Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Mistrz Go Lee Sedol przechodzi na emeryturę. Powód: rozwój sztucznej inteligencji

Recommended Posts

Południowokoreański mistrz Go Lee Sedol, który zdobył ogólnoświatowy rozgłos w 2016 roku po słynnym meczu ze sztuczną inteligencją, odszedł na emeryturę. Przypomnijmy, że w 2016 roku sztuczna inteligencja o nazwie AlphaGo pokonała Lee Sedola stosunkiem 4:1. Wcześniej program rozgromił innych graczy w Go, a Sedol był jedynym, któremu udało się z nim wygrać partię.

Sedol, który wkrótce skończy 37 lat, oświadczył, że rezygnuje z profesjonalnej kariery w Go, gdyż w związku z olbrzymimi postępami sztucznej inteligencji, nie może być czołowym graczem, nawet gdyby był najlepszym z ludzi. "Nawet gdybył był numerem jeden, to będzie ktoś, kogoś nie będę w stanie pokonać", powiedział Sedol w wywiadzie dla agencji prasowej Yonhap.

Lee Sedol pozostaje jedynym człowiekiem, któremu udało się pokonać AlphaGo. Mistrz uważa, że wygrał dzięki błędowi w oprogramowaniu AlphaGo. Podczas meczu, który odbył się 13 marca 2016 roku grający białymi Lee wykonał nietypowy 78. ruch. Wprawił on AlphaGo w zakłopotanie i system wykonał bardzo słaby ruch 79., który niespodziewanie dał Sedolowi przewagę. Ten jej nie zmarnował i po jakimś czasie AlphaGo poddał partię.

Specjaliści uznają ruch 78. za „błyskotliwy, boski”, jednak sam Sedol twierdzi, że wygrał partię, gdyż AlphaGo nie potrafił prawidłowo zareagować na jego nietypowe zagrania. Mój ruch 78. nie był zagraniem, na który należało reagować bezpośrednio. Takie błędy zdarzają się w programie Fine Art (to chiński program komputerowy do gry w Go). Fine Art jest trudny do pokonania, nawet jeśli ma handicap 2 kamieni. Jeśli jednak przegrywa, to w bardzo dziwaczny sposób. To błąd w oprogramowaniu, wyjaśnia Sedol.

Mistrz przyznaje, że był sfrustrowany po pierwszych trzech przegranych partiach. Rzadko czytam w internecie informacje na swój temat. Byłem jednak ciekaw, jak bardzo źle ludzie mówią o mnie po tym, jak przegrałem trzy pierwsze partie. Z zaskoczeniem zauważyłem, że niewiele osób mnie krytykowało. Szczerze mówiąc, już przed rozpoczęciem meczu czułem, że mogę przegrać. Ludzie z DeepMind Technologies byli od samego początku bardzo pewni swego, przyznaje.

Co ciekawe, jeszcze w grudniu Lee planuje zmierzyć się z kolejnym systemem sztucznej inteligencji grającym w Go. Program HanDol, opracowany w 2018 roku przez firmę NHN Entertainment Corp. już wygrał z 5 czołowymi graczami z Korei Południowej.
Nadchodzący mecz Lee Sedol rozpocznie z przewagą dwóch kamieni, które zostaną ustawione na planszy przed rozpoczęciem gry. Kolejne handikapy będą ustalane w zależności od wyniku pierwszej partii. Sądzę, że nawet z przewagą dwóch kamieni przegram z HanDolem. Ostatnio nie czytuję informacji ze świata Go. Chcę w spokoju przygotować się go rozgrywki i zrobię co w mojej mocy, stwierdza Sedol.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Stworzony przez NVIDIĘ algorytm sztucznej inteligencji GameGAN był w stanie samodzielnie stworzyć grę PAC-MAN. System nie miał dostępu do kodu gry. Zaprezentowano mu jedynie 50 000 fragmentów wideo. Na tej podstawie sztuczna inteligencja samodzielnie stworzyła w pełni funkcjonalną warstwę graficzną PAC-MANa.
