Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Jedna z najjaśniejszych gwiazd, nadolbrzym Betelgeza wkrótce wybuchnie?

Recommended Posts

Czerwony nadolbrzym Betelgeza, jedna z najjaśniejszych gwiazd na niebie, przygasła w ciągu ostatnich tygodni bardziej niż przez ostatnie sto lat. Podekscytowani astronomowie z całego świata zastanawiają się co to oznacza. Nie można wykluczyć, że gwiazda wybuchnie i zamieni się w supernową. Nadolbrzymy wciąż kryją wiele zagadek, a naukowcy mają nadzieję, że dzięki obserwowanemu właśnie procesowi, dowiedzą się więcej o takich gwiazdach.

Astronomowie od ponad wieku obserwują, jak Betelgeza raz przygasa, raz robi się jaśniejsza. Materia z gwiazdy wędruje ku jej powierzchni i ponownie tonie w jej wnętrzu, powodując, że powierzchnia jest raz chłodniejsza, raz cieplejsza. Stąd właśnie zmienna jasność gwiazdy.

Richard Wasatonic, astronom z Villanova Univrsity w Pennsylvanii od 25 lat dokonuje pomiarów jasności Betelgezy za pomocą niewielkiego prywatnego teleskopu. W październiku wraz ze swoim kolegą Edwardem Guinanem i astronomem-amatorem Thomasem Calderwoodem zauważyli, że Betelgeza ponownie przygasa. Do grudnia stała się ciemniejsza niż w ciągu ostatnich 25 lat.

Na łamach witryny The Astronomer's Telegram poinformowali o tym innych astronomów. Każdej nocy była ciemniejsza niż nocy poprzedniej, mówi Guinan. Obserwujący spodziewali się, że wkrótce gwiazda przestanie zmniejszać swoją jasność. Jednak tak się nie stało. Dnia 23 grudnia zaktualizowali swój wpis, stwierdzając, że Betelgeza nadal przygasa i jest już ciemniejsza niż była w ciągu ostatni 100 lat, czyli w całym okresie, w którym nauka mierzy jasność gwiazd za pomocą urządzeń, a nie ocenia ją „na oko”.
Betelgeza, która jest zwykle 6. lub 7. najjaśniejszą gwiazdą na niebie, do połowy grudnia bieżącego roku stała się 21. najjaśniejszą gwiazdą nieboskłonu.

Nic więc dziwnego, że pojawiły się głosy, iż możemy być świadkami końca Betelgezy. Na podstawie obliczeń masy astronomowie stwierdzili, że Betelgeza stanie się supernową w wieku około 9 milionów lat. Właśnie tyle mniej więcej lat liczy sobie gwiazda. Już jakiś czas temu obliczano, że Betelgeza stanie się supernową w ciągu najbliższych 100 000 lat. Jeśli nadolbrzym wybuchnie stanie się dla nas tak jasny, jak połowa jasności Księżyca w pełni. Przez wiele miesięcy będziemy mogli obserwować taką supernową nawet za dnia. Nie powinniśmy się jednak obawiać o nasze bezpieczeństwo, gdyż gwiazda znajduje się w odległości około 420 – 640 lat świetlnych od Ziemi.

Niejednokrotnie mieli dotychczas okazję badać supernowe. Nigdy jednak nie udało się obserwować procesów zachodzących zanim gwiazda stanie się supernową. Stąd też nie wiadomo, czy obecne przygasanie gwiazdy oznacza jej rychły koniec.

Betelgeza już kilkukrotnie zwracała na siebie naszą uwagę. Przed 10 laty informowaliśmy, że gwiazda mocno się skurczyła, ale jej jasność nie spadła. Po kilku latach astronomowie odkryli tajemniczą wielką ścianę pyłu, w kierunku której zmierza Betelgeza, a z którą w przyszłości się zderzy. Niedługo później na Betelgezie zaobserwowanie istnienie gorących punktów, a trzy lata temu okazało się, że gwiazda obraca się szybciej, niż powinna.


