Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Anomalia magnetyczna z kamiennego kręgu dowodem na uderzenie pioruna ponad 3 tys. lat temu

Recommended Posts

Geofizycy odkryli dowody na uderzenie pioruna bądź piorunów w sam środek ukrytego obecnie pod warstwą torfu kamiennego kręgu na wyspie Lewis na Hebrydach Zewnętrznych. Naukowcy sądzą, że to może rzucić nieco więcej światła na powody, dla których tworzono takie struktury.

Anomalię magnetyczną w kształcie gwiazdy odkryto w ramach Calanais Virtual Reconstruction Project, wspólnego przedsięwzięcia Uniwersytetu w Bradford, University of St Andrews oraz Urras nan Tursachan.

Badając Tursachan Chalanais, główny kamienny krąg, zespół zajął się przy okazji pobliskimi stanowiskami satelitarnymi. Jedno z rzadko odwiedzanych stanowisk, stanowisko IX (Airigh na Beinne Bige), składa się obecnie z jednego stojącego kamienia.

Geofizycy ujawnili, że kamień ten był niegdyś częścią kręgu, a w samym środku znajduje się anomalia magnetyczna w kształcie gwiazdy. Jest ona skutkiem uderzenia jednego silnego pioruna albo kilku mniejszych w to samo miejsce.

Tak oczywiste dowody uderzeń piorunów są bardzo rzadkie w Wielkiej Brytanii. Związek tego zdarzenia z kamiennym kręgiem nie jest raczej przypadkowy. Nie ma pewności, czy piorun ze stanowiska IX trafił w drzewo, czy w skałę, której tu już nie ma. Może też sam kamienny krąg "przyciągał" pioruny. Tak czy siak, nowo zdobyte dowody sugerują, że siły natury były ściśle powiązane z życiem codziennym i wierzeniami wczesnych społeczności rolniczych z wyspy - opowiada dr Richard Bates.

Dobra widoczność uderzenia [pioruna] sugeruje, że patrzymy na zdarzenie poprzedzające rozwój torfu na stanowisku, [a więc na ślad czegoś] sprzed ponad 3 tys. lat - dodaje prof. Tim Raub.

Naukowcom udało się także wirtualnie zrekonstruować inny pobliski krąg Na Dromannan, którego kamienie leżały na ziemi albo zostały przykryte torfem. Po raz pierwszy od 4 tys. lat kamienie można ponownie oglądać i wirtualnie obchodzić. Modelowanie Na Dromannan pomaga w ustaleniu, czy krąg ten był odpowiednio "skonfigurowany" astronomicznie.

