Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Coryn A.L. Bailer-Jones z Instytutu Astronomii im. Maxa Plancka i Davide Farnocchia z Jet Propulsion Laboratory obliczyli, kiedy wysłane przez człowieka pojazdy zbliżą się do gwiazd innych niż Słońce. Obliczeń dokonali dla pojazdów Pioneer 10, Pioneer 11, Voyager 1 i Voyager 2. To wysłane w latach 70. sondy kosmiczne, jedyne dotychczas pojazdy, które opuściły lub opuszczą Układ Słoneczny.

Oba Pioneery już nie działają. Również i Voyagery przestaną pracować na długo, zanim znajdą się w pobliżu jakiejkolwiek gwiazdy. Jednak, jeśli nie zdarzy się nic nieprzewidzianego, w końcu dotrą do gwiazd.

Bailer-Jones i Farnocchia wykorzystali dane z satelity Gaia dotyczące położenia i prędkości 7,2 miliona gwiazd. Wyliczyli drogę gwiazd oraz drogę wszystkich czterech sond. Wstępnie wytypowali gwiazdy, do których sondy zbliżą się na odległość nie większą niż 15 parseków (1 pc to około 3,27 roku świetlnego). Dla każdej z sond było około 4500 takich gwiazd. Następnie dokonali dokładniejszych obliczeń, by określić najbardziej interesujące spotkania pomiędzy sondą a gwiazdą. W ciągu najbliższego miliona lat sony znajdą się w pobliżu około 60 gwiazd, w tym w 10 przypadkach będzie to odległość mniejsza niż 2 parseki.

Okazało się, że w trzech przypadkach (Voyagera 1, Voyagera 2 i Pioneera 11) pierwszą napotkaną gwiazdą będzie Proxima Centauri, gwiazda najbliższa Słońcu. Pierwszy dotrze do niej Voyager 1, który za 16 700 lat znajdzie się w odległości 1,072 parseka od Proximy. Następnie, za 18 300 lat Pioneer 11 podleci do niej na odległość 1,040 pc, a ostatni, w odległości 0,878 pc odwiedzi ją Voyager 2. Nastąpi to za 20 300 lat.

Pioneer 10 napotka swoją pierwszą gwiazdę za 33 800 lat i będzie to Ross 248, którą sonda minie w odległości 1,041 parseka. Pioneer 10 będzie za to pierwszą sondą, która wleci w obcy układ planetarny. Za 90 000 lat zbliży się ona bowiem na 0,23 pc do gwiazdy HIP 117795. Znajduje się ona w Gwiazdozbiorze Kasjopei w odległości 83,5 roku świetlnego od Słońca.

Pozostałe sondy także będą miały równie bliskie spotkania z gwiazdami. Voyager 1 za około 303 000 lat podleci na odległość 0,30 pc do gwiazdy TYC 3135-52-1, Voyager 2 będzie potrzebował 42 000 lat by minąć gwiazdę Ross 248 w odległości 0,53 pc, a Pioneer 11 minie TYC 992-192-1 w odległości 0,245 pc. Nastąpi to za 928 300 lat.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Żadna z tych sond nie doleci do żadnej z gwiazd. Ponieważ za 2 max 3 tys. lat ludzie przechwycą te sondy, aby je zbadać i umieścić w muzeach. Astroarcheologia będzie już kwitnąć w tym czasie, a możliwość zbadania takich antycznych sond będzie nielada gratką. Przyszli czytelnicy Kopalni Wiedzy będą też mogli odkopać mój prehistoryczny wpis, aby przekonać się, że miałem rację :D

Edited by Sławko
  • Thanks (+1) 1
  • Haha 1

Share this post


Link to post
Share on other sites
18 minut temu, Sławko napisał:

Astroarcheologia będzie już kwitnąć w tym czasie, a możliwość zbadania takich antycznych sond będzie nielada gratką.

Na pewno dojdą do wniosku, że te sondy zbudowano, by oddać cześć bogini płodności i zapewnić sobie obfite plony.

Share this post


Link to post
Share on other sites

Ostatnio przeczytałem ten artykuł o antenach zainstalowanych na Voyagerach. Znam się trochę na antenach i zawsze robiło to na mnie wrażenie, że operatorzy są w stanie kontrolować sondę na taką odległości oraz że nie stracili z nią kontaktu.

