Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Astronomowie obserwują trzy łączące się supermasywne czarne dziury

Recommended Posts

Astronomowie obserwują ostatnie etapy łączenia się trzech supermasywnych czarnych dziur. Krążą one wokół siebie w centrum trzech galaktyk, do połączenia których dochodzi w odległości około miliarda lat świetlnych od Ziemi. Niezwykły taniec czarnych dziur specjaliści zauważyli wewnątrz obiektu SDSS J084905.51+111447.2.

Obserwowaliśmy parę czarnych dziur, a gdy użyliśmy kolejnych technik [obrazowania rentgenowskiego o wysokiej rozdzielczości przestrzennej, obrazowania w bliskiej podczerwieni oraz spektroskopii optycznej – red.] znaleźliśmy ten niezwykły system, mówi główny autor badań, Ryan Pfeifle z George Mason University. Mamy tutaj najsilniejsze z dostępnych dowodów na istnienie systemu trzech aktywnych supermasywnych czarnych dziur.

Badania wspomnianego systemu rozpoczęły się od jego obrazowania w świetle widzialnym za pomocą teleskopu Sloan Digital Sky Survey (SDSS) w Nowym Meksyku. Dane udostępniono w społecznościowym projekcie Galaxy Zoo, którego użytkownicy oznaczyli SDSS J084905.51+111447.2 jako miejsce, w którym właśnie dochodzi do łączenia się czarnych dziur. Naukowcy przeanalizowali więc dane zebrana przez teleskop kosmiczny Wide-field Infrared Survey Explorer (WISE). Pracuje on w podczerwieni i jeśli rzeczywiście w galaktyce dochodzi do łączenia się czarnych dziur, to powinien on zaobserwować co najmniej dwa źródła gwałtownego pochłaniania materii. Kolejne obserwacje potwierdziły podejrzenia. Chandra X-ray Observatory wykrył istnienie silnych źródeł promieniowania X, co wskazuje, że czarne dziury pochłaniają tam duże ilości pyłu i gazu. Podobne dowody zdobył Nuclear Spectroscopic Telescope Array (NuSTAR). Kolejne obrazowanie w świetle widzialnym przeprowadzone za pomocą SDSS i Large Binocular Telescope potwierdziły obecność trzech aktywnych czarnych dziur.

Dzięki użyciu wielu instrumentów opracowaliśmy nową technikę identyfikowania potrójnych układów supermasywnych czarnych dziur. Każdy z tych teleskopów dostarczył nam nieco innych informacji o tym, co się tam dzieje. Mamy nadzieję, że za pomocą tej techniki znajdziemy więcej układów potrójnych, mówi Pfeifle.

Naukowcy stwierdzili, że odległość pomiędzy każdą z czarnych dziur, a jej sąsiadami wynosi od 10 do 30 tysięcy lat świetlnych. Będzie ona malała, gdyż galaktyki, do których należą te dziury, łączą się, więc i czarne dziury są skazane na połączenie.
Dzięki wykryciu przez LIGO fal grawitacyjnych pochodzących z łączenia się czarnych dziur, wiemy co nieco o tym, jak przebiega taki proces. Jednak łączenie się układu potrójnego wygląda prawdopodobnie nieco inaczej. Specjaliści podejrzewają, że obecność trzeciej dziury powoduje, iż dwie pierwsze łączą się znacznie szybciej.

Istnienie układu potrójnego może pozwolić też na wyjaśnienie teoretycznego „problemu ostatniego parseka”. Gdy dochodzi do połączenia dwóch galaktyk ich czarne dziury nie zderzają się czołowo, ale powinny minąć się po orbicie hiperbolicznej. Musi istnieć mechanizm, który spowoduje, że zbliżą się do siebie. Najważniejszym takim mechanizmem jest dynamiczne tarcie. Gdy czarna dziura zbliża się do gwiazdy, gwiazda jest przyspieszana, a czarna dziura spowalniana. Mechanizm ten spowalnia czarne dziury na tyle, że tworzą powiązany ze sobą układ podwójny. Dynamiczne tarcie nadal działa, dziury zbliżają się do siebie na odległość kilku parseków. Jednak proces krążenia czarnych dziur wokół siebie powoduje, że w pobliżu zaczyna brakować materii. W końcu jest jej tak mało, że jej oddziaływanie nie wystarczy, by dziury się połączyły.

