Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Odnalazła się gwiazda neutronowa, której poszukiwano od ponad 30 lat

Rekomendowane odpowiedzi

Astronomom udało się odnaleźć gwiazdę zaginioną od ponad 30 lat. W 1987 roku zaobserwowano eksplozję supernowej, a dane z badań neutrino wskazują, że pozostałością supernowej powinna być gwiazda neutronowa. Jednak od tamtej pory nie udało się jej odnaleźć.

SN 1987A jest najbliższą Ziemi supernową od 1604 roku. Znajduje się ona w Wielkim Obłoku Magellana, w odległości 163 000 lat świetlnych od Ziemi. Zwykle widzimy tylko bardzo jasne światło z odległej galaktyki, ale nie możemy zbyt dokładnie się temu przyjrzeć. Tutaj po raz pierwszy mamy supernową tak blisko, że możemy zajrzeć do jej wnętrza, mówi Phil Cigan, z Cardiff University. Jest też pierwszą nową supernową, którą współczesna astronomia może szczegółowo badać. Nic więc dziwnego, że budzi ona szczególne zainteresowanie, a zaginiona gwiazda neutronowa tylko napędza ciekawość.

Olbrzymia ilość pyłu i gazu nie pozwoliła dotychczas dojrzeć gwiazdy neutronowej. Teraz Cigan i jego koledzy odnaleźli jej sygnaturę za pomocą urządzenia ALMA (Atacama Large Milimeter/submilimeter Array), złożonego z 66 radioteleskopów w Chile.
Dzięki temu potężnemu narzędziu udało się zarejestrować obszar jaśniejszy i cieplejszy niż otoczenie. Znajduje się on dokładnie w miejscu, w którym powinna być gwiazda neutronowa. Przetestowaliśmy wiele innych scenariuszy istnienia tego obszaru, ale najbardziej prawdopodobny jest ten mówiący o istnieniu tam gwiazdy neutronowej, która podgrzewa otaczający ją pył i gaz, powodując ich świecenie, wyjaśnia Cigan.

Uczony mówi, że obecnie nie jesteśmy w stanie bezpośrednio zobaczyć gwiazdy neutronowej pozostałej po ekplozji SN 1987A. Jednak w ciągu 50–100 lat gaz i pył powinny na tyle się rozproszyć, że ją zobaczymy. Wówczas astronomowie będą mogli zbadać ją bardziej szczegółowo, co z kolei pozwoli nam lepiej zrozumieć ewolucję supernowych.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Dzisiejsza technologia pozwala na tak wiele w naszej sferze polarnej, niesamowite

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Technicy z Fermi National Accelerator Laboratory ukończyli prototyp specjalnego nadprzewodzącego kriomodułu, jedynego takiego urządzenia na świecie. Projekt PIP-II, w którym udział biorą też polscy naukowcy, ma na celu zbudowanie najpotężniejszego na świecie źródła neutrin. Zainwestowała w nie również Polska.
      HB650 będzie najdłuższym i największym kriomodułem nowego akceleratora liniowego (linac). Wraz z trzema innymi będzie przyspieszał protony do 80% prędkości światła. Z linac protony trafią do dwóch kolejnych akceleratorów, tam zostaną dodatkowo przyspieszone i zamienione w strumień neutrin. Neturina te zostaną wysłane w 1300-kilometrową podróż przez skorupę ziemską, aż trafią do Deep Underground Neutrino Experiment and the Long Baseline Neutrino Facility w Lead w Dakocie Południowej.
      Prace nad nowatorskim kriomodułem rozpoczęły się w 2018 roku, w 2020 jego projekt został ostatecznie zatwierdzony i rozpoczęła się produkcja podzespołów. W styczniu 2022 roku w Fermilab technicy zaczęli montować kriomoduł. HB650 to 10-metrowy cylinder o masie około 12,5 tony. Wewnątrz znajduje się szereg wnęk wyglądających jak połączone ze sobą puszki po napojach. Wnęki wykonano z nadprzewodzącego niobu, który podczas pracy będzie utrzymywany w temperaturze 2 kelwinów. W tak niskiej temperaturze niob staje się nadprzewodnikiem, co pozwala efektywnie przyspieszyć protony.
      Żeby osiągnąć tak niską temperaturę wnęki będą zanurzone w ciekłym helu, nad którym znajdzie wiele warstw izolujących, w tym MLI, aluminium oraz warstwa próżni. Całość zamknięta jest w stalowej komorze próżniowej, która zabezpiecza wnęki przed wpływem pola magnetycznego Ziemi.
