Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Akumulator można naładować w 10 minut i przejechać ponad 300 kilometrów

Recommended Posts

Jedną z głównych przeszkód stojących na drodze ku upowszechnieniu się samochodów elektrycznych jest długi czas ładowania akumulatorów. Niewykluczone jednak, że już wkrótce możliwe będzie pełne załadowanie akumulatora w ciągu zaledwie 10 minut. Takie pojedyncze ładowanie pozwoli na przejechanie 320–480 kilometrów.

Wykazaliśmy, że możliwe jest załadowanie w 10 minut akumulatora zapewniającego energię na 200–300 mil podróży, mówi profesor Chao-Yang Wang, dyrektor Electrochemical Engine Center na Pennsylvania State University. Żywotność takiego akumulatora wynosi 2500 cykli ładowania-rozładowania, co pozwala na przejechanie około pół miliona mil.

Już obecnie można szybko ładować akumulatory litowo-jonowe, jednak znacząco skraca to ich żywotność, gdyż na anodzie osadza się metaliczny lit. Nie dość, że prowadzi on do spadku pojemności akumulatora, może też spowodować jego awarię. Im akumulator jest starszy, tym łatwiej dochodzi do tego niekorzystnego procesu. Wiadomo też, że jeśli akumulator zostanie podgrzany podczas ładowania, to nie dochodzi do osadzania się litu. Jednak samo podgrzewanie również skracażywotność urządzenia.

Wang i jego zespół przeprowadzili eksperymenty, podczas których zauważyli, że jeśli akumulator zostanie podgrzany do temperatury do 60 stopni Celsjusza na nie dłużej niż 10 minut, a następnie szybko schłodzi się do temperatury pokojowej, to można go szybko naładować, zapobiec osadzaniu się litu i nie wpływa to negatywnie na jego żywotność.

Obecnie uważa się, że podgrzanie akumulatora do 60 stopni Celsjusza nie powinno mieć miejsca, gdyż znacząco skraca to jego żywotność, mówi Wang. Uczony wraz z zespołem przeprowadzili serię eksperymentów, podczas których do elektrod komercyjnie dostępnych akumulatorów dodano folię aluminiową o grubości liczonej w mikronach. Pozwoliła ona na podgrzanie elektrod w ciągu zaledwie 30 sekund. Następnie uczeni testowali zmodyfikowane akumulatory, ładując je po podgrzaniu do 40, 49 i 60 stopni C. Ich wydajność porównano z akumulatorem testowym, pracującym w temperaturze 20 stopni.

Okazało się, że przy temperaturze 20 stopni Celsjusza już po 60 cyklach ładowania-rozładowania pojawiły się problemy, które znacząco zmniejszyły wydajność. Tymczasem gdy elektrody podgrzano do 60 stopni Celsjusza akumulatory bez większych problemów wytrzymały 2500 cykli ładowania-rozładowania.

Ważne było też szybkie schłodzenie akumulatora. Wang twierdzi, że można do tego wykorzystać system chłodzący pojazdu, tym bardziej, że olbrzymią różnicę robi już schłodzenie z 60 do niecałych 24 stopni Celsjusza.

Uczeni chcą kontynuować swoje badania i mają nadzieję, że opracują technologię pozwalającą na pełne załadowanie akumulatora w ciągu zaledwie 5 minut.

Szczegóły badań opublikowano w piśmie Joule.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Ciekawe ile dodatkowej energii zużywa takie grzanie i chłodzenie...? Szczególnie w stosunku do całej energii jaką trzeba tam włożyć.

Share this post


Link to post
Share on other sites

dobry krok w stronę przyszłości. Pierwszym krajem, w którym powinni zrobić promocje na takie samochody powinna być Polska. Może dzięki temu nie bylibyśmy na szczycie listy smogowej :D

Share this post


Link to post
Share on other sites

Ciekawe, kiedy będą wozić pałerbanki do samochodów w samochodach?

1 hour ago, rozan said:

dobry krok w stronę przyszłości. Pierwszym krajem, w którym powinni zrobić promocje na takie samochody powinna być Polska. Może dzięki temu nie bylibyśmy na szczycie listy smogowej :D

Fakt, jakość paliwa u nas pewnie gorsza niż w Afryce. Wybitnie.

