Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Na Słońcu zaobserwowano nowy rodzaj eksplozji

Rekomendowane odpowiedzi

Satelita Solar Dynamics Observatory (SDO) zaobserwował na Słońcu nowy rodzaj erupcji magnetycznej. Najpierw doszło do wyrzucenia z powierzchni Słońca plazmy, która po zatoczeniu łuku zaczęła opadać na powierzchnię naszej gwiazdy. Zanim jednak tam dotarła, wpadła w plątaninę linii pola magnetycznego i wywołała kolejną eksplozję. Naukowcy mówią o wymuszonej rekoneksji magnetycznej.

Na Słońcu już wcześniej obserwowano spontaniczne rekoneksje magnetyczne i wywołane nimi wyrzuty plazmy. Nigdy wcześniej nie obserwowano jednak, by jedna eksplozja była wywołana drugą.

To pierwsza obserwacja zewnętrznej rekoneksji magnetycznej zachodzącej pod wpływem czynnika zewnętrznego. Może być to bardzo użyteczne dla zrozumienia innych systemów, takich jak magnetosfera Ziemi i innych planet, innych namagnetyzowanych źródeł plazmy, w tym eksperymentów w laboratorium, gdzie plazmę trudno jest kontrolować, mówi Abhishek Srivastava z Indyjskiego Instytutu Technologicznego w Indiach.

Spontaniczną rekoneksję magnetyczną obserwowano już zarówno na Słońcu jak i wokół Ziemi. Przed 15 laty pojawiła się teoria mówiąca, że może zachodzić też zjawisko wymuszonej rekoneksji magnetycznej.

Nowy rodzaj eksplozji był ukryty w danych sprzed lat. Analiza danych zebranych przez SDO wykazała, że do wymuszonej rekoneksji magnetycznej doszło 3 maja 2012 roku.

 