      Linac będzie przyspieszał protony korzystając z pola elektrycznego o częstotliwości 650 MHz. Wnętrze wnęk musiało zostać utrzymane w niezwykle wysokiej czystości, gdyż po złożeniu urządzenia nie ma możliwości ich czyszczenia, a najmniejsze nawet zanieczyszczenie zakłóciłoby pracę akceleratora. Czystość musiała być tak wysoka, że nie wystarczyło, iż całość prac przeprowadzano w cleanroomie. Wszelkie przedmioty znajdujące się w cleanroomie oraz stosowane procedury były projektowane z myślą o utrzymaniu jak najwyższej czystości. Pracownicy nie mogli na przykład poruszać się zbyt szybko, by nie wzbijać w powietrze ewentualnych zanieczyszczeń.
      Obecnie trwa schładzanie kriomodułu do temperatury 2 kelwinów. Naukowcy sprawdzają, czy całość wytrzyma. Nie bez powodu jest to prototyp. Chcemy dzięki niemu zidentyfikować wszelkie problemy, zobaczyć co do siebie nie pasuje, co nie działa, mówi Saravan Chandrasekaran z Fermilab. Po zakończeniu chłodzenia urządzenie zostanie poddane... testowi transportu. Kriomoduł trafi do Wielkiej Brytanii, a gdy wróci do Fermilab zostaną przeprowadzone testy, by upewnić się, że wszystko nadal działa.
      Gdy HB650 przejdzie pomyślnie wszystkie testy, rozpocznie się budowa właściwego kriomodułu. Wezmą w nim udział partnerzy projektu PIP-II (Photon Improvement Plan-II) z Polski, Indii, Francji, Włoch, Wielkiej Brytanii i USA.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Astronomowie z University of Berkeley poinformowali, że odkryta w 2017 roku gwiazda neutronowa jest nie tylko jednym z najszybciej obracających się pulsarów w Drodze Mlecznej. Pochłonęła ona niemal całą masę towarzyszącej jej gwiazdy, stając się najbardziej masywną ze wszystkich znanych nam gwiazd neutronowych.
      Pulsar PSR J0952-0607 obraca się 707 razy na sekundę, a jego masa wynosi aż 2,35 mas Słońca. Gdyby była nieco bardziej masywna, całkowicie by się zapadła, tworząc czarną dziurę Jej badania pozwolą na lepsze zrozumienie ekstremalnego środowiska tych niezwykle gęstych obiektów. Niewiele wiemy o tym, jak materia zachowuje się w tak gęstych miejscach, jak jądro atomu uranu. Gwiazda neutronowa przypomina takie wielkie jądro, mówi profesor Alex Filippenko.
      Gwiazdy neutronowe są tak gęste, że 1 cm3 ich materii waży około miliarda ton. Są więc najbardziej gęstymi obiektami we wszechświecie. Zaraz po czarnych dziurach. Tych jednych, ukrytych za horyzontem zdarzeń, nie jesteśmy w stanie badać.
      PSR J0952-0607 to tzw. „czarna wdowa”. To oczywiste odniesienie do pająków czarnych wdów, wśród których samica pożera po kopulacji znacznie mniejszego samca. Filippenko i profesor Roger W. Romani od ponad dekady badają systemy „czarnych wdów”, starając się określić górną granicę masy, jaką może osiągnąć pulsar.
      Dzięki połączeniu pomiarów z wielu systemów czarnych wdów, stwierdziliśmy, że gwiazda neutronowa może osiągnąć masę 2,35 ± 0,17 masy Słońca, stwierdza Romani. Jeśli zaś jest to granica limitu masy gwiazdy neutronowej, gwiazda taka zbudowana jest prawdopodobnie z mieszaniny neutronów oraz kwarków górnych i dolnych, ale nie z egzotycznej materii, takiej jak kwarki dziwne czy kaony. Taki limit wyklucza wiele proponowanych stanów materii, szczególnie egzotycznej materii we wnętrzu gwiazdy, dodaje Romani.
      Naukowcy są generalnie zgodni co do tego, że gwiazdy, których masa jądra przekracza 1,4 masy Słońca, zapadają się pod koniec życia, tworząc gęsty kompaktowy obiekt, w którego wnętrzu panuje tak wysokie ciśnienie, że wszystkie atomy tworzą mieszaninę neutronów i kwarków. Powstają w ten sposób gwiazdy neutronowe, które od początku istnienia obracają się. I mimo że w świetle widzialnym świecą zbyt słabo, byśmy mogli je dostrzec, emitują impulsy radiowe, promieniowania rentgenowskiego, a nawet promieniowania gamma, które omiatają Ziemię na podobieństwo latarni morskiej.
