Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Ujścia rzek kryją tyle energii, co 2000 elektrowni atomowych. Ludzkość może ją pozyskać

Rekomendowane odpowiedzi

Jednym ze sposobów na pozyskiwanie odnawialnej energii jest wykorzystanie różnicy chemicznych pomiędzy słodką i słoną wodą. Jeśli naukowcom uda się opracować metodę skalowania stworzonej przez siebie technologii, będą mogli dostarczyć olbrzymią ilość energii milionom ludzi mieszkających w okolica ujścia rzek do mórz i oceanów.

Każdego roku rzeki na całym świecie zrzucają do oceanów około 37 000 km3 wody. Teoretycznie można tutaj pozyskać 2,6 terawata, czyli mniej więcej tyle, ile wynosi produkcja 2000 elektrowni atomowych.

Istnieje kilka metod generowania energii z różnicy pomiędzy słodką a słoną wodą. Wszystkie one korzystają z faktu, że sole złożone są z jonów. W ciałach stałych ładunki dodatnie i ujemne przyciągają się i łączą. Na przykład sól stołowa złożona jest z dodatnio naładowanych jonów sodu połączonych z ujemnie naładowanymi jonami chloru. W wodzie jony takie mogą się od siebie odłączać i poruszać niezależnie.

Jeśli po dwóch stronach półprzepuszczalnej membrany umieścimy wodę z dodatnio i ujemnie naładowanymi jonami, elektrony będą przemieszczały się od części ujemnie naładowanej do części ze znakiem dodatnim. Uzyskamy w ten sposób prąd.

W 2013 roku francuscy naukowcy wykorzystali ceramiczną błonę z azotku krzemu, w którym nawiercili otwór, a w jego wnętrzu umieścili nanorurkę borowo-azotkową (BNNT). Nanorurki te mają silny ujemny ładunek, dlatego też Francuzi sądzili, że ujemnie naładowane jony nie przenikną przez otwór. Mieli rację. Gdy po obu stronach błony umieszczono słoną i słodką wodę, przez otwór przemieszczały się niemal wyłącznie jony dodatnie.

Nierównowaga ładunków po obu stronach membrany była tak duża, że naukowcy obliczyli, iż jeden metr kwadratowy membrany, zawierający miliony otworów na cm2 wygeneruje 30 MWh/rok. To wystarczy, by zasilić nawet 12 polskich gospodarstw domowych.

Problem jednak w tym, że wówczas stworzenie nawet niewielkiej membrany tego typu było niemożliwe. Nikt bowiem nie wiedział, w jaki sposób ułożyć długie nanorurki borowo-azotkowe prostopadle do membrany.

Przed kilkoma dniami, podczas spotkania Materials Research Society wystąpił Semih Cetindag, doktorant w laboratorium Jerry'ego Wei-Jena na Rutgers University i poinformował, że jego zespołowi udało się opracować odpowiednią technologię. Nanorurki można kupić na rynku. Następnie naukowcy dodają je do polimerowego prekursora, który jest nanoszony na membranę o grubości 6,5 mikrometrów. Naukowcy chcieli wykorzystać pole magnetyczne do odpowiedniego ustawienia nanorurek, jednak BNNT nie mają właściwości magnetycznych.

Cetindag i jego zespół pokryli więc ujemnie naładowane nanorurki powłoką o ładunku dodatnim. Wykorzystane w tym celu molekuły są zbyt duże, by zmieścić się wewnątrz nanorurek, zatem BNNT pozostają otwarte. Następnie do całości dodano ujemnie naładowane cząstki tlenku żelaza, które przyczepiły się do pokrycia nanorurek. Gdy w obecności tak przygotowanych BNNT włączono pole magnetyczne, można było manewrować nanorurkami znajdującymi się w polimerowym prekursorze nałożonym na membranę.  Później za pomocą światła UV polimer został utwardzony. Na koniec za pomocą strumienia plazmy zdjęto z obu stron membrany cienką warstwę, by upewnić się, że nanorurki są z obu końców otwarte. W ten sposób uzyskano membranę z 10 milionami BNNT na każdy centymetr kwadratowy.