      PAC-MAN to jedna z najpopularniejszych gier komputerowych. Ta klasyka wirtualnej rozrywki powstała przed 40 laty w Japonii. Podbiła świat w czasach salonów gier i automatów.
      Osiągnięcie inżynierów NVIDII oznacza, że nawet bez znajomości podstawowych zasad rozgrywki ich algorytm jest w stanie samodzielnie je zrekonstruować oraz stworzyć własną grę. GameGAN to pierwsza sieć neuronowa, która wykorzystuje technologię GAN (generatywne sieci współzawodniczące) do stworzenia gry. GAN korzysta z dwóch niezależnych sieci neuronowych. Jedna to dyskryminator, druga zwana jest generatorem. Obie współzawodniczą ze sobą.
      Zwykle sieci neuronowe uczą się np. rozpoznawać koty na zdjęciach dzięki przeanalizowaniu olbrzymiej liczby zdjęć kotów. Metoda ta jest po pierwsze czasochłonna, po drugie zaś wymaga, by wszystkie użyte do treningu zdjęcia zostały ręcznie prawidłowo oznaczone przez człowieka. Dopiero po analizie olbrzymiej bazy danych sieć jest w stanie rozpoznać kota na zdjęciu, z którym wcześniej nie miała do czynienia. GAN wymaga znacznie mniej czasu i pracy. w tej koncepcji generator stara się stworzyć zdjęcie kota jak najbardziej przypominającego kota, a dyskryminator przegląda zdjęcia kotów i decyduje, które jest prawdziwe, a które fałszywe. W wyniku tego współzawodnictwa generator tworzy coraz doskonalsze zdjęcia, a dyskryminator coraz lepiej rozpoznaje koty.
      Teraz po raz pierwszy technika taka została użyta do stworzenia nadającego się do użycia funkcjonalnego layoutu gry. Chcieliśmy sprawdzić, czy sztuczna inteligencja jest w stanie nauczyć się reguł obowiązujących w środowisku jedynie patrząc na przebieg gry. I to jej się udało, mówi główny autor projektu Seung-Wook Kim.
      Osiągnięcie inżynierów NVIDII oznacza, że autorzy gier będą mogli wykorzystać sztuczną inteligencję do szybszego i łatwiejszego tworzenie kolejnych jej etapów, a badacze sztucznej inteligencji będą łatwiej mogli stworzyć symulatory do treningu autonomicznych systemów. W przyszłości w ten sposób mogą powstać systemy sztucznej inteligencji, które samodzielnie – tylko na podstawie nagrań wideo – nauczą się przepisów ruchu drogowego czy zasad fizyki. GameGAN to pierwszy krok w tym kierunku, dodaje Sanja Fidler, dyrektor laboratorium NVIDII w Toronto.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Algorytmy do maszynowego uczenia się pozwoliły specjalistom z MIT zidentyfikować nowe potężne antybiotyki. Podczas testów laboratoryjnych nowe związki zabiły jedne z najtrudniejszych w zwalczaniu bakterii chorobotwórczych, w tym szczepy oporne na działanie wszystkich znanych antybiotyków. Jakby tego było mało, umożliwiły one zwalczenie infekcji w dwóch różnych mysich modelach chorób.
      Naukowcy wykorzystali model komputerowy, który pozwala na przeanalizowanie w ciągu zaledwie kilku dni działania setek milionów związków chemicznych. Taka analiza pozwala na wybór do dalszych badań najbardziej obiecujących środków. Uczeni szukają związków, które zabijają bakterie w inny sposób, niż obecnie znane antybiotyki.
      Chcieliśmy stworzyć platformę, która pozwoliłaby nam na wykorzystanie sztucznej inteligencji do zapoczątkowania nowej epoki w odkrywaniu antybiotyków. Dzięki takiemu podejściu natrafiliśmy na zadziwiającą molekułę, która jest jednym z najpotężniejszych znanych antybiotyków, mówi profesor James Collins z MIT.
      Przy okazji zidentyfikowano wiele innych obiecujących kandydatów na antybiotyki. Substancje te dopiero będą testowane. Uczeni uważają, że ich model można wykorzystać również do projektowania nowych leków.
