Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Saturn rekordzistą. Wyprzedził Jowisza pod względem liczby księżyców

Rekomendowane odpowiedzi

Scott S. Sheppard i jego koledzy z Carnegie Institution for Science odkryli 20 nowych księżyców Saturna. Z liczbą 82 znanych księżyców Saturn wyprzedził Jowisza i jego 79 księżyców.

Każdy z nowo odkrytych księżyców ma około 5 kilometrów średnicy. Siedemnaście z nich obiega planetę w kierunku przeciwnym do kierunku jej ruchu obrotowego (ruch wsteczny). Kierunek ruchu trzech pozostałych jest zgodny z tym, jak wiruje Saturn (ruch prosty). Dwa z tych trzech księżyców znajdują się bliżej planety i pełen obieg wokół niej zajmuje im około 2 lat. Trzeci z księżyców poruszających się ruchem prostym oraz księżyce poruszające się ruchem wstecznym są dalej od Saturna i potrzebują ponad trzech lat na przebycie całej orbity.

Badanie orbit tych księżyców może zdradzić nam ich pochodzenie oraz informacje o warunkach panujących w otoczeniu Saturna w czasie jego formowania się, mówi Sheppard.

Wydaje się, że zewnętrzne księżyce Saturna są zorganizowane w trzy grupy w zależności od nachylenia ich orbity względem planety. Dwa z nowo odkrytych księżyców poruszających się ruchem prostym pasują do grupy inuickiej. W jej skład wchodzą księżyce, których orbity są nachylone o około 46 stopni względem planety. Nadawane są im nazwy z mitologii Inuitów. Niewykluczone, że wszystkie one powstały z jednego księżyca, który w przeszłości się rozpadł.

W kolei nowo odkryte księżyce o ruchu wstecznym wykazują podobieństwa do grupy nordyckiej. To duża bardzo zróżnicowana grupa, której nadawane są nazwy z mitologii nordyckiej. Jedynym wyjątkiem jest tutaj Febe, postać z mitologii greckiej. Księżyc ten został odkryty w 1899 roku, na długo przed innymi, a do roku 2000 był najdalej położonym od Saturna znanym nam księżycem tej planety. Od dzisiaj tytuł ten należy do jednego z nowo odkrytych księżyców z grupy nordyckiej. Również grupa nordycka może być pozostałością jednego księżyca.

Podobne grupy księżyców zewnętrznych widzimy też wokół Jowisza. Wskazuje to, że dochodziło do potężnych zderzeń albo pomiędzy samymi księżycami, albo z księżycami i zewnętrznymi obiektami, jak asteroidy czy komety, mówi Sheppard.

Trzeci z nowych księżyców poruszających się ruchem prostym ma orbitę nachyloną pod kątem 36 stopni, co czyni go podobnym do grupy galijskiej. Jednak, jako że jego orbita znajduje się znacznie dalej niż orbita jakiegokolwiek innego księżyca o ruchu prostym, nie można wykluczyć, że albo jest zewnętrznym obiektem przechwyconym przez Saturna, albo nie ma nic wspólnego z innymi księżycami o ruchu prostym.

Obecność tak licznych niewielkich księżyców sporo mówi o warunkach w chwili ich powstawania. Jeśli bowiem wokół Saturna znajdowałoby się dużo pyłu i gazu w chwili, gdy rozpadały się jego duże księżyce, to z czasem małe księżyce zostałyby na tyle spowolnione przez tarcie, że opadłyby na powierzchnię planety. Fakt, że te małe księżyce obiegają Saturna po tym, jak rozpadły się księżyce, od których pochodzą, wskazuje, iż do kolizji doszło gdy proces formowania się planety był w większości ukończony i dysk protoplanetarny nie wpływał na księżyce.