Quote

Voyager 1 is equipped with two antennas actually. A microwave antenna with a comparatively low gain of 7 dBi, and a parabolic dish with 48 dBi at X-band frequencies, and 36 dBi at S-band frequencies. Both are circularly polarized, and the main transmitter operates at only 22 watts. The low gain antenna went out of range in the 80s, but the high gain is still going strong.

https://www.rfvenue.com/blog/2014/12/14/voyager

Share this post


Link to post
Share on other sites
23 godziny temu, Sławko napisał:

Żadna z tych sond nie doleci do żadnej z gwiazd. Ponieważ za 2 max 3 tys. lat ludzie przechwycą te sondy, aby je zbadać i umieścić w muzeach. Astroarcheologia będzie już kwitnąć w tym czasie, a możliwość zbadania takich antycznych sond będzie nielada gratką. Przyszli czytelnicy Kopalni Wiedzy będą też mogli odkopać mój prehistoryczny wpis, aby przekonać się, że miałem rację :D

Za 2-3 tysiace lat to ludzi może nie będzie. Byt będzie wyłącznie inteligentną energią, falą!

ja mam taki podział:

  • wszechświat istnieje 13 mld lat
  • Ziemia istnieje 4,5 mld lat
  • życie na Ziemi istnieje 500 mln lat
  • człowiek istnieje 50 tys lat
  • cywilizacja ludzka ok. 5000 lat
  • zaawansowana technologia stworzona przez ludzi - 200 lat

co będzie za 3 tys lat?!
Jak ja się urodziłem to loty w kosmos były jeszcze w sferze sci-fi.
W latach 70-tych szczytem marzeń był kolorowy telewizor.
W latach 80-tych marzyłem o telefonie w domu i własnym samochodzie!
W latach 90-tych marzyłem, by choć raz w życiu polecieć samolotem.
Dzisiaj?

10 razy leciałem samolotem, posługuję się komputerem i smartfonem, z którego mogę z każdego zadupia Europy (i prawie świata) do mamy z życzeniami światecznymi! Samochód jest zwykłym narzędziem pracy, a na ścianie wisi 65" kolorowy płaski telewizor.  I jedynie PiS mnie wku#%@$!

Edited by Jotgie

Share this post


Link to post
Share on other sites

Po przybyciu do granic heliosfery te pojazdy są tak poobijane wiatrem słonecznym że pewnie mają kondycję 100 latka z zaawansowaną osteoporozą, a po przekroczeniu tej granicy poziom doznań zdecydowanie wzrośnie. Czy dadzą radę kilkadziesiąt tysięcy lat opierać się korozji wywołanej wiatrem międzygwiezdnym, i dotrzeć w jednym kawałku? Słabo to widzę.

Share this post


Link to post
Share on other sites
W dniu 28.12.2019 o 19:09, Jotgie napisał:

I jedynie PiS mnie wku[...]

Heh... Jedne bolszewiki odeszli, przyszli drugie, co udają że nimi nie są. Te odejdą, przyjdą następne, jeszcze bardziej zakłamane... itd. Pazerni ludzie zawsze znajdą sposób, aby żyć na koszt innych. I ta pazerność jest najgorsza w kontekście przetrwania ludzkości. Musimy oduczyć się pazerności, a nie jest to łatwe gdy sam rząd jej uczy i do niej zachęca.

19 godzin temu, tempik napisał:

te pojazdy są tak poobijane wiatrem słonecznym

Ciekawe byłoby zobaczyć w jakim obecnie są stanie. Ale myślę, że to może być widać bardziej pod mikroskopem niż gołym okiem. Wiatr słoneczny też słabnie w miarę oddalania się od Słońca. Już w 2012 roku Voyager I zanotował gwałtowny spadek wykrywalności wiatru słonecznego. Obecnie ma on na niego chyba marginalny wpływ.