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Dzięki Teleskopowi Hubble'a, niezwykle rzadkie, tajemnicze eksplozje kosmiczne, stały się jeszcze bardziej tajemnicze. Historia LFBOT (Luminous Fast Blue Optical Transient) rozpoczęła się od słynnej Krowy (AT2018cow), gdy zaobserwowano eksplozję podobną do supernowych, którą wyróżniała wyjątkowa jasność początkowa, bardzo szybkie tempo zwiększania jasności oraz błyskawiczne tempo przygasania. Najpierw naukowcy ogłosili, że rozwiązali zagadkę, rok później przyznali, że nie wiadomo, z czym mamy do czynienia, a w 2020 roku ogłoszono odkrycie nowej klasy eksplozji kosmicznych. Minęły kolejne trzy lata i tajemnica tylko się pogłębiła.
      Obecnie znamy 7 LFBOT. Najnowszym tego typu zjawiskiem jest Zięba, oficjalnie zwana AT2023fhn. Wydarzenie ma wszelkie cechy LFBOT: gwałtownie zwiększająca się jasność, intensywna emisja w paśmie światła niebieskiego, szybkie osiągnięcie maksymalnej jasności i przygaśnięcie w ciągu kilku dni. Jednak – w przeciwieństwie to wszystkich innych zjawisk tego typu – Zięba nie narodziła się w galaktyce. Analizy przeprowadzone za pomocą Teleskopu Hubble'a wykazały, że do eksplozji doszło pomiędzy dwiema galaktykami. Zięba była oddalona o 50 000 lat świetlnych od większej galaktyki spiralnej i 15 000 lat świetlnych od mniejszej galaktyki.
      Analizy Hubble'a były kluczowe, gdyż dzięki nim zobaczyliśmy, że to zjawisko różniło się od innych. Bez Hubble'a byśmy się tego nie dowiedzieli, mówi Ashley Chrime, główny autor artykułu, w którym opisano wyniki badań.
      Wedle jednej z hipotez LFBOT to rzadki rodzaj wybuchów zwanych kolapsem rdzenia gwiazdy (core-collapse supernowae). Ten typ eksplozji związany jest nierozerwalnie z olbrzymimi młodymi gwiazdami. Zatem do takich zdarzeń nie może dochodzić z dala od miejsc powstawania gwiazd, gdyż młoda gwiazda nie miałaby czasu na migrację. Wszystkie wcześniejsze LFBOT miały miejsce w ramionach galaktyk spiralnych. Natomiast Zięba pojawiła się z dala od jakiejkolwiek galaktyki. Im więcej dowiadujemy się o LFBOT, tym bardziej nas zaskakują. Wykazaliśmy, że LFBOT może mieć miejsce z dala od centrum najbliższej galaktyki, a lokalizacja Zięby jest inna, niż można by się spodziewać po jakiejkolwiek supernowej, dodaje Chrimes.
      Zjawisko AT2023fhn, Zięba, zostało zauważone przez Zwicky Transient Facility. To naziemny aparat o niezwykle szerokim kącie widzenia, który co dwa dni skanuje niebo nad całą półkulą północną. Automatyczny alert o zaobserwowaniu nowego zjawiska trafił do astronomów 10 kwietnia 2023 roku. Zespoły, które czekały na pojawienie się nowego LFBOT, natychmiast skierowały nań swoje instrumenty badawcze. Badania spektroskopowe przeprowadzone przez teleskop Gemini South wykazały, że temperatura Zięby wynosi niemal 20 000 stopni Celsjusza. Teleskop pozwolił też na oszacowanie odległości Zięby od Ziemi, dzięki czemu można było określić jasność zjawiska. Te informacje w połączeniu z danym z Chandra X-ray Observatory i Very Large Array pozwoliły na potwierdzenie, że mamy do czynienia z nowym LFBOT.
      Teraz dzięki Hubble'owi można wykluczyć, że LFBOT to kolaps rdzenia gwiazdy. Być może zjawiska te są spowodowane rozerwaniem gwiazdy przez czarną dziurę o masie od 100 do 1000 mas Słońca. Tutaj przydałoby się zbadanie miejsca wystąpienia Zięby za pomocą Teleskopu Webba. Mógłby on pomóc w stwierdzeni, czy Zięba nie pojawiła się w gromadzie kulistej lub halo jednej z dwóch sąsiadujących galaktyk. Gromady kuliste to najbardziej prawdopodobne miejsca występowania średnio masywnych czarnych dziur.
      Tak czy inaczej, wyjaśnienie zagadki LFBOT będzie wymagało odkrycia i zbadania większej liczby zjawisk tego typu.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Problem grzania korony słonecznej pozostaje nierozwiązany od 80 lat. Z modeli obliczeniowych wynika, że temperatura we wnętrzu Słońca wynosi ponad 15 milionów stopni, jednak na jego widocznej powierzchni (fotosferze) spada do około 5500 stopni, by w koronie wzrosnąć do około 2 milionów stopni. I to właśnie ta olbrzymia różnica temperatur pomiędzy powierzchnią a koroną stanowi zagadkę. Jej rozwiązanie – przynajmniej częściowe – zaproponował międzynarodowy zespół naukowy z Polski, Chin, USA, Hiszpanii i Belgii. Zdaniem badaczy za podgrzanie części korony odpowiadają... chłodne obszary na powierzchni.
      W danych z Goode Solar Telescope uczeni znaleźli intensywne fale energii pochodzące z dość chłodnych, ciemnych i silnie namagnetyzowanych regionów fotosfery. Takie ciemniejsze regiony mogą powstawać, gdy silne pole magnetyczne tłumi przewodzenie cieplne i zaburza transport energii z wnętrza naszej gwiazdy na jej powierzchnię. Naukowcy przyjrzeli się aktywności tych chłodnych miejsc, przede wszystkim zaś włóknom plazmy powstającym w umbrze, najciemniejszym miejscu plamy słonecznej. Włókna te to stożkowate struktury o wysokości 500–1000 kilometrów i szerokości około 100 km. Istnieją one przez 2-3 minuty i zwykle ponownie pojawiają się w tym samym najciemniejszym miejscu umbry, gdzie pola magnetyczne są najsilniejsze, wyjaśnia profesor Vasyl Yurchyshyn z New Jersey Institute of Technology (NJIT).