Ekipa ma nadzieję powrócić na Lewis w przyszłym roku i prowadzić badania zarówno na lądzie, jak i w wodzie.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Sonda Gaia odkryła 55 gwiazd, które z dużą prędkością zostały wyrzucone z gromady R136, znajdującej się Wielkim Obłoku Magellana, galaktyce satelitarnej Drogi Mlecznej. Odkrycie oznacza, że liczba gwiazd uciekających z gromady jest 10-krotnie większa niż dotychczas przypuszczano. Do wyrzucenia gwiazd może dochodzić w młodych gromadach w wyniku bliskich spotkań znajdujących się tam nowo narodzonych gwiazd.
      Naukowcy z Uniwersytetów w Lejdzie, Amsterdamie i Uniwersytetu Radbound odkryli, że młoda gromada R136 w ciągu około 2 milionów lat pozbyła się nawet 1/3 z najbardziej masywnych gwiazd. Zostały one wyrzucone z gromady z prędkością przekraczającą 100 000 km/h. Niektóre z nich dotarły na odległość nawet 1000 lat świetlnych, zanim zakończyły życie jako supernowe.
      Zaskakująca była nie tylko duża liczba gwiazd i ich prędkość, ale również fakt, że doszło do dwóch epizodów ich wyrzucania. Pierwsze takie wydarzenie miało miejsce około 1,8 miliona lat temu, gdy gromada powstała. Epizod ten odpowiada wydarzeniom, jakie mają miejsce podczas powstawania gromad gwiazd. Jednak do drugiego wyrzucenia gwiazd doszło zaledwie 200 000 lat temu i wydarzenie to ma zupełnie inną charakterystykę. Na przykład gwiazdy wyrzucone podczas drugiego epizodu poruszają się wolniej i nie zostały wystrzelone w przypadkowych kierunkach, wyjaśnia doktorant Mitchel Stoop, który stał na czele grupy badawczej.
      Zdaniem naukowców do drugiego epizodu doszło w wyniku interakcji R136 z inną gromadą, którą odkryto w 2012 roku. Ten drugi epizod może być sygnałem, że w niedługiej przyszłości dojdzie do połączenia się obu gromad.
      Masywne gwiazdy szybko kończą życie jako supernowe. Zwykle istnieją kilka milionów lat i eksplodują w tych samych regionach, w których się narodziły. R136 to wyjątkowa gromada. Zawiera setki tysięcy gwiazd, w tym i takie o masie do 300 mas Słońca. Stanowi on część wielkiego regionu formowania gwiazd o średnicy 5 milionów lat świetlnych. Nigdy wcześniej nie odnotowano też, by tak duża liczba szybko poruszających się gwiazd opuszczała tę samą gromadę.
      Teraz, gdy zaobserwowaliśmy, że 1/3 masywnych gwiazd została wyrzucona z obszaru, w którym powstały – a tym samym zaczęły one wywierać wpływ na dalsze regiony – możemy przypuszczać, że wpływ masywnych gwiazd na ewolucję i strukturę galaktyk jest większy, niż dotychczas sądziliśmy. Możliwe nawet, że takie uciekające gwiazdy narodzone we wczesnym wszechświecie miały ważny udział w procesie rejonizacji, kiedy rozproszony wodór został ponownie zjonizowany, stwierdza współautor badań, Lex Kaper.
      Gaia znajduje się w odległości 1,5 miliona kilometrów od Ziemi. Zadaniem sondy jest precyzyjne określanie pozycji, prędkości i kierunku ruchu ponad miliarda gwiazd. Holenderscy naukowcy chcieli przetestować możliwości teleskopu, więc na obiekt badań wybrali R136, który leży w odległości 160 000 lat świetlnych od Ziemi. To granica możliwości Gai. R136 powstała niedawno, więc wystrzelone z niej gwiazdy znajdują się tak blisko, że bardzo trudno jest je zidentyfikować. Jeśli jednak znajdzie się wystarczająco dużo takich gwiazd, można przeprowadzić wiarygodne modelowanie statystyczne, wyjaśnia Alex de Koter. Gaia spisała się wyjątkowo dobrze, dostarczając danych, które zaskoczyły naukowców.