Gdy taką membranę umieszczono następnie pomiędzy słoną a słodką wodą, uzyskano 8000 razy więcej mocy na daną powierzchnię niż podczas eksperymentów prowadzonych przez Francuzów. Shan mówi, że tak wielki przyrost mocy może wynikać z faktu, że jego zespół wykorzystał węższe nanorurki, zatem mogły one lepiej segregować ujemnie naładowane jony.
Co więcej, uczeni sądzą, że membrana może działać jeszcze lepiej. Nie wykorzystaliśmy jej pełnego potencjału. W rzeczywistości tylko 2% BNNT jest otwartych z obu stron, mówi Cetindag. Naukowcy pracują teraz nad zwiększeniem odsetka nanorurek otwartych z obu stron membrany.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Chciałbym wiedzieć kto kryje tę energię i kim "oni" są.

Mała poprawka należy się chlorowi. To jony chloru, a nie chlorku są naładowane ujemnie.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Hm, nie widzę kto i kiedy płaci rachunek za prąd. Wygląda mi to na praktyczną relizację demona Maxwella, ergo nie może działać. Dodatkowo, separacja kationów i anionów spowoduje powstanie znacznej różnicy pH po stronach - dużo kwasu i zasady będzie można zobojętniać i powstanie z tego kolejna niemała porcja ciepła. Z elektrycznego punktu widzenia pompujemy elektrony 'pod prąd' różnicy napięć, tym samy zwiększając różnicę napięć. Samograj.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Teleskop Webba wykrył w atmosferze planety K2-18b molekuły zawierające węgiel, w tym metan oraz dwutlenek węgla. Odkrycie to kolejna wskazówka, że K2-18b może być planetą hiaceańską (hycean planet). To termin zaproponowany niedawno przez naukowców z Uniwersytetu w Cambridge na określenie hipotetycznej klasy planet. Pochodzi od połączenia słów „wodór” (hydrogen) i „ocean”. Oznacza potencjalnie nadające się do zamieszkania gorące planety pokryte oceanami, które posiadają bogatą w wodór atmosferę. Zdaniem brytyjskich uczonych mogą być bardziej powszechne niż planety typu ziemskiego.
      Jeśli przyjmiemy, że planety hiaceańskie rzeczywiście istnieją i stanowią nową klasę planet, oznacza to, że ekosfera – czyli obszar wokół gwiazdy, w którym istniejące planety mogą podtrzymać życie – jest większy, niż ekosfera oparta wyłącznie na istnieniu wody w stanie ciekłym.
      K2-18b krąży w ekosferze chłodnego karła K2-18 znajdującego się w odległości 120 lat świetlnych od Ziemi w Gwiazdozbiorze Lwa. Jest ona 8,6 razy bardziej masywna od Ziemi. Rozmiary plasują ją pomiędzy wielkością Ziemi a Neptuna. W Układzie Słonecznym nie istnieje żaden „mini-Neptun”, dlatego słabo rozumiemy takie światy. Jeśli zaś K2-18b jest rzeczywiście planetą hiaceańską, jeśli taki typ planet istnieje, mogą być one dobrym celem poszukiwania życia. Tradycyjnie życia poszukiwaliśmy na mniejszych skalistych planetach, jednak atmosfery większych światów hiaceańskich jest łatwiej badać, mówi Nikku Madhusudhan z Uniwersytetu w Cambridge. Kierował on pracami zespołu, który zaproponował istnienie światów hiaceańskich. Właśnie zresztą na podstawie badań K2-18b.
      Obecność w atmosferze tej planety dużych ilości metanu i dwutlenku węgla przy braku amoniaku wspiera hipotezę, że istnieje tam ocean przykryty bogatą w wodór atmosferę. Jakby tego było mało, wstępne dane przekazane przez Webba mogą wskazywać na obecność w atmosferze siarczku dimetylu (DMS). Na Ziemi związek ten jest wytwarzany wyłącznie przez organizmy żywe, a większość DMS obecnego w atmosferze naszej planety zostało wyemitowane przez fitoplankton. Jednak ewentualne potwierdzenie istnienia tego związku w atmosferze K2-18b wymaga dalszych badań.