W ubiegłym roku Sheppard odkrył 12 nowych księżyców Jowisza, a niedawno informowaliśmy o nadaniu imion pięciu z nim.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Indyjska misja Chandrayaan-3 wylądowała na Księżycu. Tym samym Indie stały się czwartym, po USA, ZSRR i Chinach, krajem, którego pojazd przeprowadził miękkie lądowanie na Srebrnym Globie. Chandrayaan-3 wylądowała bliżej bieguna południowego, niż wcześniejsze misje. Biegun południowy jest ważny pod względem naukowym i strategicznym. Znajdują się tam duże zasoby zamarzniętej wody, które w mogą zostać wykorzystane jako źródło wody pitnej dla astronautów oraz materiał do produkcji paliwa na potrzeby misji w głębszych partiach kosmosu.
      Indie dokonały więc tego, co przed kilkoma dniami nie udało się Rosji. Jej pojazd, Luna 25, rozbił się 19 kwietnia o powierzchnię Księżyca. Tym samym porażką zakończyło się pierwsze od 47 lat lądowanie na Srebrnym Globie zorganizowane przez władze w Moskwie.
      Misja Chandrayaan-3 składa się z trzech elementów: modułu napędowego, lądownika i łazika. Na pokładzie lądownika Vikram znajduje się niewielki sześciokołowy łazik Pragyan o masie 26 kilogramów. Wkrótce opuści on lądownik i przystąpi do badań. Doktor Angela Marusiak z University of Arizona mówi, że ją najbardziej interesują dane z sejsmometru, w który wyposażono lądownik. Pozwoli on na badania wewnętrznych warstw Księżyca, a uzyskane wyniki będą miał olbrzymi wpływ na kolejne misje.
      Musimy się upewnić, że żadna potencjalna aktywność sejsmiczna nie zagrozi astronautom. Ponadto, jeśli chcemy budować struktury na Księżycu, muszą być one bezpieczne, dodaje. Trzeba tutaj przypomnieć, że USA czy Chiny planują budowę księżycowej bazy.
      Łazik i lądownik są przygotowane do dwutygodniowej pracy na Księżycu. Moduł napędowy pozostaje na orbicie i pośredniczy w komunikacji pomiędzy nimi, a Ziemią.
      Indie, we współpracy z USA i Francją, bardzo intensywnie rozwijają swój program kosmiczny. Lądowanie na Księżycu do kolejny ważny sukces tego kraju. Przed 9 laty Indie zaskoczyły świat umieszczając przy pierwszej próbie swój pojazd na orbicie Marsa.
      W najbliższych latach różne kraje chcą wysłać misje na Księżyc. Jeszcze w bieżącym miesiącu ma wystartować misja japońska. USA planują trzy misje komercyjne na zlecenie NASA, z których pierwsza ma wystartować jeszcze w bieżącym roku. Natomiast NASA przygotowuje się do powrotu ludzi na Księżyc. Astronauci mają trafić na Srebrny Glob w 2025 roku.
      Indie są jednym z krajów, które przystąpiły do zaproponowanej przez USA umowy Artemis Accords. Określa ona zasady eksploracji Księżyca i kosmosu. Umowy nie podpisały natomiast Rosja i Chiny.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      NASA i DARPA ujawniły szczegóły dotyczące budowy silnika rakietowego o napędzie atomowym. Jądrowy silnik termiczny (NTP) DRACO (Demonstration Rocket for Agile Cislunar Operations) powstaje we współpracy z Lockheed Martinem i BWX Technologies. Najpierw zostanie zbudowany prototyp, następnie silnik do pojazdów zdolnych dolecieć do Księżyca, w końcu zaś silnik dla misji międzyplanetarnych. Jeszcze przed kilkoma miesiącami informowaliśmy, że DRACO może powstać w 2027 roku. Teraz dowiadujemy się, że test prototypu w przestrzeni kosmicznej zaplanowano na koniec 2026 roku.
      To niezwykłe przyspieszenie prac – trzeba pamiętać, że zwykle projekty związane z przestrzenią kosmiczną i nowymi technologiami mają spore opóźnienie – było możliwe dzięki częściowemu połączeniu prac, które zwykle odbywają się osobno, w drugiej i trzeciej fazie rozwoju projektu. To zaś jest możliwe dzięki wykorzystaniu sprzętu i doświadczeń z dotychczasowych misji w głębszych partiach kosmosu. Budujemy stabilną i bezawaryjną platformę, w której wszystko, co nie jest silnikiem, to technologie o niskim ryzyku, mówi Tabitha Dodson, odpowiedzialna z ramienia DARPA za projekt DRACO.