      Model maszynowego uczenia się pozwala nam masowo badać związki chemiczne. Przeprowadzenie takich badań w laboratorium byłoby niemożliwe ze względu na koszty, dodaje Regina Barzilay z Computer Science and Artificial Intelligencje Laboratory (CSAIL) na MIT.
      Przez ostatnich kilkadziesiąt lat wynaleziono niewiele nowych antybiotyków, a większość z tych nowych to lekko istniejące wersje wcześniej istniejących. Obecnie wykorzystywane metody badania związków chemicznych pod kątem ich przydatności do produkcji antybiotyków są niezwykle kosztowne, wymagają dużo czasu i zwykle pozwalają zbadać wąską grupę mało zróżnicowanych środków.
      Stoimy w obliczu rosnącej antybiotykooporności. Z jednej strony problem ten spowodowany jest coraz większą liczbą antybiotykoopornych patogenów, a z drugiej – powolnym postępem na tym polu, mówi Collins. Coraz częściej pojawiają się głosy, że ludzie mogą zacząć umierać na choroby zakaźne, na które nie umierali od dziesięcioleci. Dlatego też niezwykle pilnym zadaniem jest znalezienie nowych antybiotyków. Niedawno informowaliśmy o odkryciu antybiotyków, które zabijają bakterie w niespotykany dotąd sposób.
      Pomysł wykorzystania komputerów do identyfikowania potencjalnych antybiotyków nie jest nowy, dotychczas jednak obliczenia takie były albo niezwykle czasochłonne, albo niedokładne. Nowe sieci neuronowe znacznie skracają czas obliczeń.
      Naukowcy z MIT dostosowali swój model obliczeniowy tak, by poszukiwał związków chemicznych mogących być zabójczymi dla E. coli. Swój model trenowali na około 2500 molekuł, w tym na około 1700 lekach zatwierdzonych przez FDA i około 800 naturalnych produktach o zróżnicowanych strukturach i działaniu.
      Po zakończonym treningu sieć neuronowa została przetestowana na należącej do Broad Institute bazie Drug Repository Hub, która zawiera około 6000 związków. Algorytm znalazł tam molekułę, która miała strukturę inną od wszystkich istniejących antybiotyków i o której sądził, że będzie wykazywała silne działanie antybakteryjne. Naukowcy najpierw poddali tę molekułę badaniom za pomocą innego modelu maszynowego i stwierdzili, że prawdopodobnie jest ona mało toksyczna dla ludzi.
      Halicyna, bo tak nazwano tę molekułę, była w przeszłości badana pod kątem jej przydatności w leczeniu cukrzycy. Teraz naukowcy przetestowali ją na dziesiątkach szczepów bakterii pobranych od ludzi. Okazało się, że zabija ona wiele antybiotykoopornych patogenów, w tym Clostridium difficile, Acinetobacter bumannii czy Mycobacterium turebculosis. Jedynym patogenem, który oparł się jej działaniu była Pseudomonas aeruginosa, powodująca trudne w leczeniu choroby płuc.
      Po pomyślnych testach in vitro rozpoczęto badania na zwierzętach. Halicynę użyto do leczenia myszy zarażonej wcześniej opornym na działanie wszystkich znanych antybiotyków szczepem A. baumannii. Halicyna w ciągu 24 godzin zwalczyła infekcję u zwierząt.
      Wstępne badania sugerują, że nowy antybiotyk działa poprzez zaburzanie u bakterii możliwości utrzymania gradientu elektrochemicznego w błonie komórkowej. Gradient ten jest niezbędny m.in. do wytwarzania molekuły ATP, niezbędnego nośnika energii. Bakterie pozbawione ATP giną. Naukowcy uważają, że bakteriom będzie bardzo trudno nabyć oporność na taki sposób działania antybiotyku.
      Podczas obecnych badań uczeni stwierdzili, że w ciągu 30 dni leczenia u E. coli w ogóle nie rozwinęła się oporność na halicynę. Tymczasem np. oporność na cyprofloksacynę zaczyna się u E. coli rozwijać w ciągu 1-3 dni od podania, a po 30 dniach bakteria jest 200-krotnie bardziej oporn działanie tego środka.