      Zwykłe pulsary obracają się z prędkością około 1 obrotu na sekundę. Zjawisko to łatwo wyjaśnić naturalnym obrotem gwiazdy z okresu, przed jej zapadnięciem się. Znamy jednak pulsary obracające się znacznie szybciej, nawet do 1000 razy na sekundę. To tak zwane pulsary milisekundowe. Tak szybki obrót trudno jest wytłumaczyć bez odwoływania się do materii z gwiazdy towarzyszącej, która je wchłaniania przez pulsar i napędza jego ruch.  Jednak w przypadku niektórych pulsarów milisekundowych nie potrafimy wykryć ich towarzysza. Jedno z wyjaśnień mówi, że już go nie ma, gdyż pulsar wchłonął całą jego materię.
      Naukowcy mówią, że gdy towarzysz gwiazdy neutronowej starzeje się i staje się czerwonym olbrzymem, pochodząca z niego materia opada na pulsar, który zaczyna się coraz szybciej obracać. Z obracającej się gwiazdy wydobywa się wiatr cząstek, który uderza w czerwonego olbrzyma i obdziera go z materii. Ten samonapędzający się proces może trwać do czasu, aż czerwony olbrzym skurczy się do wielkości planety, a nawet całkowicie zniknie. Tak właśnie ma dochodzić do pojawienia się samotnych pulsarów milisekundowych.
      Pulsar PSR J0952-0607 potwierdza tę hipotezę. Jego towarzyszem jest niewielka gwiazda, która właśnie traci materię i zbliża się do granicy masy planety, a z czasem może całkowicie zniknąć. Obecnie jej masa jest zaledwie 20-krotnie większa od masy Jowisza, ma więc masę 2% masy Słońca. Znajduje się w obrocie synchronicznym względem pulsara, czyli jest zwrócona do niego zawsze tą samą stroną. Przez to temperatura tej strony wynosi ok. 6000 stopni Celsjusza i sama gwiazda świeci na tyle mocno, że można ją dostrzec za pomocą teleskopu.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Przez 9 lat pracy instrumenty Daya Bay Reactor Neutrino Experiment zarejestrowały 5,5 miliona neutrin. Teraz międzynarodowy zespół pracujący przy eksperymencie poinformował o pierwszych wynikach uzyskanych na podstawie całego zbioru danych. A najważniejszym z nich są najbardziej precyzyjne pomiary theta 13 (θ13), kluczowego parametru potrzebnego nam do zrozumienia oscylacji neutrin.
      Neutrina to cząstki subatomowe, które wypełniają cały wszechświat, a które niezwykle trudno zauważyć. Co sekundę przez nasze ciała przelatują miliardy neutrin. Neutrino może przelecieć przez ścianę ołowiu o grubości roku świetlnego, nie zderzając się przy tym z żadnym atomem.
      Jednym z cech charakterystycznych neutrin jest oscylacja, czyli zmiana pomiędzy trzema zapachami: neutrino minowym, taonowym i elektronowym. Day Bay Reactor Neutrino Experiment zaprojektowano do badania parametrów określających, a jakim prawdopodobieństwem zajdzie oscylacja. Wśród parametrów tych znajdują się kąty mieszania. Gdy projektowano Daya Bay w rok 2007 nieznany pozostawał jeden z kątów mieszania, θ13. Dlatego właśnie eksperyment został zbudowany tak, by z bezprecedensową dokładnością określił ten właśnie parametr.
      Day Bay Reactor Neutrino Experiment znajduje się w Guangdongu w Chinach. Składa się z wielkich cylindrycznych wykrywaczy cząstek zanurzonych w wodzie, a znajdujących się w trzech podziemnych grotach. Osiem detektorów odpowiedzialnych jest za wykrywanie sygnałów z antyneutrin pochodzących z pobliskich reaktorów atomowych.
      Daya Bay projekt międzynarodowy i pierwszy tego typu wielki wspólny projekt fizyczny Chin i USA. Biorą w nich udział liczne instytucje naukowe, na czele których z chińskiej strony stoi Instytut Fizyki Wysokich Energii Chińskiej Akademii Nauk, a ze strony amerykańskiej Lawrence Berkeley National Laboratory oraz Brookhaven National Laboratory.