      Mimo, że planeta znajduje się w ekosferze, a jej atmosfera zawiera molekuły z węglem, nie oznacza to jeszcze, że może na niej istnieć życie. Promień K2-18b jest o 2,6 razy większy od promienia Ziemi. To oznacza, że jej wnętrze prawdopodobnie stanowi lód poddany wysokiemu ciśnieniu, na jego powierzchni znajduje się ocean, a planetę otacza atmosfera cieńsza niż atmosfera Ziemi. Temperatura oceanu może być zbyt wysoka, by mogło powstać w nim życie. Być może jest na tyle wysoka, że nie ma tam wody w stanie ciekłym.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Albańscy ekolodzy odnieśli znaczące zwycięstwo. Jedna z największych swobodnie płynących rzek Europy, Wjosa, została uznana za park narodowy. Ochroną objęto 127 km2 rzeki, jej okolic i dopływów. Udało się więc ocalić wyjątkowe miejsce. Jeszcze 4 lata temu rząd Albanii planował wybudowanie na Wjosie 8 zapór, które miałyby wytwarzać energię. Zapory zmieniają naturalny przepływ rzek, prowadza do zmian temperatury wody, gromadzenia się osadów, zmian chemicznych i zakwitów toksycznych glonów.
      Wjosę czekałby więc podobny los, co inne europejskie rzeki, na których łącznie znajduje się ponad 1,2 miliona różnego typu barier, z których co najmniej 150 000 nie ma żadnego uzasadnienia ekonomicznego. Europa jest kontynentem z najbardziej pofragmentowanymi rzekami. W samej Polsce jest 77 000 barier.
      Gdy przegrodzimy rzekę, to właściwie nie ma już odwrotu. Zaczyna się proces głodzenia rzeki. Nic dziwnego, że jej mieszkańcy znikają, mówi Julian Olden z University of Washington, który bada wpływ zapór na rzeki w USA, Brazylii i Australii.
      Wjosa i jej główne dopływy płyną swobodnie przez ponad 400 kilometrów. Bieg rzeki – zwanej tam Aoös – rozpoczyna się w greckich górach Pindos, a kończy na adriatyckim wybrzeżu Albanii. Wjosa jest domem dla ponad 1100 gatunków zwierząt, z czego 13 jest zagrożonych w skali globalnej. Żyją tam też 2 gatunki globalnie zagrożonych roślin. Z rzeki korzystają m.in. zagrożony ścierwnik biały czy krytycznie zagrożony ryś bałkański. Rząd Albanii podjął decyzję o utworzeniu Parku Narodowego o powierzchni 12 727 hektarów, który obejmie 190 kilometrów biegu Wjosy, gdzie od wieków mieszka ponad 60 000 ludzi, powiedziała Mirela Kumbaro Furxhi, albańska minister turystyki i środowiska.
      Ekolodzy i naukowcy od dawna apelują o przywrócenie rzek naturze. W wielu krajach Europy likwiduje się coraz więcej barier wybudowanych w przeszłości na rzekach. W ciągu ostatnich 20 lat z europejskich rzek usunięto 4000 takich przeszkód. W samym tylko ubiegłym roku w 17 krajach zlikwidowano 239 barier, w tym ponad 100 w Hiszpanii. Powinno to pomóc migrującym gatunkom ryb, których europejska populacja spadła od 1970 roku aż o 93%. Zapory likwidowane są też w USA, gdzie niedawno usunięto 1200. zaporę. Jak mówią specjaliści, w niektórych systemach rzecznych Ameryki Północnej po usunięciu zapór doszło do „szokujących” zmian na lepsze. Nie wiadomo, jakich zmian możemy spodziewać się w Europie, gdzie rzeki są przegradzane nie od 100, a od 500 czy 1000 lat.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Po raz czwarty z rzędu światowe oceany pobiły rekordy ciepła. Kilkunastu naukowców z Chin, USA, Nowej Zelandii, Włoch opublikowało raport, z którego dowiadujemy się, że w 2022 roku światowe oceany – pod względem zawartego w nich ciepła – były najcieplejsze w historii i przekroczyły rekordowe maksimum z roku 2021. Poprzednie rekordy ciepła padały w 2021, 2020 i 2019 roku. Oceany pochłaniają nawet do 90% nadmiarowego ciepła zawartego w atmosferze, a jako że atmosfera jest coraz bardziej rozgrzana, coraz więcej ciepła trafia do oceanów.
      Lijing Cheng z Chińskiej Akademii Nauk, który stał na czele grupy badawczej, podkreślił, że od roku 1958, kiedy to zaczęto wykonywać wiarygodne pomiary temperatury oceanów, każda dekada była cieplejsza niż poprzednia, a ocieplenie przyspiesza. Od końca lat 80. tempo, w jakim do oceanów trafia dodatkowa energia, zwiększyło się nawet 4-krotnie.