      Po zidentyfikowaniu halicyny naukowcy wykorzystali swój model do przeanalizowania ponad 100 milionów molekuł wybranych z bazy ZINC15, w której znajduje się około 1,5 miliarda molekuł. Analiza trwała trzy doby, a sztuczna inteligencja znalazła 23 molekuły, które są niepodobne do żadnego istniejącego antybiotyku i nie powinny być toksyczne dla ludzi. Podczas testów in vitro stwierdzono, że 8 z tych molekuł wykazuje właściwości antybakteryjne, z czego 2 są szczególnie silne. Uczeni planują dalsze badania tych molekuł oraz analizę pozostałych związków z ZINC15.
      Naukowcy planują dalsze udoskonalanie swojego modelu. Chcą np. by poszukiwał on związków zdolnych do zabicia konkretnego gatunku bakterii, a oszczędzenia bakterii korzystnych dla ludzi.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Dr inż. Marcin Sieniek jest absolwentem Akademii Górniczo-Hutniczej w Krakowie i tamtejszego Uniwersytetu Ekonomicznego. Na AGH otrzymał również doktorat z informatyki za badania w dziedzinie nauk obliczeniowych. W Google Health zajmuje się pracą nad zastosowaniem sztucznej inteligencji w diagnozie raka piersi. Oprócz Google pracował w zespole Autopilota Tesli oraz prowadził w Polsce startup z dziedziny social learning. Prywatnie gra w zespole rockowym i prowadzi bloga expat-pozytywnie.pl.
      Jak trafia się do Google Health i dlaczego właśnie tam? To dość niszowa działka w działalności Google'a czy Alphabetu i wymagająca chyba szczególnych umiejętności?
      W Google Health pomocne są przede wszystkim różnorodne umiejętności i doświadczenia. W Google pracuję od ponad 5 lat, początkowo jako inżynier oprogramowania w polskim biurze firmy. Jednak już od samego początku pracowałem nad wykorzystywaniem sztucznej inteligencji, a konkretniej określonych technik - tzw. uczenia maszynowego. Później kontynuowałem pracę nad moimi projektami w amerykańskich biurach Google. Dopiero wtedy, szukając ciekawych wyzwań wewnątrz firmy, znalazłem możliwość dołączenia do Google Research - działu firmy skupiającego się na badaniach nad rozwojem sztucznej inteligencji i jej wykorzystaniem w różnych dziedzinach życia.
      Tam powstawał właśnie mały zespół badawczy zajmujący się zastosowaniem głębokiego uczenia maszynowego właśnie w radiologii. Proces selekcji do zespołu był wymagający - sprawdzano m.in. znajomość technik sztucznej inteligencji oraz udokumentowane doświadczenie w badaniach biotechnologicznych co akurat zupełnie przypadkiem było przedmiotem jednej z moich prac na studiach doktoranckich.
      Pod koniec 2018 roku mój zespół stał się częścią nowego działu Google Health - łączącego w sobie nie tylko inżynierów oprogramowania, ale także doświadczenie i wiedzę lekarzy, prawników, etyków i specjalistów od procedur medycznych.
      Jest Pan jednym ze współtwórców algorytmu, który lepiej diagnozuje raka piersi niż lekarze. Jak powstaje i działa taki algorytm?
      Algorytm taki powstaje podobnie jak np. technologia która pozwala rozpoznawać co znajduje się na zdjęciu. Algorytm sztucznej inteligencji jest „szkolony” na istniejącym zbiorze danych, gdzie obrazom (w tym wypadku medycznym, czyli zdjęciom z mammografii) towarzyszą oznaczenia (w tym wypadku: czy wykryto nowotwór złośliwy i ewentualna informacja o jego umiejscowieniu). Takie zbiory danych powstają w ramach normalnej praktyki w szpitalach i centrach programów przesiewowych, jednak często na tym ich zastosowanie się kończy.