« powrót do artykułu

Share this post


Link to post
Share on other sites
2 hours ago, KopalniaWiedzy.pl said:

gdyż gwiazda znajduje się w odległości około 420 lat świetlnych od Ziemi

Mam jeszcze lepszą wiadomość (o ile dane bardziej aktualne) - w internetach piszą, że to raczej 640.

Share this post


Link to post
Share on other sites

:) No właśnie trudno to rozstrzygnąć. :) Bo np. National Radio Astronomy Observatory twierdzi, że 520 :) Ale faktem jest, że lepiej zakres podać. Już poprawiam, dzięki :)

 

Share this post


Link to post
Share on other sites

Betelgeza wybuchnie jako supernowa i przestanie być widoczna. Czy wpłynie to na opis samej konstelacji Oriona, poza utratą określenia Alfy dla Betelgezy? Orion bez ramienia kiepsko będzie wyglądać.

Może są jakieś zasady, poza tymi historycznymi, opisów nieba. Coś czuję, że będzie dyskusja jak ta czy Pluton to planeta.

Share this post


Link to post
Share on other sites

Najpierw musimy dożyć momentu wybuchu. Aktualne szacunki dają nam na to marne szanse. Możliwe, że obecne przygaszenie nie jest niczym szczególnym i Betelgeza ma przed sobą jeszcze kilka tysięcy lat życia.

Share this post


Link to post
Share on other sites
W dniu 2.01.2020 o 16:24, pogo napisał:

Najpierw musimy dożyć momentu wybuchu. Aktualne szacunki dają nam na to marne szanse. Możliwe, że obecne przygaszenie nie jest niczym szczególnym i Betelgeza ma przed sobą jeszcze kilka tysięcy lat życia.