      W każdej z podziemnych grot Daya Bay wykrywa antyneutrina elektronowe. Dwie groty znajdują się w blisko reaktorów atomowych, a trzecia jest od nich sporo oddalona, co daje neutrinom czas na oscylacje. Naukowcy, porównując liczbę antyneutrin elektronowych, które dotarły do wykrywaczy położonych bliżej i dalej od reaktorów, mogą wyliczyć ile z nich zmieniło zapach, a z tego wyprowadzają wartość theta 13.
      W 2012 roku naukowcy pracujący przy Daya Bay ogłosili wyniki pierwszych powszechnie przyjętych pomiarów theta13. Od tego czasu ciągle uściślają swoje pomiary. W grudniu 2020 roku, po 9 latach pracy eksperymentu, zakończono zbieranie danych i zajęto się ich analizą. Okazało się, że Daya Bay znacznie przekroczył oczekiwania. Udało się bowiem zmierzyć wartość θ13 z 2,5-krotnie większą dokładnością, niż przyjęto w założeniach projektu. Żaden obecnie działający i planowany eksperyment nie powinien osiągnąć tak dużej precyzji.
      Liczne zespoły analityków wykonały benedyktyńską pracę szczegółowo analizując cały zestaw danych, biorąc pod uwagę zmiany wydajności czujników w czasie tych 9 lat pracy. Dane te posłużyły nam nie tylko do wyodrębnienia z nich antyneutrin, ale również do udoskonalenia naszej wiedzy o szumie w tle. To pozwoliło nam osiągnąć niezwykłą precyzję, mówi rzecznik prasowy eksperymenty, Jun Cao z Instytutu Fizyki Wysokich Energii.
      Dzięki precyzyjnym pomiarom θ13 naukowcy będą mogli łatwiej badań inne parametry neutrin oraz stworzyć dokładniejsze modele cząstek subatomowych i ich wzajemnego oddziaływania.
      Lepsze poznanie właściwości i oddziaływania antyneutrin może rzucić wiele światła na kwestię nierównowagi pomiędzy materią i antymaterią. Obecnie uważa się, że podczas Wielkiego Wybuchu powstało tyle samo materii i antymaterii. Jeśli jednak tak by się stało, to powinno dojść do całkowitej anihilacji, po której pozostałoby tylko światło. Musi więc istnieć coś, co spowodowało, że współczesny wszechświat składa się z materii. Być może tym czymś są jakieś różnice pomiędzy neutrinami a antyneutrinami. Nigdy nie wykryliśmy żadnych różnic pomiędzy cząstkami i antycząstkami w przypadku leptonów, do których należy neutrino. Znaleźliśmy jedynie różnice między kwarkami i antykwarkami. Jednak różnice te nie wystarczą, by wyjaśnić, dlaczego materia ma we wszechświecie taką przewagę. Może odpowiedź ukrywa się w neutrinach, mówi drugi z rzeczników eksperymentu, Kam-Biu Luk z Berkeley.
      Eksperymenty przyszłej generacji, takie jak DUNE (Deep Underground Neutrino Experiment) będą mogły wykorzystać pomiary wykonane przez Daya Bay do precyzyjnego porównania właściwości neutrin i antyneutrin. DUNE będzie najbardziej precyzyjnym wykrywaczem neutrin na świecie. Będzie on korzystał z budowanego właśnie najpotężniejszego na świecie źródła neutrin, PIP-II, w które zainwestowała Polska.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W uruchomionym ponownie po trzech latach Wielkim Zderzaczu Hadronów rozpoczęto nowe testy modelu, który ma wyjaśnić masę neutrina. Zgodnie z Modelem Standardowym te cząstki, których nie można podzielić na mniejsze składowe – jak kwarki czy elektrony – zyskują masę dzięki interakcji z polem bozonu Higgsa. Jednak neutrino jest tutaj wyjątkiem. Mechanizm interakcji z bozonem Higgsa nie wyjaśnia jego masy. Dlatego też fizycy badają alternatywne wyjaśnienia.
      Jeden z modeli teoretycznych – mechanizm huśtawki, seesaw model – mówi, że znane nam lekkie neutrino zyskuje masę poprzez stworzenie pary z hipotetycznym ciężkim neutrinem. Żeby jednak ten model działał, neutrina musiałyby być cząstkami Majorany, czyli swoimi własnymi antycząstkami.