Share this post


Link to post
Share on other sites
1 godzinę temu, rozan napisał:

Pierwszym krajem, w którym powinni zrobić promocje na takie samochody powinna być Polska.

Wszelkie promocje i dopłaty zwykle absurdalnie mijają się z celem. Bodajże w Szwecji dopłaty/ulgi  trafiły do najbgatszych, których było stać na nowe lśniące SUVy. Zawsze, kiedy urzędnik bierze się za poprawianie .... Jak używane użyteczne elektryki będzie można kupić za 12 tys złotych, to tylko takie będą tu jeździły. Oczywiście, o ile ktoś nie dołoży podatku na elektrony używane w transporcie.   

Share this post


Link to post
Share on other sites
3 hours ago, pogo said:

Ciekawe ile dodatkowej energii zużywa takie grzanie i chłodzenie

Litowe aku Tesli na taki zasięg to okolice pół tony. (edit: tu trzeba jeszcze podstawić ciepło właściwe, które może ktoś zna)

 

11 hours ago, KopalniaWiedzy.pl said:

w 10 minut akumulatora zapewniającego energię na 200–300 mil podróży

Tak trochę w pamięci: 100 kilometrów to jakieś 20 KWh energii (samochód zużywa około 20 KW przy prędkości podróżnej, czyli około 100 km/h). Czyli w te 10 minut trzeba przepchać przez kabelek 60 KWh. Godzinne ładowanie to 60 kW, a 1/6-godzinne... 360 tysięcy watów. Baterie w Tesli to jakieś 400 V, czyli mamy prąd 900 A. Powierzchnia przekroju kabla (wzięta z jakiegoś kalkulatora w sieci) to 630 mm kwadratowych...

Ja bym do tego nie podchodził (a jeśli padałby deszcz, to trzymałbym się z dala od całej stacji) ... Straty energii: powiedzmy że 1% (tyle jest na samych ogniwach), czyli zaledwie 3,6 tysiąca watów. Układ ładujący - ciężko powiedzieć, bo przetwornice mogą mieć 95% skuteczności (18 tysięcy watów), a mogą mieć i 60% (144 tysiące)... Oczywiście wszystko idzie w ciepło. Chyba bezpieczniej byłoby wlewać nitroglicerynę.

Edited by Przemek Kobel
  • Upvote (+1) 1

Share this post


Link to post
Share on other sites
29 minut temu, Przemek Kobel napisał:

(...)

Baterie w Tesli to jakieś 400 V, czyli mamy prąd 900 A. Powierzchnia przekroju kabla (wzięta z jakiegoś kalkulatora w sieci) to 630 mm kwadratowych...

(...)

 

[...] ma ładowarki z kablami chłodzonymi, przekrój to ułamek tych 600 mm2 a dają radę z 400 A , kabel nie jest gorący i ciężki (Pani na szpileczkach też ma dać radę...)

 

The RADOX® HPC High Power Charging System allows the power-throughput of a charging system to be multiplied. With charging times below 15 minutes (80% State of Charge), the development puts super-fast charging within reach even with big battery packs of new electric vehicles and trucks.

 

Edited by Mariusz Błoński
Reklama. Zapraszamy do kontatku ws. wykupienia reklamy.

Share this post


Link to post
Share on other sites
2 minutes ago, Jerzy_ said:

huber + suhner ma ładowarki z kablami chłodzonymi

Używają też o połowę mniejszego prądu (czego konsekwencją jest większe napięcie). 1000 V i chłodzenie cieczą... co mogłoby pójść nie tak?

Share this post


Link to post
Share on other sites

te ładowarki już działają. i link nie był reklamą, tego nie można ot tak kupić...

 

a kabel (wprawdzie na 230 V) chłodzony cieczą każda (prawie) gospodyni ma w kuchni (czajnik elektryczny)

wszystko jest kwestią technologii i rozwiązań.

Share this post


Link to post
Share on other sites
7 godzin temu, pogo napisał:

Ciekawe ile dodatkowej energii zużywa takie grzanie i chłodzenie...?

Samo grzanie tak mniej więcej wychodzi mi 3* kWh, czyli jakieś 1,5 pln. Przyjąłem Teslę 3:
https://elektrowoz.pl/auta/bateria-tesla-model-3-pojemnosc-masa-gestosc-dane-techniczne/

7 godzin temu, pogo napisał:

Szczególnie w stosunku do całej energii jaką trzeba tam włożyć.