Albo faktycznie wybuchła 420 lat temu i za kilka miesięcy sie o tym przekonamy

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Sonda Gaia odkryła 55 gwiazd, które z dużą prędkością zostały wyrzucone z gromady R136, znajdującej się Wielkim Obłoku Magellana, galaktyce satelitarnej Drogi Mlecznej. Odkrycie oznacza, że liczba gwiazd uciekających z gromady jest 10-krotnie większa niż dotychczas przypuszczano. Do wyrzucenia gwiazd może dochodzić w młodych gromadach w wyniku bliskich spotkań znajdujących się tam nowo narodzonych gwiazd.
      Naukowcy z Uniwersytetów w Lejdzie, Amsterdamie i Uniwersytetu Radbound odkryli, że młoda gromada R136 w ciągu około 2 milionów lat pozbyła się nawet 1/3 z najbardziej masywnych gwiazd. Zostały one wyrzucone z gromady z prędkością przekraczającą 100 000 km/h. Niektóre z nich dotarły na odległość nawet 1000 lat świetlnych, zanim zakończyły życie jako supernowe.
      Zaskakująca była nie tylko duża liczba gwiazd i ich prędkość, ale również fakt, że doszło do dwóch epizodów ich wyrzucania. Pierwsze takie wydarzenie miało miejsce około 1,8 miliona lat temu, gdy gromada powstała. Epizod ten odpowiada wydarzeniom, jakie mają miejsce podczas powstawania gromad gwiazd. Jednak do drugiego wyrzucenia gwiazd doszło zaledwie 200 000 lat temu i wydarzenie to ma zupełnie inną charakterystykę. Na przykład gwiazdy wyrzucone podczas drugiego epizodu poruszają się wolniej i nie zostały wystrzelone w przypadkowych kierunkach, wyjaśnia doktorant Mitchel Stoop, który stał na czele grupy badawczej.
      Zdaniem naukowców do drugiego epizodu doszło w wyniku interakcji R136 z inną gromadą, którą odkryto w 2012 roku. Ten drugi epizod może być sygnałem, że w niedługiej przyszłości dojdzie do połączenia się obu gromad.
      Masywne gwiazdy szybko kończą życie jako supernowe. Zwykle istnieją kilka milionów lat i eksplodują w tych samych regionach, w których się narodziły. R136 to wyjątkowa gromada. Zawiera setki tysięcy gwiazd, w tym i takie o masie do 300 mas Słońca. Stanowi on część wielkiego regionu formowania gwiazd o średnicy 5 milionów lat świetlnych. Nigdy wcześniej nie odnotowano też, by tak duża liczba szybko poruszających się gwiazd opuszczała tę samą gromadę.
      Teraz, gdy zaobserwowaliśmy, że 1/3 masywnych gwiazd została wyrzucona z obszaru, w którym powstały – a tym samym zaczęły one wywierać wpływ na dalsze regiony – możemy przypuszczać, że wpływ masywnych gwiazd na ewolucję i strukturę galaktyk jest większy, niż dotychczas sądziliśmy. Możliwe nawet, że takie uciekające gwiazdy narodzone we wczesnym wszechświecie miały ważny udział w procesie rejonizacji, kiedy rozproszony wodór został ponownie zjonizowany, stwierdza współautor badań, Lex Kaper.
      Gaia znajduje się w odległości 1,5 miliona kilometrów od Ziemi. Zadaniem sondy jest precyzyjne określanie pozycji, prędkości i kierunku ruchu ponad miliarda gwiazd. Holenderscy naukowcy chcieli przetestować możliwości teleskopu, więc na obiekt badań wybrali R136, który leży w odległości 160 000 lat świetlnych od Ziemi. To granica możliwości Gai. R136 powstała niedawno, więc wystrzelone z niej gwiazdy znajdują się tak blisko, że bardzo trudno jest je zidentyfikować. Jeśli jednak znajdzie się wystarczająco dużo takich gwiazd, można przeprowadzić wiarygodne modelowanie statystyczne, wyjaśnia Alex de Koter. Gaia spisała się wyjątkowo dobrze, dostarczając danych, które zaskoczyły naukowców.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Wiele z odkrytych dotychczas czarnych dziur jest częścią układu podwójnego. Układy takie składają się z krążących wokół siebie czarnej dziury oraz innego obiektu – jak gwiazda, gwiazda neutronowa czy druga czarna dziura. Astronomowie z MIT-u i Caltechu poinformowali właśnie o zaskakującym odkryciu. Jedna z najlepiej przebadanych czarnych dziur, klasyfikowana jako część układu podwójnego, okazała się wchodzić w skład układu potrójnego.