Ostatecznie do połączenia się czarnych dziur mogłyby doprowadzić fale grawitacyjne, ale ich oddziaływanie ma znaczenie dopiero, gdy dziury zbliżą się do siebie na odległość 0,01–0,001 parseka. Wiemy jednak, że czarne dziury się łączą, pozostaje więc pytanie, co rozwiązuje problem ostatniego parseka, czyli co powoduje, że zbliżą się do siebie na tyle, iż utworzą jedną czarną dziurę. Obecność trzeciej czarnej dziury wyjaśniałaby, jaka siła powoduje, że czarne dziury się łączą.

Nie można też wykluczyć, że w układach potrójnych dochodzi nie tylko do połączenia się dwóch czarnych dziur, ale i do wyrzucenia trzeciej z nich w przestrzeń kosmiczną.


« powrót do artykułu

Share this post


Link to post
Share on other sites
12 godzin temu, KopalniaWiedzy.pl napisał:

Gdy dochodzi do połączenia dwóch galaktyk ich czarne dziury nie zderzają się czołowo, ale zaczynają krążyć wokół siebie po orbitach hiperbolicznych.

Nie rozumiem tego... Wydawało mi się, że orbita hiperboliczna, to orbita po której dane ciało jednokrotnie zbliża się po hiperboli (albo krzywej do niej podobnej) do innego ciała i oddala od niego na zawsze. Jak rozumieć krążenie wokół siebie po orbitach hiperbolicznych? Czy to na pewno jest poprawny opis?

Share this post


Link to post
Share on other sites
Guest kremien
1 hour ago, Mariusz Błoński said:

W pracy źródłowej tego nie ma. To nasz dodatek, wyjaśniający, czym jest problem ostatniego parseka.

A ja dziękuję za te wyjaśnienie. Chciałem tego już szukać, a tu samo się znalazło ;)

Share this post


Link to post
Share on other sites

Owszem, by nie istniał, dlatego potrzebne jest coś, co je spowolni. Ale nawet to coś może być zbyt mało, bo mogą wokół siebie krążyć dłużej niż wiek wszechświata. Obecność trzeciej wyjaśnia. Zastanawiające, czy jest to jedyne wyjaśnianie i czy zawsze potrzebna jest trzecia, by dwie się połączyły?

 