      Takie algorytmy działają na bazie mechanizmu zwanego „sieciami neuronowymi”. Ich struktura inspirowana jest tym w jaki sposób informacje przetwarza ludzki mózg. Proces nauki przypomina w istocie proces w którym człowiek uczy się rozróżniać obrazy (np. dziecko rozpoznawać koty i psy, a radiolog rozpoznawać groźne guzy od nieszkodliwych zmian). W odróżnieniu jednak od radiologa, który w toku treningu może zobaczyć kilkadziesiąt-kilkaset nowotworów, komputer jest w stanie przetworzyć dziesiątki tysięcy przykładów w przeciągu jedynie kilku godzin.
      Taki „wytrenowany” algorytm stosuje się następnie do oceny osobnego, nowego zbioru danych. Następnie inżynierowie mogą wprowadzić poprawki w procesie uczenia się albo w budowie modelu i powtórzyć testy. Dopiero gdy wyniki działania modelu zadowalają jego twórców, sprawdza się go na kolejnym zbiorze danych, np. pochodzących z innej instytucji lub z innego źródła.
      Na tym właśnie etapie postanowiliśmy opublikować nasz artykuł w Nature.
      Na tym jednak nie kończymy pracy. Zanim taki model znajdzie praktyczne zastosowanie w szpitalach na całym świecie, muszą zostać przeprowadzone próby kliniczne i o na różnych populacjach pacjentów, musimy także ocenić skuteczność modelu na danych pochodzących z innych aparatów mammograficznych.
      Niejednokrotnie informowaliśmy o systemach SI radzących sobie w pewnych zadaniach lepiej od lekarzy. Skąd się bierze ta przewaga sztucznej inteligencji?
      Warto powiedzieć, że to „potencjalna” przewaga. Raczej patrzymy na to jako na wsparcie i usprawnienie procesów diagnostycznych lekarzy. To potencjalne usprawnienie bierze się kilku źródeł: po pierwsze, w procesie uczenia się algorytm może przeanalizować dużo więcej przypadków niż pojedynczy lekarz w procesie nauki (z drugiej strony ludzie wyciągają wnioski szybciej – maszyna potrzebuje więcej przykładów). Co więcej automat nie ma skłonności do zaspokojenia swoich poszukiwań jednym „znaleziskiem” i jest mniejsze ryzyko, że umknie mu inne, często ważniejsze. Wreszcie, system sztucznej inteligencji pozwala na „nastrojenie” go na pożądany przez daną placówkę medyczną poziom czułości i swoistości.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W ostatni piątek w Instytucie Fizyki PAN zakończyła się konferencja „INNO THINKING, Nauka dla Społeczeństwa 2.0”. Zaprezentowane na niej trzy projekty badawcze mogą zrewolucjonizować medycynę i ochronę środowiska.
      Sztuczna inteligencja w diagnostyce ścięgna Achillesa
      Urazy ścięgna Achillesa należą do najczęstszych urazów ortopedycznych. Samych tylko zerwań ścięgna notuje się około 200 rocznie na 1 mln ludności w USA i Europie. Rosnąca podaż wykonywanych badań stanowi ogromne wyzwanie dla zmniejszających się zastępów lekarzy radiologów. Już dziś zdarza się, że dostępność zaawansowanych aparatów diagnostycznych jest dość powszechna, ale czas oczekiwania na opisy wykonanych badań znacznie się wydłuża.
      Diagnostyka oparta na obrazowaniu medycznym otwiera nowe możliwości w zakresie leczenia oraz doboru optymalnych metod rehabilitacji pourazowej lub pooperacyjnej – przekonuje Bartosz Borucki, Kierownik laboratorium R&D na Uniwersytecie Warszawskim. Już dziś stworzyliśmy rozwiązanie do oceny ścięgna Achillesa, które wprowadza automatyzację, umożliwiającą tworzenie obiektywnych ocen radiologicznych w oparciu o wykorzystanie sztucznej inteligencji. To pierwsze tego typu rozwiązanie na świecie. Jesteśmy przekonani, że nasz projekt wyznaczy nowe kierunki rozwoju diagnostyki obrazowej w ortopedii i medycynie sportowej, i usprawni czas oraz skuteczność stawianych diagnoz – dodaje.