      Dotychczas sądzono, że czarnej dziurze  V404 Cygni towarzyszy jedynie sąsiednia gwiazda. Obiega ona dziurę w ciągu 6,5 doby, to tak blisko, że V404 Cygni wciąga materiał z gwiazdy.Ku zdumieniu badaczy okazało się jednak, że wokół czarnej dziury krąży jeszcze jedna gwiazda.
      Ten drugi z towarzyszy znajduje się w znacznie większej odległości. Gwiazda obiega dziurę w ciągu 70 000 lat. Sam fakt, że czarna dziura wywiera wpływ grawitacyjny na tak odległy obiekt każe zadać pytania o jej pochodzenie. Czarne dziury tego typu powstają w wyniku eksplozji supernowej. Badacze zauważają jednak, że gdyby tak było w tym przypadku, to energia wyemitowana przez gwiazdę przed jej zapadnięciem się, eksplozją i utworzeniem czarnej dziury, wyrzuciłaby w przestrzeń kosmiczną każdy luźno powiązany z nią obiekt. Zatem tej drugiej gwiazdy, bardziej odległej od czarnej dziury, nie byłoby w jej otoczeniu.
      Dlatego też badacze uważają, że zaobserwowana przez nich czarna dziura powstała w wyniku bezpośredniego zapadnięcia się gwiazdy, w procesie, który nie doprowadził do pojawienia się supernowej. To znacznie bardziej łagodna droga tworzenia się czarnych dziur. Sądzimy, że większość czarnych dziur powstaje w wyniku gwałtownej eksplozji gwiazd, jednak to odkrycie poddaje tę drogę w wątpliwość. To bardzo interesujący układ z punktu badania ewolucji czarnych dziur. I każe zadać sobie pytanie, czy istnieje więcej układów potrójnych, mówi Kevin Burdge z MIT-u.
      Odkrycia dokonano przypadkiem. Naukowcy analizowali bazę Aladin Lite, repozytorium obserwacji astronomicznych wykonanych przez różne teleskopy naziemne i kosmiczne. Wykorzystali automatyczne narzędzie, by wyodrębnić z bazy obserwacje dotyczące tych samych fragmentów nieboskłonów. Szukali w nich śladów nieznanych czarnych dziur. Z ciekawości Burdge zaczął przyglądać się V404 Cygni. To czarna dziura znajdująca się w odległości 8000 lat od Ziemi i jedna z pierwszych potwierdzonych czarnych dziur. Od czasu potwierdzenia w 1992 roku V404 Cygni jest jedną z najlepiej przebadanych czarnych dziur, na jej temat powstało ponad 1300 prac naukowych.
      Burdge, oglądając jej zdjęcia, zauważył dwa źródła światła, zadziwiająco blisko siebie. Pierwsze ze źródeł zostało już wcześniej opisane jako niewielka gwiazda, której materiał jest wciągany przez V404 Cygni. Drugim ze źródeł nikt się dotychczas szczegółowo nie zainteresował. Burdge przystąpił do pracy. Dzięki danym z europejskiego satelity Gaia stwierdził, że to druga gwiazda, poruszająca się w tandemie z pierwszą. Prawdopodobieństwo, że to tylko przypadek, wynosi 1 do 10 milinów.
      Zatem ta druga gwiazda również jest powiązana grawitacyjnie z V404 Cygni. Jest jednak daleko od niej. Znajduje się w odległości 3500 jednostek astronomicznych, czyli 3500 razy dalej niż Ziemia od Słońca. Obserwacje tej gwiazdy zdradziły też wiek całego układu. Badacze stwierdzili, że gwiazda rozpoczyna proces zmiany w czerwonego olbrzyma, ma zatem około 4 miliardów lat.