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Po kilkudziesięciu latach poszukiwań astronomowie znaleźli gwiazdy w Strumieniu Magellanicznym. Ten strumień gazowych chmur o dużej prędkości rozciąga się na 600 000 lat świetlnych i znajduje w odległości około 180 000 lat świetlnych od Drogi Mlecznej. Zauważono go po raz pierwszy z 1965 roku, a w 1972 stwierdzono, że łączy on Wielki i Mały Obłok Magellana i jest z nimi powiązany. Pomimo tego, że – wedle obowiązujących teorii naukowych – w strumieniu powinny znajdować się gwiazdy, dotychczas jednoznacznie ich nie odnaleziono. Aż do teraz.
      Vedant Chandra z Center for Astrophysics Harvard & Smithsonian oraz naukowcy z USA i Australii zaobserwowali 13 czerwonych olbrzymów położonych w odległości od 200 do 325 tysięcy lat świetlnych od Ziemi, które mają ten sam moment pędu i podobny skład chemiczny, co gaz w Strumieniu.
      Odkrycia dokonano dzięki analizie katalogu Gaia, w którym znajdują się informacje o ponad miliardzie gwiazd. Naukowcy najpierw odrzucili gwiazdy, które prawdopodobnie należą do Drogi Mlecznej, następnie zaś skupili się na gwiazdach o składzie chemicznym podobnym do składu Strumienia.
      Po raz pierwszy obserwujemy gwiazdy towarzyszące Strumieniowi. To nie tylko rozwiązuje zagadkę samych gwiazd, ale również zdradza nam wiele użytecznych informacji na temat ruchu samego gazu, wyjaśnia Chandra. Obserwacje nowo odkrytych gwiazd pozwolą nie tylko bardziej precyzyjnie określić pozycję i ruch Strumienia, ale również zbadać ruch Obłoków Magellana, galaktyk satelitarnych Drogi Mlecznej.
      Połowa ze zidentyfikowanych gwiazd jest bogata w metale – tutaj trzeba przypomnieć, że metalami w astronomii określa się pierwiastki cięższe od wodoru i helu – i znajduje się bliżej Strumienia, druga połowa jest uboga w metale, te gwiazdy są bardziej rozproszone. Chandra i jego zespół uważają, że różnica ta bierze się z faktu, że gwiazdy bogate w metale uformowały się niedawno w Strumieniu Magellanicznym, natomiast gwiazdy ubogie w metale to populacja wyrzucona z obrzeży Małego Obłoku Magellana podczas interakcji pomiędzy oboma Obłokami. Zdaniem komentujących odkrycie naukowców, gwiazdy o niskiej metaliczności mogą nie być częścią Strumienia, ale są w jakiś sposób z nim powiązane.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Dzięki Teleskopowi Webba (JWST) naukowcy odkryli najbardziej odległe od Ziemi złożone molekuły organiczne. Zostały one zarejestrowane w galaktyce znajdującej się ponad 12 miliardów lat świetlnych od Drogi Mlecznej. Profesor Joaquin Vieira i świeżo upieczony magistrant Kedar Phadke połączyli siły z uczonymi z Texas A&M University oraz międzynarodową grupą badawczą, by odróżnić sygnały generowane w podczerwieni przez ziarna pyłu od sygnałów molekuł węglowodorów.
      Pył absorbuje i ponownie emituje około połowy promieniowania gwiazd we wszechświecie, przez co promieniowanie podczerwone z odległych obiektów jest niezwykle słabe lub w ogóle niewykrywalne przez naziemne teleskopy, wyjaśnia Vieira. Dzięki olbrzymim możliwościom badawczym Teleskopu Webba oraz wykorzystaniu zjawiska soczewkowania grawitacyjnego można było jednak obserwować odległą galaktykę i badać jej spektrum emisji.
      Badacze skierowali Teleskop Webba na obiekt SPT0418-47, który został wykryty przez South Pole Telescope i zidentyfikowany jako przesłonięta pyłem galaktyka. Odkrycia udało się dokonać dzięki temu, że doszło do soczewkowania grawitacyjnego, które powiększyło SPT0418-47 o 30-35 razy. Gdyby nie soczewkowanie grawitacyjne i dostęp do JWST, nigdy nie bylibyśmy w stanie analizować światła tej galaktyki z powodu zasłaniającego ją pyłu, mówi Vieira.
      Dane spektroskopowe uzyskane przez Teleskop Webba wskazują, że SPT0418-47 zawiera ciężkie pierwiastki, co wskazuje, że powstały w niej i zginęły liczne gwiazdy. Jednak najbardziej interesujące były sygnatury wielopierścieniowych węglowodorów aromatycznych (PAH). Na Ziemi związki te powstają m.in. w silnikach spalinowych czy w wyniku pożarów lasów. Molekuły te uznawane są cegiełki budujące najwcześniejsze formy życia.