      Te ciemne dynamiczne włóka obserwowane były od dawna, jednak jako pierwsi byliśmy w stanie wykryć ich oscylacje boczne, które są powodowane przez szybko poruszające się fale. Te ciągle obecne fale w silnie namagnetyzowanych włóknach transportują energię w górę i przyczyniają się do podgrzania górnych części atmosfery Słońca, dodaje Wenda Cao z NJIT. Z przeprowadzonych obliczeń wynika, że fale te przenoszą tysiące razy więcej energii niż ilość energii tracona w aktywnych regionach atmosfery. Rozprzestrzenianie się tej energii jest nawet o 4 rzędy wielkości większa niż ilość energii potrzebna do utrzymania temperatury korony słonecznej.
      Wszędzie na Słońcu wykryto dotychczas różne rodzaje fal. Jednak zwykle niosą one ze sobą zbyt mało energii, by podgrzać koronę. Szybkie fale, które wykryliśmy w umbrze plam słonecznych to stałe i wydajne źródło energii, które może podgrzewać koronę nad plamami, wyjaśnia Yurchyszyn. Odkrycie to, jak mówią naukowcy, nie tylko zmienia nasz pogląd na umbrę plam, ale również jest ważnym krokiem w kierunku zrozumienia transportu energii i podgrzewania korony.
      Jednak, jak sami zauważają, zagadka grzania korony słonecznej nie została rozwiązania. Przepływ energii pochodzącej z plam może odpowiadać tylko za podgrzanie pętli koronalnych, które biorą swoje początki z plam. Istnieją jednak inne, wolne od plam, regiony Słońca powiązane z gorącymi pętlami koronalnymi. I czekają one na swoje wyjaśnienie, dodaje Cao.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W jednym z laboratoriów na Imperial College London odtworzono wirujący dysk plazmy, z tych, jakie otaczają czarne dziury i tworzące się gwiazdy. Eksperyment pozwala lepiej modelować procesy, zachodzące w takich dyskach, a naukowcy mają nadzieję, że dzięki temu dowiedzą się, jak rosną czarne dziury i powstają gwiazdy.
      Gdy materia zbliża się do czarnej dziury, jest rozgrzewana i staje się plazmą, czwartym stanem materii składającym się z naładowanych jonów i wolnych elektronów. Zaczyna też się obracać, tworząc dysk akrecyjny. W wyniku obrotu powstają siły odśrodkowe odrzucające plazmę na zewnątrz, jednak siły te równoważy grawitacja czarnej dziury.
      Naukowcy chcą poznać odpowiedź na pytanie, w jaki sposób czarna dziura rośnie, skoro materia – w formie plazmy – pozostaje na jej orbicie. Najbardziej rozpowszechniona teoria mówi, że niestabilności w polu magnetycznym plazmy prowadzą do pojawienia się tarcia, plazma traci energię i wpada do czarnej dziury.
      Dotychczas mechanizm ten badano za pomocą ciekłych wirujących metali. Za ich pomocą sprawdzano, co dzieje się, gdy pojawi się pole magnetyczne. Jednak metale te zamknięte są w rurach, co nie oddaje w pełni swobodnie poruszającej się plazmy.
      Doktor Vincente Valenzuela-Villaseca i jego zespół wykorzystali urządzenie Mega Ampere Generator for Plasma Implosion Experiments (MAGPIE) do stworzenia wirującego dysku plazmy. Za jego pomocą przyspieszyli osiem strumieni plazmy i doprowadzili do ich zderzenia, w wyniku czego powstała obracająca się kolumna plazmy. Odkryli, że im bliżej środka, tym plazma porusza się szybciej. To ważna cecha dysków akrecyjnych.
      MAGPIE generuje krótkie impulsy plazmy, przez co w utworzonym dysku dochodziło tylko do jednego obrotu. Jednak liczbę obrotów będzie można zwiększyć wydłużając czas trwania impulsów plazmy. Przy dłużej istniejących dyskach możliwe będzie też zastosowanie pól magnetycznych i zbadanie ich wpływu na plazmę. Zaczynamy badać dyski akrecyjne w nowy sposób, zarówno za pomocą Teleskopu Horyzontu Zdarzeń, jak i naszego eksperymentu. Pozwoli nam to przetestować różne teorie i sprawdzić, czy zgadzają się one z obserwacjami, mówi Valenzuela-Villaseca.
      Ze szczegółami badań można zapoznać się na łamach Physical Review Letters.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W odległości 180 milionów lat świetlnych od Ziemi miało miejsce wydarzenie, jakiego wcześniej nie obserwowano. Doszło tam do niezwykle rzadkiej eksplozji FBOT (Fast Optical Blue Transient), która do tego była bardzo płaska. Dotychczas zarejestrowano zaledwie 4 FBOT. Pierwszą eksplozję tego typu odkryto w 2018 roku i kolokwialnie nazwano Krową. Naukowcy wciąż nie rozumieją mechanizmu FBOT. Jakby tego było mało, obecna eksplozja miała wielkość Układu Słonecznego i była bardzo płaska, tymczasem eksplozje powinny mieć kształt sferyczny.