Wobec deklarowanych 80,5 kWh grzanie to jakieś niecałe 4% kosztów. Według mnie przyjemnie akceptowalne. Jeśli  przyjmiemy, że grzanie i chłodzenie to nawet 10% całej energii, to jest nieźle.

* Wobec braku oczywistych danych przyjąłem ciepło właściwe na 500 [SI], co wydaje mi się rozsądne; ΔT przyjąłem 40.

Edited by Astro

Share this post


Link to post
Share on other sites

ale mi nowosci

bateria w porsche z tego co mi wiadomo  mozna przejechac na pelnej bateri okolo 500 km a ladujesz to cos 25 do 30 min

wiec jak porsche dalo rady to i inni tez podolaja to kwestia tylko ceny- niestety nie znam konkretnych paametrow  bateri z tego auta- ot tak ostatnio czyms takim jezdzilem i  wiem jak to dziala- wypilem kawe zjadlem co nieco i bateria byla znowu pelna- wiec dalej w droge

autko  warte okolo 100 tys Euro- pogooglujcie to znajdziecie model- pisze tak z reki wiec nie chce  zlych nazw modeli i parametrow podawac

 

 

kolejny temat to taki ze kilka  lat temu a dokladnie 4 , pracowalem w BMW i tam w jednym z nowatorskich laboratoriach byly prowadzone proby i testy nad nowymi bateriami- l zasieg tego byl 500 do 600 km a czas ladowanie 2 do 10 min- na owczesne czasy problem byl z przegrzewaniem i niestety awariami co skutkowalo naprawde silnymi eksplozjami- niestety nie wiem na jakim etapie teraz te baterie sa- ale te technologie czesto juz istnieja  ale czekaja w sejfach  na czas az konkurecja dogoni ich i bedzie czym zaskoczyc. Tak wiec mysle ze takie bateria dawno juz sa opracowane a tylko ze wzgledow  strategicznych ukrywa sie technologie i poki sprzedaje sie dobrze dawny model nie ma sensu wybiegac przed szereg

Share this post


Link to post
Share on other sites
3 godziny temu, Astro napisał:

to jest nieźle

Podejrzewam oczywiście, że diabeł tkwi w szczegółach, czyli jak to się zachowa w warunkach lekko tylko bojowych (weźmy zwykłą, łagodną polską zimę), ale badacze zapewne i nad tym popracują. ;)

Share this post


Link to post
Share on other sites

Niestety takie chłodzenie to tylko półśrodek a baterie takie same (tylko trochę zoptymalizowane) jak kilkadziesiąt lat termu. do tego wszystkie systemy ładowania szybkiego podają ładowanie do max 80 % pojemności litowych baterii (to cecha baterii litowych)- to lekkie przekłamanie, bo np w takiej tesli którą kupujemy z zasięgiem powiedzmy max 600 km (i to w sprzyjających warunkach) to ładujemy na max 400 w te kilkanaście minut. do tego w większości auto bateria jest chłodzona ale chłodzone są same ogniwa ( w sensie z zewnątrz) a nie anoda o co mam wrażenie chodzi w tej "nowej" technologii.