Share this post


Link to post
Share on other sites
54 minuty temu, Sławko napisał:

Obecnie ma on na niego chyba marginalny wpływ

no ale pozostaje wiatr z innych gwiazd,kwazarów itd. Ma pewnie bardzo małą gęstość, ale energie osiągane przez pędzące protony to mokry sen pracowników największych akceleratorów :)

 

Share this post


Link to post
Share on other sites

1. Energie tych protonów wcale nie są takie duże, Jakby były, to by nam zdmuchnęły heliosferę. Pojedyncze bardzo wysokoenergetyczne protony są tak rzadkie, że być może jeszcze żaden nie trafił w sondę. A nawet jak trafi to będzie mniej szkodliwy niż rozpędzony okruch skalny o średnicy 0,1 mm.
2. Wiatr słoneczny jest tak rzadki, że przez 100 lat w przestrzeni kosmicznej mniej zniszczy sondę niż nasz ziemski wiatr w miesiąc.

Bardziej bym się martwił promieniowaniem elektromagnetycznym, które może uszkodzić elektronikę (choc sondy raczej są nieźle przed tym zabezpieczone)

Nie mam żadnych źródeł na potwierdzenie tego, co piszę. Opieram się na tym, co pamiętam z poprzednich artykułów, dyskusji i dorzucam do tego trochę swoich opisów w nadziei, że nie mijam się nadmiernie z prawdą, a może da to jakiś pogląd na to, jak wyglądają te "straszne warunki kosmiczne"

Share this post


Link to post
Share on other sites
On 12/28/2019 at 6:09 PM, Jotgie said:

życie na Ziemi istnieje 500 mln lat

Życie na Ziemi jest o wiele starsze. Najstarsze odnalezione skamieliny liczą sobie 3.4 miliarda lat.

http://newsroom.ucla.edu/releases/ancient-fossil-microorganisms-indicate-that-life-in-the-universe-is-common

 

Co do pojazdów kosmicznych, stara elektronika jest odporniejsza na promieniowanie ze względu na znaczne rozmiary elementów. Ale jakbym miał obstawiać, to bym jednak założył, że nie będą już działać i to nie ze względu na brak zasilania. Powinny jednak dotrzeć w jednym kawałku. Chociaż ryzyko kolizji na przestrzeni miliona lat będzie się kumulować i w końcu może się materializować.

