Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Bioimplant, który pomoże w regeneracji kości

Recommended Posts

Nasi naukowcy pracują nad technologią wytwarzania wielofunkcyjnego materiału kompozytowego do odbudowy tkanki kostnej Chcemy wykorzystać naturalną zdolność kości do regeneracji – mówi dr inż. Konrad Szustakiewicz z Wydziału Chemicznego PWr.

Dr Szustakiewicz wraz grupą badaczy z Politechniki Wrocławskiej uczestniczy w interdyscyplinarnym projekcie nadzorowanym przez Instytut Ceramiki i Materiałów Budowlanych z Warszawy. W konsorcjum jest także Uniwersytet Gdański, Instytut Biotechnologii i Medycyny Molekularnej oraz jako partner biznesowy – spółka SensDx.

Ideą projektu, finansowanego przez Narodowe Centrum Badań i Rozwoju w ramach konkursu Techmatstrateg 2, jest stworzenie implantu kostnego, który będzie aktywny biologicznie. Ma on pomóc pacjentom z ubytkami w kościach spowodowanymi np. osteoporozą, chorobami nowotworami czy urazami.

W tym celu wykorzystany zostanie materiał kompozytowy z odpowiednio dobranego polimeru oraz bioszkła, które jest biozgodne oraz wytrzymałe mechanicznie. Dlatego świetnie nadaje się do ubytków powstałych w tkance kostnej.

Nasz materiał, ma być biodegradowalny i bioresorbowalny, czyli będzie się rozkładać w organizmie ludzkim lub zwierzęcym w taki sposób, żeby nie powstawały żadne toksyczne związki. Nie będzie on wywoływał stanów zapalnych i zostanie wchłonięty przez organizm. Taki jest plan – wyjaśnia dr Konrad Szustakiewicz z Zakładu Inżynierii i Technologii Polimerów.

To właśnie tu wykonywane są badania w ramach chemicznej części projektu, czyli tej dotyczącej dopasowania odpowiedniego polimeru.

Pomysł, realizowany przez konsorcjum, łączy różne dziedziny nauki. To działania na granicy inżynierii materiałowej, chemii polimerów, ceramiki, medycyny i oczywiście biologii – podkreśla dr Szustakiewicz. Każdy z partnerów odpowiada za inny etap badań. Bioszkło powstaje w grupie dr inż. Zbigniewa Jaegermanna w Instytucie Ceramiki i Materiałów Budowlanych w Warszawie, my jesteśmy odpowiedzialni za wytworzenie polimeru o odpowiednim ciężarze cząsteczkowym – wyjaśnia.

Do polimeru przyłączane są peptydy – czym zajmuje się zespół z Uniwersytetu Gdańskiego, pod kierownictwem prof. Sylwii Rodziewicz-Motowidło. W kolejnych etapach polimer będzie mieszany z bioszkłem, a następnie w Instytucie Biotechnologii i Medycyny Molekularnej zostanie przebadany pod względem biologicznym. Dostaniemy  wtedy odpowiedź, jak nasz materiał zachowuje się w walce z różnymi bakteriami, np. gronkowcem złocistym – tłumaczy naukowiec z PWr.

Za wszystkie procedury związane z komercjalizacją wyników i znalezienie inwestora gotowego przeprowadzić kolejną fazę badań klinicznych odpowiada firma SensDx. Droga wynalazku z laboratorium do wdrożenia na rynek jest bardzo długa i skomplikowana. Dlatego zależy nam, żeby jak najszybciej ją przejść. Już pierwsze wyniki zamierzamy poddać ochronie patentowej i objąć licencją – zapowiada dr Szustakiewicz.

Innowacyjność projektu polega na tym, że wytworzony materiał ma nie tylko wypełnić ubytek, lecz także pobudzić komórki do regeneracji i zapobiegać powstawaniu stanów zapalnych. Bioszkło to taka imitacja kości. Dzięki obecności peptydów o odpowiednich sekwencjach komórki kostne namnożą się szybciej. Peptydy będą także uwalniane w czasie resorpcji polimeru i będą też działać antybakteryjnie. Polimer po pewnym czasie zniknie z organizmu, zostanie bioszkło obudowane kością – wyjaśnia dr Szustakiewicz.

Dodaje, że aktualnie uzupełnienia kostne to gorący temat w świecie badań naukowych. W wielu ośrodkach prowadzone są prace nad różnymi rozwiązaniami. Nasze podejście jest inne, bo po pierwsze proponujemy materiał polimerowo-ceramiczny, po drugie będzie on aktywny biologicznie. Dzięki temu proces gojenia się rany znacznie się skróci – mówi kierownik projektu na PWr.