Share this post


Link to post
Share on other sites

u nas nie ma jakiejś srogiej zimy ogólnie, ale może takie odkrycia przydadzą się bardziej gdzieś na północy globu.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Często i mało, czy rzadko, ale do syta? Gdyby chodziło o dietę, większość specjalistów postawiłaby na odpowiedź 1, ale w przypadku magazynowania energii jest odwrotnie. Okazuje się, że więcej można jej zmieścić ładując rzadko, ale do pełna.Taki przynajmniej wniosek płynie z badań przeprowadzonych przez zespół naukowców IChF PAN.
      Doświadczenia dotyczyły co prawda wyidealizowanych, dwuwymiarowych układów sieciowych, ale w końcu zasada to zasada. Dr Anna Maciołek, jedna z autorów pracy opublikowanej w Physical Review opisuje ją tak: Chcieliśmy zbadać, jak zmienia się sposób magazynowania energii w układzie,  gdy  pompujemy  do  niego  energię  w  postaci  ciepła,  innymi  słowy – lokalnie  go podgrzewamy.
      Wiadomo,  że ciepło  w  układach  się  rozprzestrzenia, dyfunduje.  Ale czy na gromadzenie energii ma wpływ sposób jej dostarczania; fachowo mówiąc „geometria podawania”? Czy ma znaczenie, że podajemy dużo energii w krótkim czasie i potem długo nic, i znowu dużo energii, czy też gdy podajemy malutkie porcje  tej energii, ale za to jedna po drugiej, niemal bez przerw?
      Cykliczne podawanie energii jest bardzo powszechne w naturze. Sami dostarczamy jej sobie w ten sposób, jedząc. Tę samą liczbę kalorii można dostarczyć w jednej lub dwóch dużych porcjach zjadanych w ciągu doby, albo rozbić ją na 5-7 mniejszych posiłków, między którymi są krótsze przerwy. Naukowcy wciąż się spierają, który  sposób jest dla organizmu lepszy. Jeśli jednak  chodzi o dwuwymiarowe układy sieciowe, to już wiadomo, że pod względem efektywności magazynowania wygrywa metoda „rzadko a dużo”.
      Zauważyliśmy, że w zależności od tego, w jakich porcjach i jak często podajemy energię, ilość, jaką układ potrafi zmagazynować, zmienia się. Największa jest wtedy, gdy porcje energii są duże, ale odstępy czasowe między ich podaniem też są długie, wyjaśnia Yirui Zhang, doktorantka w IChF PAN. Co ciekawe, okazuje się, że gdy taki układ magazynujący podzielimy wewnętrznie na swego rodzaju przedziały, czy też komory, to ilość energii możliwej do zmagazynowania w takim podzielonym ‘akumulatorze’ – o ile bylibyśmy go w stanie skonstruować – wzrośnie. Innymi słowy, trzy małe baterie zmagazynują więcej energii niż jedna duża, precyzuje badaczka. Wszystko to przy założeniu, że całkowita ilość wkładanej do układu energii jest taka sama, zmienia się tylko sposób jej dostarczania.
      Choć badania prowadzone przez zespół IChF PAN należą do podstawowych i ukazują po prostu fundamentalną  zasadę  rządzącą magazynowaniem energii w magnetykach, ich potencjalne zastosowania  są  nie do  przecenienia.  Wyobraźmy  sobie  np.  możliwość  ładowania  baterii elektrycznego samochodu nie w kilka godzin, lecz w kilkanaście minut albo znaczące zwiększenie pojemności  takich  akumulatorów  bez  zmiany  ich  objętości,  czyli  wydłużenie  zasięgu  auta  na jednym ładowaniu.  Nowe  odkrycie  może  też  w  przyszłości  zmienić  sposoby  ładowania  baterii różnego typu poprzez ustalenie optymalnej periodyczności dostarczania do nich energii