      Projekt objęty jest obecnie pracami przedwdrożeniowymi, które uwzględniają m.in. usługi badawcze związane z poszerzoną walidacją i analizą dot. certyfikacji i legislacji. Status ten jest doskonałym przykładem komercjalizacji badań naukowych, realizowanych przez polskie instytucje badawczo-naukowe i ma szansę już w nieodległej przyszłości na dobre wpisać się w proces diagnostyki urazów ścięgna Achillesa, a także innych urazów – jak na przykład więzadeł w kolanie.
      Osteoporoza na trzecim miejscu śmiertelnych chorób cywilizacyjnych
      Szczególnym wyzwaniem, wobec którego stanie ludzkość w nadchodzących dekadach, będzie znalezienie skutecznego arsenału rozwiązań do walki z mutującymi wirusami i superbakteriami. Dane Światowej Organizacji Zdrowia (WHO) są zatrważające. Obecnie już 2 mln ludzi umiera rocznie w wyniku zakażeń lekoopornymi bakteriami. Według prognoz w 2050 roku, liczba ta zwiększy się dziesięciokrotnie. Naukowcy zgodni są wobec faktu, że możliwości znanych nam antybiotyków wyczerpują się. Powstawanie nowych bakterii, na które medycyna nie zna lekarstwa, wymusza poszukiwanie alternatywnych rozwiązań.
      W Instytucie Fizyki PAN od wielu lat prowadzone są badania związane z wykorzystaniem tlenków metali o właściwościach antybakteryjnych. Dotychczasowe kierunki badań zostały rozwinięte, obejmując swoim zastosowaniem sektor medycyny implantacyjnej. Udało się bowiem dowieźć, że technologia pokrywania implantów warstwami tlenków metali wpływa na przyspieszenie regeneracji kości i tkanek.
      Wyniki naszych badań to nadzieja dla wszystkich pacjentów, którzy zmagają się z problemami osteointegracji. Nasze badania dają nadzieję na wyeliminowanie  poimplantacyjnych stanów zapalnych, infekcji bakteryjnych, metalozy czy reakcji alergicznych – mówi Aleksandra Seweryn z IF PAN. Jesteśmy przekonani, że zastosowanie naszej technologii bezpośrednio przełoży się na minimalizację ryzyk wynikających z leczenia implantacyjnego, zarówno u pacjentów cierpiących na osteoporozę, jak również przy zabiegach dentystycznych.
      Potrzebujemy coraz więcej energii
      Model życia ludzkości i rozwój technologiczny wymusza coraz większe zapotrzebowanie na energię elektryczną. Szacuje się, że do 2050 roku podwoimy jej wykorzystanie – z 15 TW do ok. 30 TW. Wykorzystywane dziś źródła energii, wciąż w dużej mierze uzależnione od paliw kopalnych, z pewnością okażą się niewystarczające w dłuższej perspektywie czasowej.
      Zbyt niska produkcja prądu będzie hamowała rozwój ludzkości. Do tego czasu zmagać się będziemy ze zjawiskiem globalnego ocieplenia i jego, już dziś zauważalnymi, katastrofalnymi efektami. Utrzymanie obecnego stanu rzeczy skutkować będzie do 2050 roku podniesieniem poziomu mórz i oceanów o 4 m, przesunięciem stepów i pustyń o 600 km na północ, wielkimi ruchami migracyjnymi ludzkości, kataklizmami, które wpłyną również na wyginięcie milionów gatunków zwierząt i roślin.
      Instytut Fizyki PAN realizuje zaawansowane badania związane z fotowoltaiką. Wierzymy bowiem, że energia słoneczna jest naturalnym, bezpiecznym i w zasadzie nieograniczonym źródłem energii. W ciągu 40 lat koszt paneli słonecznych zmniejszył się stukrotnie, znacząco zwiększając dostępność tego typu rozwiązań dla przeciętnych gospodarstw domowych, twierdzi Monika Ożga, naukowiec IF PAN.