Dwa parseki to więcej niż do Alfa Centauri, więc większość spotkań z innymi układami jest mocno naciągana. Artykuł wspomina też o bliższych przelotach w odległości mniejszej niż jeden rok świetlny. To już znacznie lepiej, ale wątpię, aby ktoś inny niż przyszła ludzkość, odnalazł kiedykolwiek te pojazdy. Nawet bardzo zaawansowana cywilizacja może mieć problem ze zlokalizowaniem tak małego i zimnego obiektu w takiej odległości od gwiazdy. My je możemy odzyskać, i prawdopodobnie to zrobimy, tak jak napisał @Sławkoo ile nie stracimy wiedzy o tych misjach.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Astronomowie z University of Warwick są współodkrywcami nowej klasy planet – ultragorących Neptunów. Co interesujące, pierwszy przedstawiciel tej klasy został znaleziony został w miejscu, gdzie planety rozmiarów Neptuna rzadko są znajdowane.
      Pierwszy ultragorący Neptun został odkryty w pobliżu gwiazdy LTT 9779. Obiega on ją w ciągu zaledwie 19 godzin. Jak obliczyli naukowcy, temperatura na powierzchni planety wynosi ponad 1700 stopni Celsjusza.
      Przy takiej temperaturze ciężkie pierwiastki jak żelazo mogą być jonizowane w atmosferze. To zaś stwarza unikatową okazję do badania składu chemicznego planet spoza Układu Słonecznego.
      Planeta LTT 9779B ma masę dwukrotnie większą od masy Neptuna, i jest o niego nieco większa. Ma zatem podobną gęstość. Stąd naukowcy wnioskują, że samo jej jądro ma masę 28 mas Ziemi, a jej atmosfera stanowi około 9% masy planety.
      Sam system liczy sobie 2 miliard y lat i ze względu na intensywne promieniowanie z gwiazdy nie należy planeta nie utrzyma swojej atmosfery zbyt długo.
      LTT 9779 to gwiazda podobna do Słońca położona w odległości 260 lat świetlnych od Ziemi. Jest bardzo bogata w metale, w jej atmosferze znajduje się dwukrotnie więcej żelaza niż w atmosferze Słońca. To zaś może wskazywać, że krążąca wokół niej planeta była w przeszłości znacznie większym gazowym olbrzymem, gdyż „lubią one” gwiazdy z dużą ilością żelaza.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Astrofizycy z Uniwersytetu Harvarda opublikowali na łamach The Astrophysical Journal Letters teorię, zgodnie z którą Słońce było kiedyś częścią układu podwójnego. Nasza gwiazda miała krążącego wokół niej towarzysza o podobnej masie. Jeśli teoria ta zostanie potwierdzona, zwiększy to prawdopodobieństwo istnienia Obłoku Oorta w takim kształcie, jak obecnie przyjęty i będzie można uznać teorię mówiącą, że tajemnicza Dziewiąta Planeta (Planeta X) została przez Układ Słoneczny przechwycona, a nie uformowała się w nim.
      Autorzy nowej teorii – profesor Avi Loeb i jego student Amir Siraj – postulują, że obecność towarzysza Słońca w klastrze, w którym gwiazdy się uformowały, pozwala wyjaśnić istnienie Obłoku Oorta. Naukowcy mówią, że dotychczasowe teorie pozostawiały wiele niewyjaśnionych zagadnień związanych z Obłokiem Oorta. Przyjęcie, że Słońce było częścią układu podwójnego, pozwala wyjaśnić liczne wątpliwości. Tym bardziej, że nie jest to wcale nieprawdopodobne. Większość gwiazd podobnych do Słońca zaczyna życie w układach podwójnych, mówią uczeni.
      Jeśli Obłok Oorta rzeczywiście został utworzony z obiektów przechwyconych dzięki pomocy towarzysza Słońca, to będzie to niosło istotne implikacje dla naszego rozumienia uformowania się Układu Słonecznego. Układy podwójne znacznie efektywniej przechwytują różne obiekty niż pojedyncze gwiazdy. Jeśli Obłok Oorta rzeczywiście tak się utworzył, będzie to znaczyło, że Słońce miało towarzysza o podobnej masie, stwierdza Loeb.
      Przyjęcie teorii o układzie podwójnym ma też znaczenie dla wyjaśnienia pojawienia się życia na Ziemi. Obiekty z zewnętrznych części Obłoku Oorta mogły odgrywać istotną rolę historii Ziemi. Mogły dostarczyć tutaj wodę i spowodować zagładę dinozaurów. Zrozumienie ich pochodzenia jest bardzo ważne, przypomina Siraj.
      Obaj naukowcy podkreślają, że ich teoria ma też znacznie dla wyjaśnienia zagadki Planety X. Dotyczy to nie tylko Obłoku Oorta ale również ekstremalnie dalekich obiektów transneptunowych, takich jak Dziewiąta Planeta. Nie wiadomo, skąd one pochodzą, jednak nasz model przewiduje, że jest więcej obiektów o orbitach takich jak Dziewiąta, stwierdza Loeb.