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Producenci akumulatorów od lat próbują zastąpić grafitową anodę w akumulatorach litowo-jonowych jej krzemową wersją. Powinno to zwiększyć zasięg samochodów elektrycznych wyposażonych w takie akumulatory. Próby są prowadzone zwykle z użyciem tlenku krzemu lub połączenia krzemu i węgla. Jednak kalifornijska firma Enevate ma nieco inny pomysł – wykorzystuje cienkie porowate warstwy czystego krzemu.
      Właściciel i główny technolog firmy, Benjamin Park, który od ponad 10 lat pracuje nad nowymi akumulatorami, twierdzi, że taki materiał jest nie tylko tani, ale pozwala na zwieszenie o 30% zasięgu samochodów elektrycznych wyposażonych w tego typu akumulatory. Co więcej, przedstawiciele Enevate uważają, że w niedalekiej przyszłości tego typu akumulatory po 5-minutowym ładowaniu zapewnią samochodowi 400 kilometrów zasięgu.
      Podczas ładowania akumulatorów litowo-jonowych jony litu przemieszczają się z katody do anody. Im więcej jonów jest w stanie przyjąć anoda, tym większa pojemność akumulatora. Krzem może przechowywać nawet 10-krotnie więcej energii niż grafit. Jednak w trakcie pracy akumulatora znacznie się on rozszerza i kurczy, powstają pęknięcia i materiał kruszy się po kilku cyklach ładowania.
      Producenci akumulatorów, chcąc obejść ten problem, dodają nieco krzemu do proszku grafitowego. Całość mieszana jest z tworzywem sztucznym działającym jak spoiwo i nakładana na cienką warstwę miedzi. W ten sposób powstaje anoda. Jednak, jak wyjaśnia Park, jony litu najpierw wchodzą w interakcje z krzemem, później z grafitem. Krzem wciąż się nieco rozszerza, a spoiwo jest dość słabe. Tak zbudowana anoda ulega tym szybszej degradacji, im więcej krzemu się w niej znajduje.
      Enevate nie używa spoiwa. Firma opracowała własny sposób na bezpośrednie nakładanie na miedź porowatych warstw krzemu o grubości od 10 do 60 mikrometrów. Na wierzch stosuje się dodatkową warstwę, która chroni krzem przed kontaktem z elektrolitem.
      Cały proces nie wymaga używania krzemu o wysokiej jakości, więc tego typu anoda kosztuje mniej niż anoda grafitowa o identycznej pojemności. Zaś dzięki temu, że stosowany jest krzem, jony litu mogą bardzo szybko się przemieszczać. W ciągu 5 minut można naładować akumulator do 75% pojemności, nie powodując przy tym zbytniego rozszerzania się krzemu.
      Wszystko co potrzebne do wyprodukowania anody można wytwarzać standardowymi metodami przemysłowymi z rolki. Zatem cały proces łatwo jest skalować. Dzięki połączeniu nowej anody z konwencjonalnymi katodami stworzono akumulatory o pojemności do 350 Wh/kg. To o około 30% więcej niż współczesne akumulatory litowo-jonowe.
      Enevate już współpracuje z koncernami motoryzacyjnymi. Jej nowe akumulatory powinny trafić do samochodów elektrycznych w sezonie 2024/2025.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Nowa elektroda, opracowana na MIT, pozwoli na zbudowanie akumulatorów, które przechowują więcej energii i pracują dłużej. Litowa anoda to efekt współpracy naukowców z MIT ze specjalistami z Hongkongu, Florydy i Teksasu.
      Jednym z największych problemów ze współczesnymi akumulatorami wynika z faktu, że w miarę ładowania akumulatora lit się rozszerza, a podczas rozładowywania kurczy się. Te ciągłe zmiany rozmiarów prowadzą do pękania lub odłączania się elektrolitu. Inny problem stanowi fakt, że żaden z używanych stałych elektrolitów nie jest tak naprawdę chemicznie stabilny w kontakcie z wysoko reaktywnym litem, ulega więc degradacji.
      Większość badań, mających na celu rozwiązanie tych problemów, poszukuje stabilnego elektrolitu. To jednak jest trudne.
      Naukowcy z MIT podeszli do problemu inaczej. Wykorzystali dwa dodatkowe materiały. Jeden nazwali „zmieszanymi przewodnikami jonowo-elektronicznymi” (MIEC), a drugi to „izolatory elektronu i jonu litowego” (ELI).
      Uczeni stworzyli trójwymiarową nanostrukturę przypominająca plaster miodu. Została ona zbudowana z heksagonalnych rurek MIEC częściowo wypełnionych litem. W każdej z rurek pozostawiono nieco wolnego miejsca. Gdy lit się rozszerza podczas ładowania, wypełnia puste miejsca w rurkach, poruszając się jak ciecz, mimo że zachowuje przy tym krystaliczną strukturę ciala stałego. Przepływ ten łagodzi naprężenia powstające podczas rozszerzania się litu, ale jednocześnie nie powoduje ani zmiany zewnętrznych rozmiarów elektrody, ani zmiany jej styku z elektrolitem. Drugi zaś ze wspomnianych materiałów, ELI, jest kluczowym mechanicznym łączem pomiędzy ściankami MIEC a stałym elektrolitem.