      Opracowane przez Instytut rozwiązania można z powodzeniem stosować w produkcji diod oświetleniowych i energooszczędnych okien, które redukują przyjmowanie i oddawanie ciepła, a co za tym idzie, zmniejszają ilość energii potrzebnej do ogrzania lub ochłodzenia pomieszczeń. Diody mogą się ponadto przyczynić nie tylko do ograniczenie popytu na energię, ale i znaleźć swoje zastosowanie w technologii budowania farm wertykalnych, które coraz częściej są wskazywane jako metoda walki z deficytem żywności na świecie.
      Według wstępnych szacunków, zastosowanie nowej kategorii diod może przynieść Polsce oszczędności rzędu 1-1,5 mld złotych, a poprzez redukcję wykorzystania prądu, przyczynić do zmniejszenia emisji CO2 i innych trujących gazów, powstałych wskutek spalania węgla.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Opracowanie planu radioterapii to skomplikowane zadanie, dlatego też nawet pacjenci, którzy potrzebują natychmiastowego wdrożenia leczenia muszą zwykle czekać kilka dni lub dłużej, aż lekarze opracują plan. Okazuje się jednak, że z pomocą może tutaj przyjść sztuczna inteligencja, która odpowiedni plan może przygotować w ułamku sekundy.
      Niektórzy z takich pacjentów wymagają natychmiastowej radioterapii, ale lekarze odsyłają ich do domu i każą czekać. Opracowanie w czasie rzeczywistym planu leczenia jest bardzo ważne. To część naszego projektu, w ramach którego chcemy zaprząc SI do poprawy wszelkich aspektów walki z nowotworami, mówi doktor Steve Jiang, który kieruje Laboratorium Medycznej Sztucznej Inteligencji i Automatyzacji na UT Soutwestern Medical Center.
      Radioterapia to często stosowana metoda walki z nowotworami. Badania pokazują, że w przypadku niektórych nowotworów odroczenie radioterapii o zaledwie tydzień zwiększa ryzyko nawrotu lub rozprzestrzenienia się choroby nawet o 14%. To właśnie takie dane stały się przyczyną, dla której zespół Jianga postanowił wykorzystać SI to pomocy w zaplanowaniu radioterapii. Od rozpoczęcia leczenia po przeliczenie dawek w miarę postępów leczenia.
      Testy przeprowadzone za pomocą specjalnie opracowanego algorytmu wykazały, że jest on w stanie opracować optymalny plan leczenia zaledwie w ciągu 5/100 sekundy od momentu otrzymania danych dotyczących pacjenta.
      Nowo opracowany algorytm korzystał z technik głębokiego uczenia się. Szkolono go na przykładzie 70 osób cierpiących na nowotwór prostaty, a przy uczeniu wykorzystano 4 algorytmy głębokiego uczenia się. Z czasem sztuczna inteligencja nauczyła się opracowywania optymalnego planu leczenia. Okazało się, że w przypadku każdego z tych pacjentów jest on taki sam, jak ten opracowany przez lekarzy.
      To jednak nie wszystko. Algorytm był też w stanie przed każdą kolejną sesją radioterapii błyskawicznie obliczyć prawidłowe dawki promieniowania. Zwykle pacjenci przed każdą sesją przechodzą badanie, na podstawie którego obliczane są dawki.
      Nowy algorytm korzysta z dwóch standardowych modeli obliczania dawki. Jednego szybkiego, który jednak jest mniej precyzyjny, i drugiego bardzo precyzyjnego, który jednak wymaga półgodzinnych obliczeń. SI, porównując na przykładzie wspomnianych 70 pacjentów wyniki obu modeli, nauczyła się, jak wykorzystać szybkość jednego i precyzję drugiego, by w czasie krótszym od sekundy uzyskać precyzyjne wyniki.
      Naukowcy z UT Southwestern Medical Center mają teraz zamiar wykorzystać swój algorytm w codziennej praktyce klinicznej.

      « powrót do artykułu
×
×
  • Create New...