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Dzięki pracy zawodowych astronomów, astronomów-amatorów oraz wykorzystaniu sztucznej inteligencji udało się odnaleźć niezwykły zaćmieniowy układ potrójny TIC 290061484. Odkryto go w danych z TESS (Transiting Exoplanet Survey Satellite). Układ złożony jest z dwóch gwiazd, które obiegają się w ciągu 1,8 doby, oraz trzeciej gwiazdy, obiegającej tę parę w ciągu 25 dni. To rekordowo ciasny układ potrójny. Dotychczasowym rekordzistą był ten odkryty w 1956 roku, gdzie dwie gwiazdy były obiegane przez trzecią w ciągu 33 dni.
      TIC 290061484 znajduje się w Gwiazdozbiorze Łabędzia i z naszej perspektywy wydaje się niemal płaski. Przez to każda z gwiazd przesłania swoje towarzyszki, blokując część ich światła. I to właśnie dzięki tym zmianom jasności udało się układ odnaleźć.
      Najpierw naukowcy przeanalizowali olbrzymią liczbę danych z TESS, odfiltrowując z nich te informacje, które świadczyły o istnieniu zaćmień. Następnie niewielka grupa astronomów-amatorów dokonała kolejnych analiz, poszukując w danych szczególnie interesujących przypadków. Ci amatorzy to osoby, które po raz pierwszy spotkały się online, biorąc udział w projekcie Planet Hunters. Zakończył się on w 2013 roku, ale grupa nie zaprzestała pracy. Skontaktowała się z zawodowymi astronomami i wspólnie zapoczątkowali projekt Visual Survey Group. Wspólnie szukamy głównie śladów kompaktowych układów składających się z wielu gwiazd, niezwykłych gwiazd zmiennych w układach podwójnych oraz nietypowych obiektów, mówi emerytowany profesor fizyki z MIT, Saul Rappaport.
      Nowo odkryty układ jest tak kompaktowy, że zmieściłby się wewnątrz orbity Merkurego. Jest stabilny tylko dlatego, że orbity wszystkich trzech gwiazd znajdują się niemal na tej samej płaszczyźnie. Dlatego grawitacja każdej z nich nie zakłóca zbytnio ruchu pozostałych. Orbity gwiazd są prawdopodobnie stabilne od milionów lat. Zdaniem profesora Rappaporta, gwiazdy uformowały się w ramach tego samego procesu, który jednocześnie uniemożliwił utworzenie się planet blisko którejkolwiek z nich. Jedyne planety, które potencjalnie mogłyby tam istnieć, to takie, krążące wokół całego układu, jakby był on jedną gwiazdą.
      Uczeni mówią, że z czasem wewnętrzne gwiazdy układu będą się starzały i zwiększały swoją objętość, co doprowadzi do ich połączenia się i powstania supernowej. Będzie to miało miejsce za 20-40 milionów lat.
      Naukowcy z niecierpliwością czekają na uruchomienie Nancy Grace Roman Space Telescope. Dostarczy on znacznie bardziej szczegółowych danych niż TESS. Dość wspomnieć, że to, co w TSS widzimy jako 1 piksel, w Roman Telescope będzie reprezentowane przez 36 000 pikseli. TESS daje nam szeroki ogląd całego nieboskłonu, Roman pozwoli zaś sięgnąć wzrokiem znacznie dalej, aż do centrum Drogi Mlecznej. Będzie też w stanie odnaleźć układy zaćmieniowe składające się ze znacznie większej liczby gwiazd. Uczeni liczą na to, że zaobserwuje on układy 6 i więcej gwiazd. Zanim odkryto potrójne układy zaćmieniowe, nawet nie przypuszczano, że one istnieją. Roman może pokazać nam nigdy wcześniej niewidziane obiekty i układy, dodaje Tamás Borkovits z Uniwersytetu w Segedynie na Węgrzech.