      Jak się zatem okazuje, nawet – wydawałoby się – bardzo dobrze przebadane obiekty astronomiczne mogą skrywać niezwykłe tajemnice, których rozwikłanie znacząco zmienia i wzbogaca naszą wiedzę.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Dzięki pracy zawodowych astronomów, astronomów-amatorów oraz wykorzystaniu sztucznej inteligencji udało się odnaleźć niezwykły zaćmieniowy układ potrójny TIC 290061484. Odkryto go w danych z TESS (Transiting Exoplanet Survey Satellite). Układ złożony jest z dwóch gwiazd, które obiegają się w ciągu 1,8 doby, oraz trzeciej gwiazdy, obiegającej tę parę w ciągu 25 dni. To rekordowo ciasny układ potrójny. Dotychczasowym rekordzistą był ten odkryty w 1956 roku, gdzie dwie gwiazdy były obiegane przez trzecią w ciągu 33 dni.
      TIC 290061484 znajduje się w Gwiazdozbiorze Łabędzia i z naszej perspektywy wydaje się niemal płaski. Przez to każda z gwiazd przesłania swoje towarzyszki, blokując część ich światła. I to właśnie dzięki tym zmianom jasności udało się układ odnaleźć.
      Najpierw naukowcy przeanalizowali olbrzymią liczbę danych z TESS, odfiltrowując z nich te informacje, które świadczyły o istnieniu zaćmień. Następnie niewielka grupa astronomów-amatorów dokonała kolejnych analiz, poszukując w danych szczególnie interesujących przypadków. Ci amatorzy to osoby, które po raz pierwszy spotkały się online, biorąc udział w projekcie Planet Hunters. Zakończył się on w 2013 roku, ale grupa nie zaprzestała pracy. Skontaktowała się z zawodowymi astronomami i wspólnie zapoczątkowali projekt Visual Survey Group. Wspólnie szukamy głównie śladów kompaktowych układów składających się z wielu gwiazd, niezwykłych gwiazd zmiennych w układach podwójnych oraz nietypowych obiektów, mówi emerytowany profesor fizyki z MIT, Saul Rappaport.
      Nowo odkryty układ jest tak kompaktowy, że zmieściłby się wewnątrz orbity Merkurego. Jest stabilny tylko dlatego, że orbity wszystkich trzech gwiazd znajdują się niemal na tej samej płaszczyźnie. Dlatego grawitacja każdej z nich nie zakłóca zbytnio ruchu pozostałych. Orbity gwiazd są prawdopodobnie stabilne od milionów lat. Zdaniem profesora Rappaporta, gwiazdy uformowały się w ramach tego samego procesu, który jednocześnie uniemożliwił utworzenie się planet blisko którejkolwiek z nich. Jedyne planety, które potencjalnie mogłyby tam istnieć, to takie, krążące wokół całego układu, jakby był on jedną gwiazdą.
      Uczeni mówią, że z czasem wewnętrzne gwiazdy układu będą się starzały i zwiększały swoją objętość, co doprowadzi do ich połączenia się i powstania supernowej. Będzie to miało miejsce za 20-40 milionów lat.
      Naukowcy z niecierpliwością czekają na uruchomienie Nancy Grace Roman Space Telescope. Dostarczy on znacznie bardziej szczegółowych danych niż TESS. Dość wspomnieć, że to, co w TSS widzimy jako 1 piksel, w Roman Telescope będzie reprezentowane przez 36 000 pikseli. TESS daje nam szeroki ogląd całego nieboskłonu, Roman pozwoli zaś sięgnąć wzrokiem znacznie dalej, aż do centrum Drogi Mlecznej. Będzie też w stanie odnaleźć układy zaćmieniowe składające się ze znacznie większej liczby gwiazd. Uczeni liczą na to, że zaobserwuje on układy 6 i więcej gwiazd. Zanim odkryto potrójne układy zaćmieniowe, nawet nie przypuszczano, że one istnieją. Roman może pokazać nam nigdy wcześniej niewidziane obiekty i układy, dodaje Tamás Borkovits z Uniwersytetu w Segedynie na Węgrzech.