      Obecnie nie posiadamy instrumentów, które pozwoliłyby zaobserwować Obłok Oorta czy Dziewiątą Planetę. Jednak już w przyszłym roku ma zacząć działać Vera C. Rubin Observatory (VRO). Będzie ono w stanie zweryfikować istnienie Dziewiątej Planety. Jeśli VRO potwierdzi, że Dziewiąta Planeta istnieje i została przechwycona oraz zaobserwuje podobnie przechwycone planety karłowate, wtedy model binarny zyska przewagę nad obecnymi teoriami o początkach Słońca, mówi Siraj.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Very Large Telescope sfotografował pierwszy znany nam pozasłoneczny układ planetarny, w którym wokół młodszej wersji Słońca krążą dwa gazowe olbrzymy. Układ TYC 8998-760-1 znajduje się w odległości 300 lat świetlnych od Ziemi w Gwiazdozbiorze Muchy.
      Układ jest rzeczywiście niezwykły. Jego centrum stanowi gwiazda o masie Słońca, która liczy sobie zaledwie 17 milionów lat. Bliższa ze sfotografowanych planet znajduje się w odległości 160 jednostek astronomicznych od gwiazdy i ma masę 14-krotnie większą od masy Jowisza. Gazowy olbrzym jest więc na granicy masy pomiędzy planetą a brązowym karłem. Drugą zaś z planet dzieli od gwiazdy macierzystej aż 320 jednostek astronomicznych. Masa tej planety jest 6-krotnie większa od masy Jowisza.
      Odległości dzielące obie planety od gwiazdy są zatem olbrzymie w porównaniu z Układem Słonecznym. Neptun, planeta najbardziej odległa od Słońca, znajduje się w odległości 30 j.a. Z kolei średnia odległość Plutona to 39 j.a.
      Odkrycie to daje nam pogląd na środowisko bardzo podobne do Układu Słonecznego, ale na znacznie wcześniejszym etapie rozwoju, mówi główny autor badań, doktorant Alexander Bohn z holenderskiego Uniwersytetu w Leiden.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Czarnych dziur nie możemy bezpośrednio obserwować. Widzimy jednak gaz i pył, które świecą, gdy są przez nie wchłaniane. Wciągana do czarnej dziury materia wiruje na podobieństwo wody wpływającej do dziury, a nad i pod dziurą pojawia się tzw. korona, zbudowana z jasno świecącego ultragorącego gazu. Przed dwoma laty astronomowie ze zdumieniem zaobserwowali, że korona czarnej dziury w galaktyce 1ES 1927+654 szybko zniknęła, a później równie szybko jest pojawiła.
      Korony czarnych dziur mogą zmieniać jasność nawet 100-krotnie. Jednak w naszym przypadku doszło do bezprecedensowego wydarzenia. W ciągu zaledwie 40 dni jasność korony zmniejszyła się 10 000 razy. Niemal natychmiast korona zaczęła świecić coraz mocniej i po kolejnych 100 dniach jej blask był 20-krotniej silniejszy niż przed przygasaniem.
      Jako, że blask korony jest bezpośrednio związany z materią wchłanianą przez czarną dziurę, zaobserwowane zjawisko świadczyło o tym, że źródło materii zostało odcięte. Jednak co mogło być przyczyną tak spektakularnego wydarzenia?
      Międzynarodowy zespół astronomów z Izraela, USA, Wielkiej Brytanii, Chin, Kanady i Chile uważa, że przyczyną czasowego zniszczenia korony była zabłąkana gwiazda. Znalazła się ona zbyt blisko czarnej dziury i została rozerwana przez siły pływowe. Jej szybko poruszające się szczątki mogły spaść na dysk gazu otaczającego dziurę i chwilowo go rozproszyć.
      Zwykle nie obserwujemy tak dużych zmian w dysku akrecyjnym czarnej dziury, mówi główny autor badań, profesor Claudio Ricci z chilijskiego Uniwersytetu im. Diego Portalesa. To było tak dziwne, że początkowo sądziliśmy, iż coś jest nie tak z naszymi danymi. Gdy stwierdziliśmy, że są one prawidłowe, poczuliśmy dużą ekscytację. Nie mieliśmy jednak pojęcia, z czym mamy do czynienie. NIkt, z kim rozmawialiśmy, nie obserwował wcześniej takiego zjawiska.
      Hipotezę o rozerwanej gwieździe wzmacnia fakt, że kilka miesięcy przed zniknięciem korony zauważono, że dysk akrecyjny badanej czarnej dziury nagle pojaśniał w paśmie widzialnym. Być może był to wynik pierwszego zderzenia z resztkami gwiazdy.