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Wszystkie wyżej zorganizowane formy życia, od roślin i grzybów, po ludzi i zwierzęta, są eukariontami, organizmami zbudowanymi z komórek posiadających jądro komórkowe. To odróżnia je od prokariontów nie posiadających jądra komórkowego. Pochodzenie eukariontów to jedna z największych zagadek biologii.
      Według dominującej obecnie hipotezy w pewnym momencie doszło do połączenia dwóch prokariontów, archeona z nadtypu Asgard i bakterii. Bakteria utworzyła mitochondrium. W ten sposób powstał przodek eukariontów, który miał do dyspozycji na tyle dużo energii, że mógł rozwinąć się w złożoną komórkę, jaką znamy dzisiaj. Jedną z cech definiujących takie złożone komórki eukariotyczne jest ich zdolność do endocytozy, czyli pochłaniania innych komórek.
      Prokarionty nie są w stanie pochłaniać innych komórek. Nie mają wystarczająco dużo energii, by przeprowadzić ten proces. A przynajmniej tak do niedawna uważano. Naukowcy z Uniwersytetu w Jenie poinformowali właśnie o potwierdzeniu „niemożliwego” – prokariotycznej bakterii, zdolnej do pożerania innych komórek.
      Profesor Christian Jogler i jego zespół od ponad 10 lat prowadzą badania mające wyjaśnić powstanie eukariontów. Skupili się na prokariotycznych bakteriach Planctomycetes. To unikatowe organizmy, które ze względu na niezwykłą biologię komórek są uznawane przez niektórych za możliwych przodków eukariontów. Pomysł, że doszło do fuzji dwóch różnych prokariontów w jednego eukarionta nie przekonuje mnie z punktu widzenia biologii komórki. Nikt nigdy czegoś takiego nie zaobserwował, a taka hybryda prawdopodobnie nie mogłaby przetrwać ze względu na różne struktury błony komórkowej i układy molekularne, mówi profesor Jogler.
      W 2014 roku jego zespół znalazł w Morzu Bałtyckim nieznane wcześniej Planctomycetes. Te bakterie zmieniają kształt, potrafią „chodzić” po powierzchni, wyjaśnia uczony. Mają unikatową budowę jak na prokarionty. Ich istnienie wzmocniło hipotezę, że komórki eukariotyczne mogły powstać z Planctomycetes. W 2019 roku profesor Takashi Shiratori i jego zespół z Uniwersytetu w Tsukubie donieśli, że zaobserwowali u Planctomycetes proces pochłaniania innych komórek podobny do endocytozy. Wydawało się więc, że pogląd, jakoby prokarionty nie były zdolne do endocytozy, został obalony.
      Szczerze mówiąc, nie wierzyłem doktorowi Shiratoriemu, przyznaje Jogler. Niemieccy uczeni postanowili podważyć wyniki Japończyków. Po roku intensywnych badań stwierdzili jednak, że Shiratori i jego zespół mieli rację. W opublikowanym właśnie artykule badacze z Jeny nie tylko potwierdzili spostrzeżenia uczonych z Tsukuby, ale poinformowali też, że odkryte przez nich w Morzu Północnym bakterie Uabimicrobium helgolandensis również żywią się innymi bakteriami. A po analizach genetycznych tych bakterii Niemcy doszli do wniosku, że drapieżne Planctomycetes są pomostem pomiędzy prokariontami i eukariontami. Ich zdaniem odegrały one znaczącą rolę w pojawieniu się eukariontów, a może nawet i pojawieniu się życia.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Zachodzące w przestrzeni kosmicznej procesy, w czasie których powstają gwiazdy, mogą prowadzić też do pojawienia się obiektów o masie nieco większej od Jowisza. Badacze korzystający z Teleskopu Webba odkryli w mgławicy NGC 1333 aż sześć takich niezwykłych obiektów o masie planety, ale niepowiązanych grawitacyjne z żadną gwiazdą. Powstały w procesie takim, jak powstają gwiazdy, czyli zapadnięcia się gazu i pyłu, ale ich masa odpowiada masie planet. Badamy granice procesów formowania się gwiazd. Jeśli masz obiekt, który wygląda jak młody Jowisz, to czy jest możliwe, by w odpowiednich warunkach przekształcił się w gwiazdę? To ważne pytanie w kontekście zrozumienia powstawania gwiazd i planet, mówi główny autor badań, astrofizyk Adam Langeveld z Uniwersytetu Johnsa Hopkinsa.
      Dane z Webba sugerują, że odkryte obiekty mają masę od 5 do 10 razy większą niż masa Jowisza. To oznacza, że są jednymi z najlżejszych znanych nam obiektów, które powstały w procesach, w jakich powstają gwiazdy oraz brązowe karły, obiekty o masie 13–80 mas Jowisza, zbyt małej, by zaszła przemiana wodoru w hel.