Takie podejście spotkało się z pozytywną oceną środowiska ekspertów, bo projekt, chociaż jest jeszcze w fazie początkowej, już otrzymał Polską Nagrodę Inteligentnego Rozwoju w kategorii: innowacyjne technologie przyszłości.

Działania konsorcjum rozpisane są na trzy lata. Politechniczny zespół liczy siedem osób. Poza kierownikiem są to dr inż. Małgorzata Gazińska, dr inż. Ewelina Ortyl, dr inż. Magdalena Kobielarz, dr inż. Dominika Czycz, mgr inż. Agnieszka Bondyra oraz mgr inż. Michał Grzymajło. Naukowcy na realizację swojej części badań dostali niecały milion złotych. Cały projekt kosztuje prawie 7 milionów zł.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Dwa zespoły studentów z Politechniki Wrocławskiej – które przygotowały projekty marsjańskich osiedli – dostały się do światowego finału konkursu Mars Colony Prize. Swoje pomysły na to, jak może wyglądać samowystarczalna kolonia na Marsie, studenci przedstawią w Kalifornii w październiku.
      Spośród 100 projektów marsjańskich kolonii nadesłanych z całego świata organizacja Mars Society wybrała do finału 10 - w tym aż dwa projekty studentów z Politechniki Wrocławskiej: „Ideacity” i „Twardowsky”. Ich autorzy w połowie października szczegółowo zaprezentują swoje rozwiązania w USA. O sukcesie wrocławskich studentów poinformowano na stronie PWr.
      Organizator konkursu – Mars Society – oczekiwał od uczestników konkursu projektu samowystarczalnej marsjańskiej kolonii dla tysiąca osób. Osiedle powinno importować jak najmniej towarów z Ziemi, a jednocześnie mieć się z czego utrzymywać. Musi samo wytwarzać jedzenie dla swoich mieszkańców, podobnie jak materiały budowlane potrzebne do stopniowego rozbudowywania się oraz m.in. energię, ubrania, pojazdy, maszyny i wszystkie produkty codziennego użytku – jak w typowym ziemskim mieście.
      PWr poinformowała, że projektanci musieli wziąć pod uwagę wiele ograniczeń wynikających z warunków panujących na Czerwonej Planecie – jak choćby mniejszą żyzność marsjańskiej gleby w porównaniu do ziemskiej czy wahania temperatur od minus 140 st. C. do nawet plus 30.
      W konkursie oceniano m.in. projekt techniczny i opis, jakie systemy zostaną wykorzystane w kolonii i jak będą działały. Liczyły się też kwestie ekonomiczne i samowystarczalność bazy, a także estetyka kolonii oraz to, jak rozwiązano zagadnienia społeczne, kulturalne, polityczne i organizacyjne.
      Podczas finału każdy zespół dostanie po 20 minut, aby zaprezentować projekt jury oraz pięć minut na odpowiedzi na ich pytania.
      Pierwszy z finałowych projektów – „Ideacity” – stworzyła grupa Innspace. Miasto z ich projektu mieści się na planie sześciokąta o boku 400 m. Bliżej centrum studenci zaprojektowali budynki przeznaczone do codziennego funkcjonowania, natomiast na zewnętrznej części miasta ulokowali zabudowania przemysłowe. Większość zabudowy znajduje się pod ziemią, co pozwala chronić mieszkańców przed promieniowaniem.
      Postawiliśmy duży nacisk na integrację społeczną. Dzięki temu mieszkańcy kolonii będą mogli dobrze się poznać i poczuć wspólnotą, co znacząco wpłynie na jakość ich życia. Największą część obszaru zajmą uprawy, będące źródłem żywności dla całej kolonii. Kolejną rozbudowaną strefą będzie ta przemysłowa, na którą złożą się magazyny, produkcja, fabryki i oczyszczalnie. Ważnym punktem będzie ośrodek badawczy, połączony z placówkami medycznymi. Uwzględniliśmy również m.in. hotel, dom modlitw, placówki edukacyjne, centrum sportowe i ogrody - opowiada o projekcie Justyna Pelc cytowana na stronie PWr.
      Studenci proponują, by większość budynków zbudowały zrobotyzowane drukarki 3D, a do produkcji użyły marsjańskiej gleby, regolitu, czyli surowca, którego na Czerwonej Planecie jest pod dostatkiem.
      Projektanci „Ideacity” zwracają uwagę, że kluczowym aspektem życia na Marsie jest monitoring procesów życiowych oraz aspektów psychologicznych życia osadników.