      Najnowsze odkrycie jest również o tyle cenne, że naukowcy mogli całe zjawisko obserwować w czasie rzeczywistym. Oczywiście uwzględniając fakt, że galaktyka 1ES 1927+654 znajduje się w odległości 300 milionów lat świetlnych od Ziemi. Kiedy bowiem obserwatoria doniosły o pojaśnieniu dysku akrecyjnego zespół Ricciego zaczął obserwować czarną dziurę za pomocą kilku narzędzi. Wykorzystano teleskop NICER znajdujący się na Międzynarodowej Stacji Kosmicznej, Neil Gehrels Swift Observatory, NuSTAR oraz XMM-Newton. Wszystkie one zapewniały ciągły napływ danych przez wiele miesięcy, co pozwoliło na obserwowanie zniknięcia i pojawienia się korony.
      Autorzy badań nie wykluczają, że mogą istnieć inne wyjaśnienia obserwowanego zjawiska. Podkreślają, że jedną z wyróżniających się cech tego, co obserwowali był fakt, że spadek jasności korony nie był liniowy. Zmiany zachodziły w różnym tempie, czasami jasność korony spadała 100-krotnie w czasie zaledwie 8 godzin. Wiadomo, że korony czarnych dziur mogą tak bardzo zmieniać jasność, jednak w znacznie dłuższym czasie. Tak dramatyczne skoki, do których dochodziło całymi miesiącami, to coś niezwykłego.
      Te dane wciąż stanowią zagadkę. Ale to niezwykle ekscytujące, gdyż oznacza, że uczymy się czegoś nowego o wszechświecie. Sądzimy, że hipoteza o gwieździe jest dobra, ale wiemy, że jeszcze przez długi czas będziemy to analizowali, mówi współautor badań profesor Erin Kara z MIT.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy korzystający z Very Large Telescope (VLT) Europejskiego Obserwatorium Południowego poinformowali o... zniknięciu masywnej niestabilnej gwiazdy znajdującej się w jednej z galaktyk karłowatych. Naukowcy sądzą, że gwiazda stała się mniej jasna i przesłonił ją pył. Inna możliwa interpretacja jest taka, zapadła się tworząc czarną dziurę, bez stworzenia supernowej. Jeśli się to potwierdzi, będzie to pierwsza bezpośrednia obserwacja tak dużej gwiazdy kończącej życie w taki sposób, mówi doktorant Andrew Allan z Trinity College Dublin.
      W latach 2001–2011 różne grupy astronomów obserwowały w Galaktyce Kinman niezwykłą masywną gwiazdę. Wielokrotne obserwacje potwierdziły, że znajduje się ona na ostatnich etapach ewolucji. Allan i prowadzony przez niego międzynarodowy zespół naukowy z Irlandii, Chile i USA chcieli więcej dowiedzieć się o życiu masywnych gwiazd. Gdy jednak w 2019 roku skierowali VLT na gwiazdę, tej nie było tam, gdzie spodziewali się ją znaleźć.
      Galaktyka karłowata Kinman znajduje się w odległości około 75 milionów lat świetlnych od Ziemi w Konstelacji Wodnika. To zbyt duża odległość, by można było obserwować pojedyncze gwiazdy. Jednak możliwe jest odkrycie sygnatur niektórych z nich. Przez 10 lat kolejni astronomowie widzieli dowody, że znajduje się w niej gwiazda zmienna typu S Doradus. Tego typu gwiazdy są bardzo niestabilne, są ostatnim etapem życia gwiazd, których początkowa masa jest co najmniej 85 razy większa od masy Słońca. Żyją krótko i są niezwykle jasne. Gwiazda z Kinmana była 2,5 miliona razy jaśniejsza od Słońca.
      Allan i jego zespół stwierdzili, że gwiazda zniknęła. Byłoby czymś niezwykłym, gdyby tak masywna gwiazda zniknęła i nie pozostałaby po niej jasna supernowa, przyznaje Allan. Naukowcy zaczęli szukać gwiazdy. Wykorzystali w tym celu VLT oraz spektrograf ESPRESSO. Nic nie znaleźli. Użyli również instrumentu X-shooter. I dalej nic. Następnie zabrali się za analizę wieloletnich danych pochodzących z różnych źródeł.
      Dane pokazały, że w Galaktyce Kinman doszło do okresu intensywnych rozbłysków, które zakończyły się po roku 2011. Wiadomo, że gwiazdy zmienne typu S Doradus mogą pod sam koniec życia doświadczać silnych rozbłysków i znacznej utraty masy, a po tym procesie ich jasność dramatycznie spada.
      Naukowcy proponują dwa wyjaśnienia tego zjawiska oraz braku supernowej. Według pierwszego scenariusza po serii rozbłysków i utracie masy gwiazda znacznie straciła na jasności i może być częściowo przesłonięta pyłem. Drugie wyjaśnienie mówi o zapadnięciu się gwiazdy i powstaniu czarnej dziury. To byłoby niezwykłe, gdyż zgodnie z obowiązującymi obecnie teoriami, większość masywnych gwiazd kończy życie jako supernowa.

      « powrót do artykułu
×
×
  • Create New...