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Zachodzące w przestrzeni kosmicznej procesy, w czasie których powstają gwiazdy, mogą prowadzić też do pojawienia się obiektów o masie nieco większej od Jowisza. Badacze korzystający z Teleskopu Webba odkryli w mgławicy NGC 1333 aż sześć takich niezwykłych obiektów o masie planety, ale niepowiązanych grawitacyjne z żadną gwiazdą. Powstały w procesie takim, jak powstają gwiazdy, czyli zapadnięcia się gazu i pyłu, ale ich masa odpowiada masie planet. Badamy granice procesów formowania się gwiazd. Jeśli masz obiekt, który wygląda jak młody Jowisz, to czy jest możliwe, by w odpowiednich warunkach przekształcił się w gwiazdę? To ważne pytanie w kontekście zrozumienia powstawania gwiazd i planet, mówi główny autor badań, astrofizyk Adam Langeveld z Uniwersytetu Johnsa Hopkinsa.
      Dane z Webba sugerują, że odkryte obiekty mają masę od 5 do 10 razy większą niż masa Jowisza. To oznacza, że są jednymi z najlżejszych znanych nam obiektów, które powstały w procesach, w jakich powstają gwiazdy oraz brązowe karły, obiekty o masie 13–80 mas Jowisza, zbyt małej, by zaszła przemiana wodoru w hel.
      Wykorzystaliśmy niezwykła czułość Webba w zakresie podczerwieni, by odnaleźć najsłabiej świecące obiekty w młodej gromadzie gwiazd. Poszukujemy odpowiedzi na podstawowe dla astronomii pytanie o najmniej masywny obiekt podobny do gwiazdy. Okazuje się, że najmniejsze swobodne obiekty powstające w procesach takich, jak gwiazdy, mogą mieć masę taką, jak gazowe olbrzymy krążące wokół pobliskich gwiazd, wyjaśnia profesor Ray Jayawardhana, który nadzorował badania. Nasze obserwacje potwierdzają, że obiekty o masie planetarnej mogą powstawać w wyniku dwóch procesów. Jeden to kurczenie się chmur pyłu i gazu – czyli tak jak tworzą się gwiazdy – drugi zaś to powstawanie planet w znajdującym się wokół gwiazdy dysku akrecyjnym z pyłu i gazu. Tak właśnie powstał Jowisz i inne planety Układu Słonecznego, dodaje Jayawardhana.
      Najbardziej intrygującym z obiektów znalezionych przez Webba jest ten najlżejszy, o masie 5-krotnie większej od Jowisza. Obecność wokół niego dysku akrecyjnego wskazuje, że obiekt najprawdopodobniej uformował się takim procesie, w jakim powstają gwiazdy. Sam dysk również interesuje badaczy. Nie można wykluczyć, że mogą z nim pojawić się planety. To może być żłobek miniaturowego układu planetarnego, znacznie mniejszego niż nasz układ, dodaje Alexander Scholz, astrofizyk z University of St. Andrews.
      Co interesujące, Webb nie zarejestrował – a ma takie możliwości – żadnego obiektu o masie mniejszej niż 5 mas Jowisza. Może to oznaczać dolną granicę masy obiektów formujących się z zapadnięcia chmur pyłu i gazu.
      Autorzy badań przeanalizowali też profil światła wszystkich nowo znalezionych obiektów oraz dokonali ponownej analizy profilu światła 19 znanych brązowych karłów. Odkryli przy tym brązowego karła, który ma towarzysza o masie planety. To rzadkie znalezisko rzuca wyzwanie naszym modelom tworzenia się układów podwójnych.
      W najbliższych miesiącach naukowcy chcą zająć się analizą atmosfer nowo odkrytych obiektów i porównać je do brązowych karłów oraz gazowych olbrzymów.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Zespół Thiago Ferreiry z Uniwersytetu w São Paulo poinformował o odkryciu dwóch egzoplanet okrążających gwiazdę podobną do Słońca. Zwykle egzoplanety wykrywa się metodą tranzytu, badając zmiany jasności gwiazdy macierzystej, na tle której przechodzą. Tym razem odkrycia dokonano rejestrując zmiany prędkości radialnej gwiazdy spowodowane oddziaływaniem grawitacyjnym planet. Tą metodą odnaleziono dotychczas około 13% z ponad 5000 znanych nam egzoplanet.
      Naukowcy obserwowali gwiazdę HIP 104045. To gwiazda typu G5V, należy do ciągu głównego, a jej rozmiary i masa są zaledwie kilka procent większe od rozmiarów i masy Słońca. Temperatura powierzchni gwiazdy wynosi 5825 kelwinów, a jej wiek to 4,5 miliarda lat. Jest więc bardzo podobna do Słońca, gwiazdy typu G2V o temperaturze 5778 kelwinów i wieku ok. 4,6 miliarda lat.
      Planeta HIP 104045 c to super-Neptun położony blisko gwiazdy. Jej masa jest około 2-krotnie większa od masy Neptuna, znajduje się w odległości 0,92 jednostki astronomicznej od gwiazdy, którą obiega w ciągu 316 dni. Z kolei HIP 104045 b ma masę co najmniej połowy Jowisza, położona jest w odległości 3,46 j.a. od gwiazdy i obiega ją ciągu 2315 dni.
      Okazuje się, że gwiazda HIP 104045 jest podobna do Słońca również pod względem składu chemicznego, chociaż istnieją pewne różnice mogące wskazywać, że HIP 104045 mogła wchłonąć nieco materiału z planety skalistej.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...