      Wiemy, że niedawno zakończyła się pierwsza faza projektu, w ramach którego powstał projekt nowego reaktora. Nie ujawniono, ile faza ta kosztowała. Kolejne dwie fazy mają budżet 499 milionów USD. Jeśli prototyp zda egzamin, powstanie silnik dla misji na Księżyc. Przyniesie on spore korzyści. Napędzane nim rakiety będą przemieszczały się szybciej, zatem szybciej dostarczą ludzi, sprzęt i materiały na potrzeby budowy bazy na Księżycu. Jednak największe korzyści z nowego silnika ujawnią się podczas misji na Marsa.
      Okno startowe misji na Czerwoną Planetę otwiera się co 26 miesięcy i jest dość wąskie. Dzięki lepszym silnikom i szybszym rakietom okno to można poszerzyć, co ułatwi planowanie i przeprowadzanie marsjańskich misji. Nie mówiąc już o tym, że skrócenie samej podróży będzie korzystne dla zdrowia astronautów poddanych promieniowaniu kosmicznemu. Prędkość obecnie stosowanych silników jest ograniczona przez dostępność paliwa i utleniacza. Silnik z reaktorem atomowym działałby dzięki ogrzewaniu ciekłego wodoru z temperatury -253 stopni Celsjusza do ponad 2400 stopni Celsjusza i wyrzucaniu przez dysze szybko przemieszczającego się rozgrzanego gazu. To on nadawałby ciąg rakiecie.
      Pomysłodawcą stworzenia napędu atomowego jest polski fizyk Stanisław Ulam, który przedstawił go w 1946 roku. Dziesięć lat później rozpoczęto Project Orion. Efektem prac było powstanie prototypowego silnika, który został przetestowany na ziemi. Obecnie takie testy nie wchodzą w grę. Zgodnie z dzisiejszymi przepisami naukowcy musieliby przechwycić gazy wylotowe, usunąć z nich materiał radioaktywny i bezpiecznie go składować. Dlatego też prototyp zostanie przetestowany na orbicie 700 kilometrów nad Ziemią. Ponadto w latach 50. wykorzystano wzbogacony uran-235, taki jak w broni atomowej. Obecnie użyty zostanie znacznie mniej uran-235. Można z nim bezpieczne pracować i przebywać w jego pobliżu, mówi Anthony Calomino z NASA. Drugi z podobnych projektów, NERVA (Nuclear Engine for Rocket Vehicle Application), doprowadził do stworzenia dobrze działającego silnika. Ze względu na duże koszty projekt zarzucono.
      Reaktor będzie posiadał liczne zabezpieczenia, które nie dopuszczą do jego pełnego działania podczas pobytu na ziemi. Dopiero po opuszczeniu naszej planety będzie on w stanie w pełni działać.
      W czasie testów zostaną sprawdzone liczne parametry silnika, w tym jego ciąg oraz impuls właściwy. Impuls właściwy obecnie stosowanych silników chemicznych wynosi około 400 sekund. W przypadku silnika atomowego będzie to pomiędzy 700 a 900 sekund. NASA chce też sprawdzić, na jak długo wystarczy 2000 kilogramów ciekłego wodoru. Inżynierowie mają nadzieję, że taka ilość paliwa wystarczy na napędzanie rakiety przez wiele miesięcy. Obecnie górny człon rakiety nośnej ma paliwa na około 12 godzin. Silniki NTP powinny być od 2 do 5 razy bardziej efektywne, niż obecne silniki chemiczne. A to oznacza, że napędzane nimi rakiety mogą lecieć szybciej, dalej i zaoszczędzić paliwo.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Co prawda misja Europa Clipper wystartuje dopiero w przyszłym roku, ale NASA już zbiera dane osób, które chcą wysłać swoje nazwisko na orbitę Jowisza. Projekt nazwano Message in a bottle, gdyż głównym celem misji jest zbadanie Europy, pokrytego oceanem księżyca, w którego wodach może istnieć życie. Europa to szósty największy księżyc Układu Słonecznego, szósty najbliższy swojej planecie ze wszystkich 95 księżyców Jowisza i ma najbardziej gładką powierzchnię ze wszystkich ciał stałych w Układzie Słonecznym.
