekadę. Na szczęście LHCb jest odpowiednim miejscem, w którym możemy sprawdzić potencjalne istnienie nowych zjawisk fizycznych w tego typu rozpadach. Musimy przeprowadzić więcej pomiarów.
      LHCb to jeden z czterech głównych eksperymentów Wielkiego Zderzacza Hadronów.Jego zadaniem jest badanie rozpadu cząstek zawierających kwark powabny.
      Artykuły na temat opisanych tutaj badań zostały opublikowane na stronach arXiv oraz CERN.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Znajdujący się na Biegunie Południowym wielki detektor neutrin IceCube zarejestrował wysokoenergetyczne wydarzenie, które potwierdziło istnienie zjawiska przewidzianego przed 60 laty i wzmocniło Model Standardowy. Wydarzenie to zostało wywołane przez cząstkę antymaterii o energii 1000-krotnie większej niż cząstki wytwarzane w Wielkim Zderzaczu Hadronów (LHC).
      Ponad 4 lata temu, 8 grudnia 2016 roku wysokoenergetyczne antyneutrino elektronowe wpadło z olbrzymią prędkością w pokrywę lodową Antarktydy. Jego energia wynosiła gigantyczne 6,3 petaelektronowoltów (PeV). Głęboko w lodzie zderzyło się ono z elektronem, doprowadzając do pojawienia się cząstki, która szybko rozpadła się na cały deszcz cząstek. Ten zaś został zarejestrowany przez czujniki IceCube Neutrino Observatory.
      IcCube wykrył rezonans Glashowa, zjawisko, które w 1960 roku przewidział późniejszy laureat Nagrody Nobla, Sheldon Glashow. Pracujący wówczas w Instytucie Nielsa Bohra w Kopenhadze naukowiec opublikował pracę, w której stwierdził, że antyneutrino o odpowiedniej energii może wejść w interakcje z elektronem, w wyniku czego dojdzie do pojawienia się nieznanej jeszcze wówczas cząstki. Cząstką tą był odkryty w 1983 roku bozon W.
      Po odkryciu okazało się, że ma on znacznie większą masę, niż przewidywał Glashow. Wyliczono też, że do zaistnienia rezonansu Glashowa konieczne jest antyneutrino o energii 6,3 PeV. To niemal 1000-krotnie większa energia niż nadawana cząstkom w Wielkim Zderzaczu Hadronów. Żaden obecnie działający ani obecnie planowany akcelerator nie byłby zdolny do wytworzenia tak wysokoenergetycznej cząstki.
      IceCube pracuje od 2011 roku. Dotychczas obserwatorium wykryło wiele wysokoenergetycznych zdarzeń, pozwoliło na przeprowadzenie niepowtarzalnych badań. Jednak zaobserwowanie rezonansu Glashowa to coś zupełnie wyjątkowego. Musimy bowiem wiedzieć, że to dopiero trzecie wykryte przez IceCube wydarzenie o energii większej niż 5 PeV.
      Odkrycie jest bardzo istotne dla specjalistów zajmujących się badaniem neutrin. Wcześniejsze pomiary nie dawały wystarczająco dokładnych wyników, by można było odróżnić neutrino od antyneutrina. To pierwszy bezpośredni pomiar antyneutrina w przepływających neutrinach pochodzenia astronomicznego, mówi profesor Lu Lu, jeden z autorów analizy i artykułu, który ukazał się na łamach Nature.
      Obecnie nie jesteśmy w stanie określić wielu właściwości astrofizycznych źródeł neutrin. Nie możemy np. zmierzyć rozmiarów akceleratora czy mocy pól magnetycznych w rejonie akceleratora. Jeśli jednak będziemy w stanie określić stosunek neutrin do antyneutrin w całym strumieniu, bo będziemy mogli badać te właściwości, dodaje analityk Tianlu Yaun z Wisconsin IceCube Particle Astrophysics Center.
      Sheldon Glashow, który obecnie jest emerytowanym profesorem fizyki na Boston University mówi, że aby być absolutnie pewnymi wyników, musimy zarejestrować kolejne takie wydarzenie o identycznej energii. Na razie mamy jedno, w przyszłości będzie ich więcej.
      Niedawno ogłoszono, że przez najbliższych kilka lat IceCube będzie udoskonalany, a jego kolejna wersja – IceCube-Gen2 – będzie w stanie dokonać większej liczby tego typu pomiarów.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Zakończono budowę jednego z największych na świecie teleskopów. Przed dwoma dniami grupa uczonych obserwowała, jak ostatnie elementy Baikal-GVD (Baikal Gigaton Volume Detector) są opuszczane w głąb jeziora Bajkał przez wycięty w lodzie przerębel. Urządzenie będzie obserwowało neutrina z głębokości 700–1300 metrów.
      Budowa teleskopu trwała od 2015 roku. Urządzenie składa się z lin, na których umieszczono szklane i stalowe moduły. W tej chwili całkowita objętość teleskopu wynosi 0,5 km3, a w przyszłości ma ono zostać rozbudowane do 1 km3. Dimitrii Naumow ze Zjednoczonego Instytutu Badań Jądrowych w Dubnej powiedział, że Baikal-GVD będzie rywalizował z amerykańskim Ice Cube, wielkim obserwatorium neutrin zatopionym w lodach Antarktydy w pobliżu Bieguna Południowego.