      Eksplozje gwiazd niemal zawsze mają kształt sfery, gdyż same gwiazdy są sferyczne. Tymczasem właśnie zarejestrowana krowa była najbardziej asferyczną ze wszystkich eksplozji. Kilka dni po jej zauważeniu astronomowie odkryli, że utworzyła ona dysk. Nie wykluczają, że powstał on z materiału wyrzuconego przez gwiazdę bezpośrednio przed wybuchem. Być może te niezwykle cechy nowego FBOT-a pomogą w wyjaśnieniu mechanizmu takich zjawisk.
      Bardzo mało wiemy o eksplozjach FBOT. Nie zachowują się tak, jak powinny zachowywać się eksplodujące gwiazdy. Są zbyt jasne i zbyt szybko ewoluują. Są po prostu dziwaczne. A ta nowa najnowsza czyni je jeszcze bardziej dziwacznymi, mówi doktor Justyn Maund z University of Sheffield. Oby to rzuciło nowe światło na nie. Nigdy nie sądziliśmy, że eksplozja może być tak asferyczna. Istnieje kilka możliwych wyjaśnień tego zjawiska. Być może gwiazda utworzyła dysk bezpośrednio przed eksplozją, albo FBOT to nieudana supernowa, gdzie jądro gwiazdy zapadło się tworząc czarną dziurę lub gwiazdę neutronową, która pochłonęła resztę gwiazdy, zastanawia się uczony.
      Odkrycia dokonano przypadkiem, gdy naukowcy zauważyli rozbłysk spolaryzowanego światła. Dokonali pomiary polaryzacji i zauważyli płaską eksplozję wielkości Układu Słonecznego. Zespół z Sheffield chce do wyszukiwania kolejnych FBOT wykorzystać Vera C. Rubin Observatory, wyjątkowy teleskop, który ma rozpocząć pracę w sierpniu bieżącego roku.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Wyniesienie ładunku w przestrzeń kosmiczną wymaga olbrzymich ilości paliwa. Loty pozaziemskie są przez to niezwykle kosztowne. Jednak nowy rodzaj silnika, zwanego silnikiem rakietowy z rotującą detonacją (RDRE – rotating detonation engine), może spowodować, że rakiety nie tylko będą zużywały mniej paliwa, ale będą też lżejsze i mniej skomplikowane. Problem jednak w tym, że w chwili obecnej silnik taki jest zbyt nieprzewidywalny, by zastosować go w praktyce.
      Naukowcy z University of Washington opublikowali na łamach Physical Review E opracowany przez siebie matematyczny model pracy takiego silnika. Dzięki temu inżynierowie mogą po raz pierwszy stworzyć testy pozwalające na udoskonalenie RDRE i spowodowanie, by były one bardziej stabilne.
      Badania nad silnikami rakietowymi z rotującą detonacją wciąż znajdują się na wczesnym etapie. Mamy olbrzymią ilość danych na temat tych silników, ale wciąż nie rozumiemy, jak to wszystko działa. Spróbowałem na nowo przepisać nasze dane, ale patrząc na nie pod kątem występujących wzorców, a nie z inżynieryjnego punktu widzenia i nagle okazało się, że to działa, mówi główny autor badań, doktorant James Koch.
      Konwencjonalny silnik rakietowy spala paliwo i wyrzuca je z tyłu, by uzyskać ciąg. RDRE spala paliwo w inny sposób. Składa się z koncentrycznych cylindrów. Paliwo wpływa pomiędzy cylindry i tam zostaje zapalone, co powoduje gwałtowne uwolnienie się ciepła w postaci fali uderzeniowej. To silny impuls pochodzący z gazów o znacznie wyższej temperaturze i ciśnieniu, który porusza się szybciej niż prędkość dźwięku, wyjaśnia Koch.
      Proces spalania to tak naprawdę eksplozja, ale po tym pierwszym gwałtownym impulsie można tam zaobserwować liczne stabilne impulsy, podczas których spalane jest paliwo. Generowane są w ten sposób wysokie ciśnienie i temperatura, które generują ciąg, dodaje.
      W konwencjonalnych silnikach mamy ponadto liczne podzespoły odpowiedzialne za kierowanie i kontrolowanie reakcji spalania tak, by można było ją wykorzystać do uzyskania ciągu. Jednak w RDRE te wszystkie podzespoły nie są potrzebne. Napędzana procesem spalania fala uderzeniowa w sposób naturalny przemieszcza się w komorze spalania. Minusem tego rozwiązania jest fakt, że nie można tego kontrolować. Gdy już wybuchnie, to reszta toczy się swoją drogą. To bardzo gwałtowny proces, dodaje Koch.
      Uczeni, chcąc stworzyć matematyczny model pracy takiego silnika, zbudowali taki niewielki silnik. Próbowali kontrolować różne jego parametry, takie jak np. rozmiary przestrzeni pomiędzy cylindrami. Wszystko nagrywali za pomocą szybkiej kamery. Mimo, że każdy z eksperymentów trwał jedynie 0,5 sekundy, to dzięki kamerze pracującej z prędkością 240 000 klatek na sekundę, byli w stanie szczegółowo obserwować cały proces. Na tej podstawie powstał opisujący go model matematyczny.
      To jedyny istniejący model opisujący zróżnicowane i złożone dynamiczne procesy zachodzące w silniku rakietowym z rotującą detonacją, mówi profesor matematyki J. Nathan Kutz.
      Model nie jest jeszcze gotowy do wykorzystania przez inżynierów. Moim zadaniem było jedynie odtworzenie zachowania impulsów, które widzieliśmy podczas eksperymentów. Upewnienie się, że wyniki obliczeń są takie same, jak wyniki eksperymentów. Zidentyfikowałem główne zjawiska fizyczne i określiłem ich interakcje. Teraz mogę dokonać opisu ilościowego. Gdy już będzie on gotowy, możemy zacząć dyskusje na temat ulepszania silnika, wyjaśnia Koch.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...