      Naukowcy pracujący w Wielkim Zderzaczu Hadronów przy eksperymencie CMS postanowili mechanizm huśtawki, poszukując neutrin Majorany powstających w bardzo specyficznym procesie zwanym fuzją bozonów wektorowych. Przeanalizowali w tym celu dane z CMS z lat 2016–2018. Jeśli model huśtawki by działał, w danych z kolizji powinny być widoczne dwa miony o tym samym ładunku elektrycznym, dwa oddalone od siebie dżety cząstek o dużej masie oraz żadnego neutrino.
      Uczeni nie znaleźli żadnych śladów neutrin Majorany. To jednak nie znaczy, że ich praca poszła na marne. Udało im się bowiem ustalić nowy zakres parametrów, które określają zakres poszukiwań ciężkiego neutrino Majorany. Wcześniejsze analizy w LHC wskazywały, że ciężkie neutrino Majorany ma masę powyżej 650 GeV. Najnowsze badania wskazują zaś, że należy go szukać w przedziale od 2 do 25 TeV. Teraz naukowcy z CMS zapowiadają zebranie nowych danych i kolejne przetestowanie modelu huśtawki.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Astronomowie odkryli nowy typ eksplozji gwiazd – mikronową. Do tego typu eksplozji dochodzi na powierzchni niektórych gwiazd, a w ich wyniku w ciągu kilku godzin wypaleniu ulega nawet 20 x 1015 ton materiału tworzącego gwiazdę.
      Odkryliśmy zjawisko, które nazwaliśmy mikronową. Jego istnienie rzuca wyzwanie naszemu rozumieniu, w jaki sposób w gwiazdach dochodzi do eksplozji termojądrowych. Dotychczas sądziliśmy, że wiemy, jak to się dzieje. Jednak to odkrycie pokazuje, że eksplozje takie mogą powstawać w zupełnie nowy sposób, mówi Simone Scaringi z Durham University, który stał na czele zespołu badawczego.
      Mikronowe to potężne wydarzenia w małej skali. Niosą ze sobą znacznie mniej energii niż znane nam od wieków nowe. Oba typy eksplozji łączy rodzaj gwiazd, mają one bowiem miejsce na białych karłach. To martwe gwiazdy o masie podobnej do masy Słońca, ale średnicy Ziemi.
      Gdy biały karzeł występuje w układzie podwójnym, może wysysać materię swojego towarzysza. Gdy ta materia opada na bardzo gorącą powierzchnię białego karła dochodzi do eksplozji, w wyniku której atomy wodoru łączą się, tworząc atom helu. W nowych eksplozja termonuklearna ma miejsce na całej powierzchni gwiazdy. Takie powodują, że biały karzeł pali się i jasno świeci przez wiele tygodni, wyjaśnia współautorka badań, Nathalie Degenaar z Uniwersytetu w Amsterdamie.
      Z kolei mikronowe to podobne eksplozje, do których dochodzi w mniejszej skali. Trwają one zaledwie kilka lub kilkanaście godzin. Zarejestrowano je na niektórych białych karłach o bardzo silnym polu magnetycznym, które kieruje opadający na gwiazdę materiał w stronę jej biegunów. Po raz pierwszy obserwowaliśmy zlokalizowaną fuzję wodoru. Wodorowe paliwo zostaje uwięzione w pobliżu biegunów niektórych białych karłów i tylko tam dochodzi do fuzji, dodaje Paul Groot z Radbound University. To zaś prowadzi do mikroeksplozji o sile 1/1 000 000 nowych, stąd też nazwa mikronowa, wyjaśnia uczony.
      Odkrycie mikronowych to wyzwanie dla obecnego rozumienia gwiezdnych eksplozji. To pokazuje, jak dynamicznym miejscem jest wszechświat. Takie zjawiska mogą często występować, ale jako że trwają krótko, trudno jest je uchwycić, dodaje Scaingi.
      Naukowcy dokonali odkrycia przypadkiem, przeglądając dane z Transiting Exoplanet Survey Satellite (TESS). Odkryliśmy w nich coś niezwykłego. Jasny rozbłysk w paśmie optyczny, który trwał kilka godzin. Podczas dalszych poszukiwań znaleźliśmy kilkanaście podobnych sygnałów, mówią naukowcy. W danych z TESS znaleziono trzy mikronowe, z czego dwie miały miejsce na białych karłach. Potwierdzenie, że i w przypadku trzeciej eksplozji mieliśmy do czynienia z białym karłem, wymagało wykorzystania instrumentu X-shooter z Very Large Telescope. Dzięki niemu zidentyfikowano zaś kolejne mikronowe.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...