      Rosyjska instalacja jest największym wykrywaczem neutrin na półkuli północnej, a jezioro Bajkał, największy na Ziemi zbiornik słodkiej wody, to idealne miejsce na umieszczenie takiego urządzenia. Bajkał to jedyne jezioro, gdzie można taki teleskop zbudować. Jest bowiem odpowiednio głębokie, wyjaśnia Bair Szoibonow z Dubnej. Ważny jest też fakt, że to woda słodka, istotna jest również jej przejrzystość. Bardzo ważny jest też fakt, że przez 2–2,5 miesiąca w roku jest ono pokryte lodem, dodaje. Woda będzie bowiem pełniła rolę wielkiego filtra, który zablokuje inne cząstki, przepuszczając neutrina.
      W budowę Baikal-GVD zaangażowani są naukowcy z Rosji, Polski, Czech, Niemiec i Słowacji.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Dane z chińskiego detektora cząstek PandaX-II mogą wskazywać, że w ubiegłym roku eksperyment XENON1T zarejestrował sygnały świadczące o odkryciu nieznanych zjawisk fizycznych. Jak informowaliśmy, XENON1T zarejestrował dziesiątki nietypowych sygnałów, które można było interpretować na trzy sposoby. Najbardziej banalna z interpretacji to wystąpienie zanieczyszczenia, dwie pozostałe interpretacje to możliwe odkrycie nowych zjawisk, w tym przełomowe odkrycie cząstek ciemnej materii.
      Chińskie PandaX-II uzyskało właśnie dane, które mogą potwierdzać, że nie mamy do czynienia z zanieczyszczeniem, a rzeczywistym odkryciem.
      Znajdujący się we Włoszech XENON1T został zbudowany z myślą o poszukiwaniu słabo oddziałujących masywnych cząstek (WIMP), które mają stanowić ciemną materię. W czerwcu ubiegłego roku naukowcy pracujący przy tym eksperymencie poinformowali o zaobserwowaniu 53+/-15 sygnałów, których nie potrafili wyjaśnić. Jako że nie byli w stanie podać jednej możliwej interpretacji, zaproponowali cztery wyjaśnienia.
      Najbardziej banalne to rozpad beta trytu, który mógł zanieczyścić ksenon używany w detektorze. Trzy pozostałe interpretacje są już bardziej interesujące. Sygnały mogły być wywołane obecnością nowego typu neutrina, tworzących ciemną materię aksjonów ze Słońca albo też obecnością bozonowej ciemnej materii. Uczeni wyliczyli też prawdopodobieństwo dla wszystkich czterech interpretacji i uznali, że najmniej prawdopodobne, bo wynoszące 3,0 sigma, jest zarejestrowanie bozonowej ciemnej materii. Z kolei prawdopodobieństwo zanieczyszczenia trytem oraz odkrycia nowego neutrina wyliczono na 3,2 sigma. Najbardziej zaś prawdopodobne – szacowane na 3,4 sigma – jest odkrycie słonecznych aksjonów.
      Informacja o sygnałach z XENON1T wywołała spore poruszenie. Naukowcy zabrali się do pracy, próbując wyjaśnić obserwowane zjawiska. Na przykład fizycy teoretyczni zaproponowali kilka interesujących rozwiązań problemu dotyczącego aksjonów słonecznych. Gdyby bowiem rzeczywiście one istniały, to białe karły powinny mieć mniejszą jasność, niż mają.
      Jednymi z naukowców, którzy postanowili bliżej przyjrzeć się danym z XENON1T, byli uczeni z Uniwersytetu Jiao Tong z Szanghaju, na czele których stał Jianglai Liu. Chińczycy użyli do swoich badań detektora PandaX-II z Jinping Underground Laboratory w Syczuanie. Chociaż zawiera on nieco ponad 0,5 tony ksenonu (dla porównania, XENON1T korzysta z 3,2 tony), to uczeni z Państwa Środka prowadzili swoje badania dłużej, dzięki czemu uzyskali tylko o połowę danych mniej niż uczeni pracujący przy XENON1T.
      Naukowcy pracujący przy PandaX-II mają pewną przewagę. Dzięki przeprowadzonej w odstępie 3 lat kalibracji z użyciem metanu, są w stanie lepiej scharakteryzować sygnały generowane w ich urządzeniu przez tryt zanieczyszczający ksenon.
      Przeprowadzony przez nich eksperyment zwiększył prawdopodobieństwo, że XENEN1T dokonał rzeczywistego odkrycia. Wciąż nie wiadomo, czym jest to odkrycie. Ponadto Chińczycy nie byli w stanie z całą pewnością wykluczyć, że nie doszło do zanieczyszczenia.
      Obecnie w Chinach trwają prace nad zwiększeniem czułości PandaX-II. Masa urządzenia zostanie zwiększona do 6 ton, w tym masa samego ksenonu wyniesie 4 tony. Nowe urządzenie, PandaX-4%, rozpocznie pracę jeszcze w bieżącym roku. Również w bieżącym roku ma ruszyć zmodernizowany 8,3-tonowy XENOnT, a w USA rozpoczyna właśnie pracę 10-tonowy LUX-ZEPLIN.
      Dzięki nowym, większym i bardziej czułym detektorom powinniśmy w niedługim czasie dowiedzieć się, co tak naprawdę zarejestrował XENON1T.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...