      Badania te pokazują nam, że jesteśmy w stanie obserwować struktury przesłonięte drobnym pyłem. Regiony, których przed epoką JWST nie mogliśmy badać. Dane spektroskopowe zdradzają nam skład atomowy i molekularny galaktyk, dostarczając ważnych informacji na temat ich powstawania i ewolucji, dodaje Phadke. Naukowcy przyznają, że nie spodziewali się zaobserwowania molekuł organicznych z tak olbrzymiej odległości. Ich zdaniem to pierwszy krok na drodze ku przyszłym przełomowym obserwacjom.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W jednym z laboratoriów na Imperial College London odtworzono wirujący dysk plazmy, z tych, jakie otaczają czarne dziury i tworzące się gwiazdy. Eksperyment pozwala lepiej modelować procesy, zachodzące w takich dyskach, a naukowcy mają nadzieję, że dzięki temu dowiedzą się, jak rosną czarne dziury i powstają gwiazdy.
      Gdy materia zbliża się do czarnej dziury, jest rozgrzewana i staje się plazmą, czwartym stanem materii składającym się z naładowanych jonów i wolnych elektronów. Zaczyna też się obracać, tworząc dysk akrecyjny. W wyniku obrotu powstają siły odśrodkowe odrzucające plazmę na zewnątrz, jednak siły te równoważy grawitacja czarnej dziury.
      Naukowcy chcą poznać odpowiedź na pytanie, w jaki sposób czarna dziura rośnie, skoro materia – w formie plazmy – pozostaje na jej orbicie. Najbardziej rozpowszechniona teoria mówi, że niestabilności w polu magnetycznym plazmy prowadzą do pojawienia się tarcia, plazma traci energię i wpada do czarnej dziury.
      Dotychczas mechanizm ten badano za pomocą ciekłych wirujących metali. Za ich pomocą sprawdzano, co dzieje się, gdy pojawi się pole magnetyczne. Jednak metale te zamknięte są w rurach, co nie oddaje w pełni swobodnie poruszającej się plazmy.
      Doktor Vincente Valenzuela-Villaseca i jego zespół wykorzystali urządzenie Mega Ampere Generator for Plasma Implosion Experiments (MAGPIE) do stworzenia wirującego dysku plazmy. Za jego pomocą przyspieszyli osiem strumieni plazmy i doprowadzili do ich zderzenia, w wyniku czego powstała obracająca się kolumna plazmy. Odkryli, że im bliżej środka, tym plazma porusza się szybciej. To ważna cecha dysków akrecyjnych.
      MAGPIE generuje krótkie impulsy plazmy, przez co w utworzonym dysku dochodziło tylko do jednego obrotu. Jednak liczbę obrotów będzie można zwiększyć wydłużając czas trwania impulsów plazmy. Przy dłużej istniejących dyskach możliwe będzie też zastosowanie pól magnetycznych i zbadanie ich wpływu na plazmę. Zaczynamy badać dyski akrecyjne w nowy sposób, zarówno za pomocą Teleskopu Horyzontu Zdarzeń, jak i naszego eksperymentu. Pozwoli nam to przetestować różne teorie i sprawdzić, czy zgadzają się one z obserwacjami, mówi Valenzuela-Villaseca.
      Ze szczegółami badań można zapoznać się na łamach Physical Review Letters.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Przed miesiącem pisaliśmy, że astronomowie z Yale University donieśli o odkryciu czarnej dziury, która ciągnie za sobą gigantyczny ogon gwiazd i materii gwiazdotwórczej. Informacja odbiła się szerokim echem, gdyż takie zjawisko wymagałoby spełnienia całego szeregu wyjątkowych warunków. Liczne zespoły naukowe zaczęły poszukiwać alternatywnego wyjaśnienia zaobserwowanej przez Hubble'a struktury. Naukowcy z Instituto de Astrofísica de Canarias przedstawili na łamach Astronomy and Astrophysics Letters własną interpretację obserwowanego zjawiska.
      Ich zdaniem niezwykła struktura zarejestrowana przez Hubble'a może być płaską galaktyką, którą widzimy od strony krawędzi. Galaktyki takie nie posiadają centralnego zgrubienia i są dość powszechne. Ruch, rozmiary i liczba gwiazd pasują do tego, co widzimy w płaskich galaktykach w lokalnym wszechświecie, mówi główny autor najnowszych badań, Jorge Sanchez Almeida. Proponowany przez nas scenariusz jest znacznie prostszy. Chociaż z drugiej strony szkoda, że to może być wyjaśnieniem, gdyż teorie przewidują, że wyrzucenie czarnej dziury z galaktyki jest możliwe, tutaj więc mielibyśmy pierwszą obserwację takiego zjawiska, dodaje.