      Drugi z projektów, który dostał się do finału, to „Twardowsky”. Pracowało nad nim 19 osób - studenci i doktoranci skupieni wokół inicjatywy badawczej Space is More i Projektu Scorpio z pomocą kilku członków z Koła Naukowego MOS i inicjatywy LabDigiFab.
      „Twardowsky” – jak opisują przedstawiciele PWr – dzieliłby się na pięć jednostek połączonych wspólnym „hubem” – placem głównym, gdzie znajdowałyby się miejsca związane ze spędzaniem czasu wolnego i rozrywką. Przestrzeń miałaby układ tarasowy. Mieszkania kolonizatorów sąsiadowałyby tam m.in. z restauracjami, kafejkami, sklepami czy placówkami medycznymi.
      Mieszkańcy byliby tam podzieleni na grupy po dwieście osób. W ten sposób mają szansę się poznać, nie być anonimowymi w tłumie – wyjaśnia członek zespołu Orest Savytskyi.
      W naszej kolonii zaprojektowaliśmy dużo otwartych terenów z zielenią, a do tego wodospady, co razem tworzy miejsca, które uspokajają i koją – mówi członkini zespołu Natalia Ćwilichowska. Tłumaczy, że w każdej jednostce znajdowałyby się rośliny, z których ma powstawać żywność. Wytwarzanie żywności w „Twardowskym” opierałoby się o akwaponikę, czyli połączenie hodowli ryb w wielkich akwariach z uprawą roślin w wodzie.
      Kolonia na dużą skalę zajmowałaby się recyklingiem produktów. Np. z włókien celulozowych wytwarzałaby tam ubrania, a z innych odpadków roślinnych… marsjańską wódkę, którą – jak proponuje zespół z PWr – mieszkańcy Marsa eksportowaliby na Ziemię.
      Lista finalistów dostępna jest na stronie Mars Society.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy z Politechniki Wrocławskiej pozyskali cytometr masowy – najnowocześniejsze obecnie urządzenie do analizy i diagnostyki próbek komórkowych oraz zaawansowanej proteomiki. To obecnie jedyne tego typu urządzenie w Polsce i będzie ono stanowić jeden z kluczowych elementów aparaturowych unikalnego Laboratorium Obrazowania tworzonego przez prof. Marcina Drąga na Wydziale Chemicznym PWr.
      Cytometria jest jedną z metod diagnostycznych, która umożliwia m.in. analizę różnorodnych parametrów badanych komórek. Dotychczas najpopularniejszymi aparatami do prowadzenia tego typu badań były opierające się na pomiarach fluorescencyjnych cytometry przepływowe, w których analizowano odpowiednio wyznakowane komórki np. pobrane metodą biopsji czy wyhodowane w laboratorium. Urządzenia te są w stanie przeprowadzić analizę ok. 10-15 różnych parametrów  komórkowych m.in. wielkość, czy intensywności fluorescencji badanych elementów, głównie białek.
      Najbardziej zaawansowanym technicznie dostępnym obecnie na rynku aparatem, wykorzystywanym w tego typu testach jest jednak cytometr masowy, który właśnie trafił na Politechnikę Wrocławską. Cytometria masowa to stosunkowo młoda technika analityczna, niemniej w ostatnim czasie już znacząco zrewolucjonizowała nowoczesną diagnostykę medyczną zarówno w laboratoriach akademickich jak i przemyśle farmaceutycznym. Przy prowadzeniu analiz zakłada ona wykorzystanie spektrometrii masowej, czyli badania próbki przy pomocy analizy widma mas atomów metali, które używane są w tej metodzie jako znaczniki.
      Szybsza i lepsza analiza
      Cytometr masowy jest więc używany do multiparametrycznej analizy próbek, głównie komórek, które w tym procesie znaczone są stabilnymi izotopami metali przejściowych, głównie lantanowców.
      Multiparametryczna analiza oznacza, że w trakcie jednego eksperymentu jesteśmy w stanie poznać i określić wiele parametrów na poziomie poszczególnych komórek. O ile jednak cytometry przepływowe mogą podać kilkanaście wyników, to cytometry masowe przeprowadzają analizę nawet kilkudziesięciu różnych parametrów – tłumaczy prof. Marcin Drąg z Zakładu Chemii Bioorganicznej Wydziału Chemicznego PWr.