      Z raportu dowiadujemy się, że niektóre obszary ocieplają się szybciej, niż pozostałe. Swoje własne rekordy pobiły Północny Pacyfik, Północny Atlantyk, Morze Śródziemne i Ocean Południowy. Co gorsza, naukowcy obserwują coraz większą stratyfikację oceanów, co oznacza, że wody ciepłe i zimne nie mieszają się tak łatwo, jak w przeszłości. Przez większą stratyfikację może pojawić się problem z transportem ciepła, tlenu i składników odżywczych w kolumnie wody, co zagraża ekosystemom morskim. Ponadto zamknięcie większej ilości ciepła w górnej części oceanów może dodatkowo ogrzać atmosferę. Kolejnym problemem jest wzrost poziomu wód oceanicznych. Jest on powodowany nie tylko topnieniem lodu, ale również zwiększaniem objętości wody wraz ze wzrostem jej temperatury.
      Ogrzewające się oceany przyczyniają się też do zmian wzorców pogodowych, napędzają cyklony i huragany. Musimy spodziewać się coraz bardziej gwałtownych zjawisk pogodowych i związanych z tym kosztów. Amerykańska Administracja Oceaniczna i Atmosferyczna prowadzi m.in. statystyki dotyczące gwałtownych zjawisk klimatycznych i pogodowych, z których każde przyniosło USA straty przekraczające miliard dolarów. Wyraźnie widać, że liczba takich zjawisk rośnie, a koszty są coraz większe. W latach 1980–1989 średnia liczba takich zjawisk to 3,1/rok, a straty to 20,5 miliarda USD/rok. Dla lat 1990–1999 było to już 5,5/rok, a straty wyniosły 31,4 miliarda USD rocznie. W ubiegłym roku zanotowano zaś 18 takich zjawisk, a straty sięgnęły 165 miliardów dolarów.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Największe zwierzę, jakie kiedykolwiek żyło na Ziemi, pochłania olbrzymią liczbę najmniejszych kawałków plastiku, donoszą naukowcy z Uniwersytetu Stanforda. Płetwal błękitny i inne walenie wchłaniają więcej mikroplastiku, niż dotychczas sądzono. I niemal cały mikroplastik, jaki trafia do ich organizmów, pochodzi z ich pokarmu, a nie z wody, którą filtrują.
      Uczeni ze Stanforda opublikowali na łamach Nature Communications wyniki badań, w czasie których skupili się na płetwalach błękitnych, płetwalach zwyczajnych oraz humbakach i ilości mikroplastiku, który trafia do ich organizmów. Naukowcy stwierdzili, że zwierzęta żerujące u wybrzeży Kalifornii pożywiają się głównie na głębokościach od 50 do 250 metrów. To jednocześnie ten obszar wód oceanicznych, w którym występuje najwięcej mikroplastiku. Na podstawie badań uczeni oszacowali, że każdego dnia przeciętny płetwal błękitny pochłania około 10 milionów kawałków mikroplastiku.
      Płetwale błękitne znajdują się niżej w łańcuchu pokarmowym, niż można by wnioskować z rozmiarów ich ciała. To oznacza, że są bliżej oceanicznego plastiku. Łączy je z nim jedno kryl. Kryl pochłania plastik, płetwale zjadają kryl, mówi współautor badań Matthew Savoca.
      Humbaki żywią się głównie rybami i pochłaniają codziennie około 200 000 kawałków mikroplastiku, chociaż te osobniki, które jedzą głównie kryl, spożywają dziennie do 1 miliona fragmentów. Z kolei płetwale zwyczajne, których dietę stanowi i kryl i ryby, mogą codziennie wchłaniać od 3 do 10 milionów kawałków mikroplastiku. Savoca zauważa, że w jeszcze gorszej sytuacji są te zwierzęta, które żerują w bardziej zanieczyszczonych wodach, jak np. Morze Śródziemne.