      Almeida i jego zespół porównali strukturę zaobserwowaną przez Hubble'a z dobrze znaną nieodległą galaktyką IC5249, która nie posiada centralnego zgrubienia, i znaleźli zaskakująco wiele podobieństw. Gdy przeanalizowaliśmy prędkości w tej odległej strukturze gwiazd okazało się, że odpowiadają one prędkościom obrotowym galaktyk, więc postanowiliśmy porównać tę strukturę ze znacznie nam bliższą galaktyką i okazało się, że są one wyjątkowo podobne, dodaje współautorka artykułu Mireia Montes.
      Naukowcy przyjrzeli się też stosunkowi masy do maksymalnej prędkości obrotowej i odkryli, że to galaktyka, która zachowuje się jak galaktyka, stwierdza Ignacio Trujillo. Jeśli uczeni z Wysp Kanaryjskich mają rację, to Hubble odkrył interesujący obiekt. Dużą galaktykę położoną w odległych od Ziemi regionach, gdzie większość galaktyk jest mniejsza.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Teleskop Kosmiczny Jamesa Webba prawdopodobnie znalazł galaktyki, których istnienie przeczy standardowemu modelowi kosmologicznemu. Wydaje się, że są one zbyt masywne jak na czas swoich narodzin.
      Astronomowie z The University of Texas at Austin informują na łamach Nature Astronomy, że sześć z najstarszych i najbardziej masywnych galaktyk zaobserwowanych przez JWST wydaje się przeczyć najbardziej rozpowszechnionym poglądom obowiązującym w kosmologii. Naukowcy szacują bowiem, że galaktyki te narodziły się w ciągu 500–700 milionów lat po Wielkim Wybuchu, a ich masa wynosi ponad 10 miliardów mas Słońca. Jedna z nich wydaje się nawet równie masywna co Droga Mleczna, a jest od niej o miliardy lat młodsza.
      Jeśli szacunki dotyczące masy są prawidłowe, to wkraczamy na nieznane terytorium. Wyjaśnienie tego zjawiska będzie wymagało dodania czegoś całkowicie nowego do teorii formowania się galaktyk lub modyfikacji poglądów kosmologicznych. Jednym z najbardziej niezwykłych wyjaśnień byłoby stwierdzenie, że wkrótce po Wielkim Wybuchu wszechświat rozszerzał się szybciej, niż sądzimy. To jednak mogłoby wymagać dodania nowych sił i cząstek, mówi profesor Mike Boylan-Kolchin, który kierował zespołem badawczym. Co więcej, by tak masywne galaktyki uformowały się tak szybko, w gwiazdy musiałoby zamienić się niemal 100% zawartego w nich gazu. Zwykle w gwiazdy zamienia się nie więcej niż 10% gazu galaktyki. I o ile konwersja 100% gazu w gwiazdy mieści się w teoretycznych przewidywaniach, to taki przypadek wymagałby zupełnie innych zjawisk, niż obserwujemy, dodaje uczony.
      Dane, jakich dostarczył JWST, mogą postawić astronomów przed poważnym problemem. Jeśli bowiem masy i wiek wspomnianych galaktyk zostaną potwierdzone, mogą być potrzebne fundamentalne zmiany w obowiązującym modelu kosmologicznym. Takie, które dotkną też ciemnej materii i ciemnej energii. Jeśli istnieją inne, szybsze sposoby formowania się galaktyk, albo też więcej materii było dostępnej we wczesnym wszechświecie, konieczna będzie radykalna zmiana poglądów.
      Oceny wieku i masy wspomnianych 6 galaktyk to wstępne szacunki. Następnym etapem prac powinno być przeprowadzenie badań spektroskopowych. W ich trakcie może się np. okazać, że czarne dziury w centrach galaktyk tak bardzo podgrzewają otaczający je gaz, że galaktyki są jaśniejsze, zatem wydają się bardziej masywne niż w rzeczywistości. Nie można też wykluczyć, że galaktyki tak naprawdę są młodsze, ale znajdujący się pomiędzy nami a nimi pył zmienia kolor docierającego z nich światła tak, iż jest ono bardziej przesunięte ku czerwieni, zatem wydaje się dochodzić z większej odległości, a zatem z młodszych galaktyk.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...