      Wykorzystaliśmy niezwykła czułość Webba w zakresie podczerwieni, by odnaleźć najsłabiej świecące obiekty w młodej gromadzie gwiazd. Poszukujemy odpowiedzi na podstawowe dla astronomii pytanie o najmniej masywny obiekt podobny do gwiazdy. Okazuje się, że najmniejsze swobodne obiekty powstające w procesach takich, jak gwiazdy, mogą mieć masę taką, jak gazowe olbrzymy krążące wokół pobliskich gwiazd, wyjaśnia profesor Ray Jayawardhana, który nadzorował badania. Nasze obserwacje potwierdzają, że obiekty o masie planetarnej mogą powstawać w wyniku dwóch procesów. Jeden to kurczenie się chmur pyłu i gazu – czyli tak jak tworzą się gwiazdy – drugi zaś to powstawanie planet w znajdującym się wokół gwiazdy dysku akrecyjnym z pyłu i gazu. Tak właśnie powstał Jowisz i inne planety Układu Słonecznego, dodaje Jayawardhana.
      Najbardziej intrygującym z obiektów znalezionych przez Webba jest ten najlżejszy, o masie 5-krotnie większej od Jowisza. Obecność wokół niego dysku akrecyjnego wskazuje, że obiekt najprawdopodobniej uformował się takim procesie, w jakim powstają gwiazdy. Sam dysk również interesuje badaczy. Nie można wykluczyć, że mogą z nim pojawić się planety. To może być żłobek miniaturowego układu planetarnego, znacznie mniejszego niż nasz układ, dodaje Alexander Scholz, astrofizyk z University of St. Andrews.
      Co interesujące, Webb nie zarejestrował – a ma takie możliwości – żadnego obiektu o masie mniejszej niż 5 mas Jowisza. Może to oznaczać dolną granicę masy obiektów formujących się z zapadnięcia chmur pyłu i gazu.
      Autorzy badań przeanalizowali też profil światła wszystkich nowo znalezionych obiektów oraz dokonali ponownej analizy profilu światła 19 znanych brązowych karłów. Odkryli przy tym brązowego karła, który ma towarzysza o masie planety. To rzadkie znalezisko rzuca wyzwanie naszym modelom tworzenia się układów podwójnych.
      W najbliższych miesiącach naukowcy chcą zająć się analizą atmosfer nowo odkrytych obiektów i porównać je do brązowych karłów oraz gazowych olbrzymów.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Około 25 milionów lat temu australijskie Terytorium Północne pokryte było gęstym lasem, w którym żyły liczne gatunki koali, wczesne kangury czy przodkowie największego torbacza w historii, gatunku Diprotodon optatum. Paleontolodzy z Flinders University, którzy przez ostatnie lata badali skamieniałości znalezione w pobliżu Pwerte Marnte Marnte, poinformowali o zidentyfikowaniu dwóch nowych gatunków – wombata o bardzo silnych szczękach i oposa o dziwacznych zębach. To przedstawiciele torbaczy, których linie ewolucyjne dawno wygasły i nie mają współczesnych potomków, mówi doktorant Arthur Crichton.
      Na tym późnooligoceńskim stanowisku znajdowane są najstarsze szczątki torbaczy podobnych do współczesnych oraz wielu przedstawicieli nieistniejących już zwierząt, jak np. rodziny Ilariidae podobnej do wombatów skrzyżowanych z koala.
      Jeden z nowo odkrytych gatunków to opos Chunia pledgei. Jego zęby to koszmar dentysty. Miały wiele zaostrzonych wierzchołków znajdujących się jeden obok drugiego, jak linie w kodzie paskowym. Drugi z gatunków – Mukupirna fortidentata, do duży odległy krewny dzisiejszego wombata. Szczęki i zęby wskazują, że miał bardzo silny zgryz, stwierdza Crichton.
      Jego siekacze były bardziej podobne do zębów wiewiórek, znacznie większe od pozostałych zębów. Prawdopodobnie świetnie nadawały się do rozgryzania orzechów, ziaren czy bulw. Co interesujące, jego zęby trzonowe były bardzo podobne do zębów niektórych współczesnych małp, np. makaków. Dla porównania, dzisiejsze wombaty mają zęby, które rosną przez całe życie, gdyż ścierają się na ich głównym pożywieniu, trawie, dodaje profesor Gavin Priedaux.
      Mukupirna fortidentata ważył około 50 kilogramów i należał do największych torbaczy swojej epoki. Był on przedstawicielem wymarłej linii ewolucyjnej Mukupirnidae, która ponad 25 milionów lat temu oddzieliła się od wspólnego przodka z dzisiejszymi wombatami. Wombaty odniosły sukces, a Mukupirnidae wyginęły przed końcem oligocenu.
      Z kolei opos Chunia pledgei należy do mało poznanej wymarłej rodziny Ektopodontidae. Wszyscy jej przedstawiciele mieli dziwaczne zęby z charakterystycznymi ostrzami ustawionymi jak kod kreskowy. I każdy gatunek charakteryzował się własnym wzorcem.
      Badane zwierzęta żyły w czasie, gdy klimat Australii zaczął zmieniać się na coraz bardziej suchy.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...