      Co więcej, mikroplastik trafia do organizmów waleni głównie z pożywieniem, a nie z filtrowaną przez nie wodą. A to dodatkowy powód do zmartwień. Specjaliści obawiają się, że przez mikroplastik walenie mogą nie otrzymywać odpowiedniej ilości składników spożywczych. Musimy przeprowadzić dodatkowe badania, by dowiedzieć się, czy kryl, który wchłonął mikroplastik, nie ma przypadkiem mniej tłuszczu, podobnie zresztą nie wiemy, czy mikroplastik zjadany przez ryby nie powoduje, że są one mniej pożywne. Pochłaniając mikroplastik zwierzęta te mogą bowiem otrzymywać sygnał, że już się najadły, stwierdza główna autorka badań, Shirel Kahane-Rapport. Jeśli ryby i kryl są mniej tłuste, oznacza to, że każde polowanie – które związane jest z dużym wydatkiem energetycznym – przynosi waleniom mniej kalorii, co może być dla nich szkodliwe. Jeśli obszar, w którym polują, jest pełen żywności, ale jest to żywność uboga w składniki odżywcze, to polowanie jest marnowaniem energii, zjadają śmieci. To tak, jakby trenować do maratonu, odżywiając się w tym czasie żelkami, dodaje Kahane-Rapport.
      Goldbogen Lab, w którym prowadzono badania, od ponad dekady zbiera i analizuje dane dotyczące waleni. Naukowcy badają jak wiele walenie jedzą, w jaki sposób się odżywiają, dlaczego są tak duże, jak pracują ich serca. Teraz zakres badań rozszerzono o mikroplastik, który jest coraz poważniejszym problemem w morzach i oceanach. Mamy tutaj zwierzęta, których populacja z olbrzymim trudem odradza się po okresie polowań, a które muszą mierzyć się z wieloma innymi problemami wywoływanymi przez człowieka, piszą autorzy badań.
      Problem plastiku w morskim łańcuchu pokarmowym znany jest od 50 lat. Dotychczas mikroplastik został znaleziony w organizmach co najmniej 1000 morskich gatunków. Jego wpływ na walenie jest szczególnie niepokojący, gdyż zwierzęta ta pochłaniają jego olbrzymie ilości.
      Uczeni będą chcieli zbadać, co dzieje się z mikroplastikiem trafiającym do organizmów waleni. Może on podrażniać żołądek. Może trafiać do krwioobiegu. A może jest w całości wydalany. Tego wciąż nie wiemy, przyznaje Kahane-Rapport. Naukowcy zbadają też, jak mikroplastik wpływa na wartość odżywczą gatunków kluczowych nie tylko dla waleni, ale i innych zwierząt ważnych z ekologicznego punktu widzenia.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Super-ziemia TOI-1452 b może być w całości pokryta oceanem, uważa międzynarodowy zespół astronomów. Na łamach The Astronomical Journal uczeni poinformowali o odkryciu planety krążącej wokół czerwonego karła TOI-1452 znajdującego się w układzie podwójnym w Gwiazdozbiorze Smoka. Układ ten jest odległy od Ziemi o 99,5 lat świetlnych.
      TOI-1452 b jest nieco większa i bardziej masywna od naszej planety. Obiega swoją gwiazdę w ciągu 11 dni. Mimo że jej gwiazda jest mniejsza i chłodniejsza od Słońca, to planeta otrzymuje mniej więcej dwukrotnie więcej promieniowania niż Ziemia. Jest go tyle, że odpowiada ono temperaturze 52,85 stopni Celsjusza na powierzchni planety.
      Woda stanowi mniej niż 1% masy Ziemi. Gęstość niektórych egzoplanet wskazuje, że w większym stopniu zbudowane są z lżejszych materiałów niż nasza planeta. Najprawdopodobniej znaczy to, że zawierają więcej wody.
      TOI-1452 to jedna z najlepszych znanych nam kandydatek na wodny świat. Jej średnica i masa wskazują, że ma ona znacznie mniejszą gęstość niż planeta zbudowana ze skał i metali, jak Ziemia, stwierdził główny autor badań, Charles Cadieux. Analizy wykazały, że planeta może aż w 30% składać się z wody.
      TOI-1452 b z pewnością będzie badana za pomocą Teleskopu Webba. Znajduje się bowiem stosunkowo blisko Ziemi, co ułatwia badanie jej atmosfery, ponadto jest w takim miejscu nieboskłonu, który jest widoczny dla Webba przez większą część roku. Jak tylko zarezerwujemy sobie czas obserwacyjny na JWST rozpoczniemy pracę nad lepszym zrozumieniem tej planety, dodaje profesor René Doyon z Uniwersytetu w Montrealu.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...