      Start misji planowany jest na 10 października 2024 roku, a w kwietniu 2030 roku pojazd po raz pierwszy spotka się z Europą. Celem misji będzie zbadanie pokrywy lodowej i oceanu pod nią położonego, ich składu chemicznego oraz opisanie powierzchni lodu oraz wykrycie miejsc niedawnej aktywności geologicznej. Europa Clipper nie zostanie wprowadzony na orbitę Europy. Pojazd będzie okrążał Jowisza i w ciągu 3,5 roku przeleci koło księżyca 44 razy, zbliżając się do niego na odległość od 2700 do 25 kilometrów. Za każdym razem obejrzy inny fragment księżyca, przeprowadzając globalne badanie topograficzne, w tym mierząc grubość pokrywy lodowej.
      Na pokładzie tej niezwykłej misji znajdą się nazwiska wielu mieszkańców Ziemi, wśród nich może być nazwisko każdgo z nas. W chwili pisania tej informacji do NASA napłynęło już 251 900 nazwisk z całego świata, w tym 65 737 z USA, 36 076 z Indii i 32 032 z Iranu. Swoje nazwiska chce też wysłać 2095 osób z Polski oraz 10 osób z Gabonu, 3 z Madagaskaru czy 2 z Sahary Zachodniej.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Pierścienie Saturna są bardzo młode, znacznie młodsze niż sama planeta. Fizyk Sascha Kempf z University of Colorado w Boulder dostarczył najsilniejszych dowodów wskazujących, że pierścienie gazowego olbrzyma liczą nie więcej niż 400 milionów lat. Są więc o ponad 4 miliardy lat młodsze niż planeta, którą otaczają. Pierścienie zatem to króciutki epizod w historii planety. Tym bardziej, że z danych przekazanych przez sondę Cassini wynika, iż Saturn szybko niszczy swoje pierścienie.
      Pierścienie jako pierwszy zauważył Galileusz w 1610 roku. Nie wiedział jednak, czym są. Na jego rysunkach wyglądają nieco podobnie jak uszy dzbana. Dopiero w XIX wieku James Scott Maxwell stwierdził, że pierścienie nie są strukturą stałą, a zbudowaną z wielu indywidualnych części. Obecnie wiemy, że Saturn posiada 7 pierścieni zbudowanych z kawałków lody, a większość z nich jest mniejsza niż głazy na Ziemi. W sumie jednak lód ten ma taką masę jak połowa masy księżyca Mimas.
      Przez większość XX wieku astronomowie sądzili, że pierścienie powstały jednocześnie z planetą. Nie potrafili jednak wyjaśnić, dlaczego są one tak „czyste”. Obserwacje wskazywały bowiem, że w 98% zbudowane są z lodu. Było niemal niemożliwe, by materiał skalny stanowił tak niewielki odsetek pierścieni istniejących przez miliardy lat.
      Misja sondy Cassini, która przybyła w okolice Saturna w 2004 roku, stała się niepowtarzalną okazją do wyjaśnienia zagadki pierścieni. Sonda miała na pokładzie urządzenie o nazwie Cosmic Dust Analyzer, w który łapała kawałki międzyplanetarnego pyłu. W ciągu 13 lat złapała zaledwie 163 ziarna pyłu znajdującego się w sąsiedztwie Saturna. To jednak wystarczyło Kempfowi i jego kolegom. Na podstawie danych zebranych przez Cassini obliczyli oni, że każdego roku na lodowe pierścienie opada znacznie mniej niż 1 gram pyłu na stopę kwadratową powierzchni. To bardzo mało, ale gromadzi się on latami, więc stanowi coraz większy odsetek materiału pierścieni. Biorąc zaś pod uwagę wielkość pierścieni, stosunek pyłu do lodu oraz tempo opadania pyłu na pierścienie, naukowcy mogli wyliczyć maksymalny wiek pierścieni. Już wcześniej uważano, że pierścienie są bardzo młode, jednak nikt dotychczas nie dostarczył równie przekonujących dowodów.
      W najbliższych latach powinniśmy poznać kolejne tajemnice pierścieni Saturna. W przyszłym roku ma bowiem wystartować misja Europa Clipper, na pokładzie której znajdzie się znacznie bardziej zaawansowany analizator pyłu.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Europejska Agencja Kosmiczna przeprowadziła udany start misji Juice (Jupiter Icy Moons Explorer), która – jak sama nazwa wskazuje – ma zbadać trzy Galileuszowe księżyce Jowisza, Ganimedesa, Kallisto i Europę. Na pokładzie misji znalazły się polskie urządzenia, wysięgniki firmy Astronika, na których zamontowano sondy do pomiarów plazmy. Mają one rozłożyć się na odległość 3 metrów od satelity i ustawić czujniki pod kątem 135 stopni, by umożliwić im zbadanie plazmy znajdującej się w atmosferze Jowisza.