      Rozszerzający się i kurczący lit przemieszcza się tak, że nie wywiera nacisku na elektrolit, więc go nie niszczy. Twórcy anody porównują to do tłoków poruszających się w cylindrach. Jako, że całość jest jest zbudowana w skali nano, a każda z rurek ma średnicę 100-300 nanometrów, całość jest jak silnik z 10 miliardami tłoków, mówi główny autor badań, profesor Ju Li.
      Jako, że ścianki całej struktury wykonano z chemicznie stabilnego MIEC, lit nigdy nie traci kontaktu z materiałem. Cały akumulator pozostaje więc mechanicznie i chemiczne stabilny, dodaje Li. Naukowcy przetestowali swoją anodę podczas 100 cykli ładowania/rozładowywania i wykazali, że w elektrolicie nie powstały żadne pęknięcia.
      Naukowcy twierdzą, że ich projekt pozwoli na stworzenie akumulatorów litowych, w których anoda będzie 4-krotnie lżejsza na jednostkę pojemności niż obecnie. Jeśli dodamy do tego nowe pomysły na lżejszą katodę, całość może prowadzić do znaczącego obniżenia wagi akumulatora. Dzięki nowemu akumulatorowi nowoczesne smartfony można by ładować raz na 3 dni.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Na hiszpańskim Uniwersytecie w Maladze powstał tani t-shirt, który generuje energię elektryczną z różnic temperatur pomiędzy ludzkim ciałem a otoczeniem. Prototypowe e-tekstylia powstały z wykorzystaniem skórki z pomidorów, a opracowano je przy współpracy z Włoskim Instytutem Technologii w Genui.
      Dotychczas w urządzeniach elektronicznych zwykle używa się metali. Nasz projekt poszedł o krok dalej i jesteśmy w stanie generować elektryczność za pomocą lżejszego, tańszego i mniej toksycznego materiału mówi jeden z autorów badań, Jose Alejandro Heredia.
      Uczeni z wody, etanolu pozyskanego ze skórek pomidorów oraz nanocząstek węgla stworzyli roztwór, który po podgrzaniu głęboko penetruje bawełnę i do niej przywiera, nadając jej właściwości elektryczne. Jeśli ktoś spaceruje czy biegnie, rozgrzewa się. Jeśli taka osoba ma na sobie naszą koszulkę, wytwarza elektryczność dzięki różnicy temperatury pomiędzy swoim ciałem a otoczeniem, wyjaśnia Susana Guzman.
      W tej chwili naukowcy pracują nad rozwiązaniem, dzięki któremu koszulka wygeneruje światło lub też pozwoli na ładowanie smartfona. W ramach naszych wcześniejszych badań ze skórki pomidorowej i grafenu stworzyliśmy antenę Wi-Fi. Pracujemy nad jej zintegrowaniem z t-shirtem, dodaje Guzman.
      W niedalekiej przyszłości mogą więc powstać t-shirty, które pozwolą na ładowanie smartfona i innych urządzeń, będą się świeciły, dzięki czemu będziemy lepiej widoczni dla kierowców. Fakt, że będą generowały prąd daje spore pole do popisu. W takich ubraniach możliwe będzie zintegrowanie np. czujników monitorujących stan zdrowia czy też dokonujących zapisu i analizy funkcji organizmu biegacza.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Envia Systems wyprodukowała najtańsze - w przeliczeniu na ilość przechowywanej energii - ogniwo dla samochodów elektrycznych. Dzięki niemu można będzie znacząco zwiększyć zasięg niedrogich pojazdów. Envia poinformowała, że gęstość energetyczna urządzenia wynosi 400 watogodzin na kilogram, a gotowe akumulatory zostaną wycenione na 125 USD za kilowatogodzinę pojemności. To z kolei oznacza, że samochód elektryczny za 20 000 dolarów będzie miał zasięg około 480 kilometrów na pojedynczym ładowaniu.
      W tym przemyśle gęstość energetyczna akumulatorów rośnie średnio o 5% rocznie. My ją podwoiliśmy, jednocześnie obniżając o połowę cenę, co pozwoli nam na wprowadzenie tych akumulatorów na masowy rynek pojazdów o zasięgu 300 mil - powiedział szef Envii, AtulKapadia.
      Nowe ogniwo zbudowane jest z krzemowo-węglowego nanokompozytu, który posłużył do stworzenia anody oraz z katody HCMR (High Capacity Manganese Rich). Udoskonalono także sam elektrolit. Wymiary urządzenia to 97x190x10 milimetrów, waga wynosi 365 gramów, a pojemność 46 Ah.
      O tym jak wiele osiągnęła Envia może świadczyć fakt, że najbliższym konkurentem jej urządzenia jest ogniowo firmy Panasonic montowane w samochodach Tesla Model S, którego gęstość wynosi 245 Wh/kg.
      Obecnie ogniwa Envii przechodzą niezależne testy w ośrodku marynarki wojennej. Na rynek mają trafić w 2015 roku.
×
×
  • Create New...