      Juice wystartowała o godzinie 14:14 czasu polskiego, a 50 minut później stacja w Australii odebrała sygnał z pojazdu. ESA wstrzymała się z ogłoszeniem udanego startu do godziny 15:33, kiedy to nadeszły informacje o udanym rozłożeniu 27-metrowych paneli słonecznych. Dzięki nim pojazd będzie mógł polecieć do Jowisza. Juice to ostatnia misja wystrzelona za pomocą rakiety Ariane 5. Zadebiutowały one w 1999 roku podczas misji XMM-Newton, a w 2021 roku za pomocą jednej z nich wystrzelono Teleskop Kosmiczny Jamesa Webba.
      Dzięki wcześniejszym misjom w kierunku Jowisza wiemy, że na wymienionych księżycach znajdują się zamarznięte oceany. To jedne z najbardziej obiecujących miejsc, w których może istnieć pozaziemskie życie w Układzie Słonecznym. Juice powinno przybliżyć nas do odpowiedzi na pytanie o jego obecność tam.
      Dotychczas ludzkość zorganizowała 9 misji, które badały Jowisza. Na orbicie planety wciąż pracuje, wystrzelona w 2011 roku, sonda Juno. W styczniu 2021 NASA przedłużyła jej misję do września 2025. Od tamtej pory Juno dokonała przelotu w pobliżu Ganimedesa i Europy.
      Ponad 400 lat temu Galileusz odkrył księżyce Jowisza, co zaszokowało świat renesansu i zrewolucjonizowało nasze myślenie o miejscu ludzkości we wszechświecie. Dzisiaj wysyłamy zestaw przełomowych narzędzi, które dadzą nam wyjątkowy ogląd tych księżyców, stwierdziła Carole Mundell, dyrektor ds. naukowych ESA.
      Teraz przez 2,5 tygodnia Juice będzie rozkładała liczne anteny i instrumenty. Podczas ośmioletniej podróży do Jowisza pojazd czterokrotnie skorzysta z asysty grawitacyjnej Ziemi i Wenus. Pierwszy taki przelot odbędzie się w kwietniu przyszłego roku, kiedy to Juice najpierw minie Księżyc, a 1,5 doby później wykorzysta oddziaływanie grawitacyjne Ziemi.
      Sondę wyposażono w osłony, które mają chronić jej elektronikę przed olbrzymimi dawkami promieniowania w pobliżu Jowisza oraz w wielowarstwową izolację, dzięki której wewnątrz urządzenia utrzymywana będzie stabilna temperatura. Izolacja będzie musiała poradzić sobie z temperaturami ponad 250 stopni Celsjusza podczas przelotu w pobliżu Wenus i -230 stopniami w pobliżu Jowisza.
      Obecnie planuje się, że podczas pobytu na orbicie Jowisza Juice wykona 35 przelotów w pobliżu trzech wspomnianych księżyców, a następnie wejdzie na orbitę Ganimedesa. To zaś będzie wymagało olbrzymiej precyzji podczas nawigacji. Mają ją zapewnić nadajniki w Hiszpanii, Argentynie i Australii oraz Europejskie Centrum Operacji Kosmicznych w Darmstadt. Będzie to jedna z najbardziej skomplikowanych misji podjętych przez ESA. Od przelotów w pobliżu księżyców Jowisza w ciągu 2,5 roku poprzez olbrzymie wyzwanie jakim jest zmiana orbity między olbrzymim Jowiszem, a Ganimedesem, opisuje trudności Angela Dietz, zastępca menadżera misji ds. operacyjnych.
      Głównym celem naukowym misji jest Ganimedes, księżyc większy od Merkurego. Juice spędzi na jego orbicie około 9 miesięcy. Ganimedes nie tylko pokryty jest oceanem, ale to jedyny w  w Układzie Słonecznym księżyc generujący własne pole magnetyczne. Tylko dwa inne ciała skaliste – Merkury i Ziemia – generują takie pole.
      Mamy tutaj do czynienia z interesującym zjawiskiem niewielkiej „bańki magnetycznej” generowanej przez Ganimedesa, która znajduje się wewnątrz większej bańki generowanej przez Jowisza. Obie wchodzą ze sobą w skomplikowane interakcje. Dzięki misji Juice naukowcy chcą poznać strukturę wewnętrzną Ganimedesa, co powinno dać odpowiedź na pytanie o sposób generowania i utrzymywania pola magnetycznego. To zaś pozwoli zrozumieć, w jaki sposób księżyc ewoluował i czy może na nim istnieć życie.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...