      Wyniki badań komórek w cytometrze masowym są również o wiele bardziej rozbudowane, oszczędza się także czas, bo jedną próbkę można oznaczyć wieloma metalami. Co ważne, w urządzeniu można badać komórki każdego typu np. komórki z guzów nowotworowych czy białaczki, komórki krwi czy nawet komórki pochodzące z innych organizmów (pasożytów, czy bakterii).
      Tak naprawdę nie ma żadnych ograniczeń co do badań realizowanych przy pomocy cytometru masowego. Ogranicza nas jedynie technika i jakość naszej pracy przy sporządzaniu próbki. Kluczowym aspektem jest tu właśnie odpowiednie przygotowanie badanego materiału, bo sama jego analiza opiera się głównie na odpowiednich algorytmach komputerowych, choć oczywiście trzeba wiedzieć jakich algorytmów użyć do danego typu eksperymentu – dodaje dr inż. Marcin Poręba z Zakładu Chemii Bioorganicznej Wydziału Chemicznego PWr, który pracował już na cytometrze masowym podczas swojego stażu podoktorskiego w USA, a na Wydziale Chemicznym PWr będzie koordynował badania z użyciem tej aparatury.
      Cytometr, który będzie wykorzystywany na naszej uczelni, to urządzenie trzeciej generacji i obecnie najbardziej technologicznie zaawansowany model. Posiada dużo bardziej czuły spektrometr masowy z większą ilością kanałów do detekcji metali niż poprzednie modele, najnowsze oprogramowanie, jest on też bardziej wydajny i dużo mniej awaryjny.
      Na Wydziale Chemicznym urządzenie będzie wykorzystywane przede wszystkim do badania enzymów proteolitycznych (proteaz). To wyspecjalizowane białka, które rozkładają wiązania peptydowe. Dzięki temu potrafią "pociąć" inne białka na prostsze elementy - peptydy i aminokwasy.
      U ludzi proteazy stanowią grupę około 700 enzymów i biorą udział nie tylko w prostym trawieniu pokarmów, ale są także odpowiedzialne za kontrolę kluczowych procesów komórkowych  jak różnicowanie, dojrzewanie i śmierć komórki, kaskada krzepnięcia krwi czy odpowiedź immunologiczna organizmu na patogeny. Ich nieprawidłowe działanie prowadzi do powstania w organizmie stanów patologicznych. Wśród następstw są na przykład choroby cywilizacyjne takie jak nowotwory, cukrzyca, nadciśnienie czy infekcje wirusowe i bakteryjne.
      Badania aktywności proteaz mają więc bardzo duże znaczenie zarówno w pracy naukowej, jak i we wczesnej diagnostyce i leczeniu pacjentów – dlatego naukowcy starają się znaleźć jak najczulsze i możliwie specyficzne markery. W prace te zaangażowani są także lekarze-naukowcy z Dolnośląskiego Centrum Onkologii we Wrocławiu i Uniwersytetu Medycznego w Łodzi.
      Oprócz badań prowadzonych przez naszych naukowców urządzenie będzie mogło być wykorzystane komercyjnie, choćby przez firmy biotechnologiczne, które pracują nad różnego rodzaju testami diagnostycznymi.
      Chcąc sprawdzić, czy opracowany test diagnostyczny działa dobrze, konieczna jest bardzo dokładna analiza danej próbki. Można ją wykonać właśnie na naszym sprzęcie, a następnie skorelować skuteczność opracowywanego testu z wynikami pozyskanymi innymi metodami – wyjaśnia dr inż. Marcin Poręba.
      Wielką zaletą posiadania cytometru masowego na Politechnice Wrocławskiej jest także fakt, iż dr inż. Poręba oraz prof. Drąg we współpracy z laboratorium prof. Guya Salvesena (SBP Medical Discovery Institute, La Jolla, USA) stworzyli całkowicie nową metodę diagnostyczną, która jest niezwykle konkurencyjna pod względem aplikacyjnym i finansowym w stosunku do obecnie stosowanych przeciwciał w cytometrii masowej.
      W przeciwieństwie do dużych, białkowych przeciwciał, nasza metoda polega na użyciu małych cząsteczek odpowiednio modyfikowanych metalami, które pozwalają na efektywniejsze badania diagnostyczne ze względu na ich lepszą możliwość penetracji wnętrza komórki, a także selektywność w oznaczaniu wyłącznie aktywnych enzymów. To już jest bardzo zaawansowana chemoproteomika – zaznacza prof. Marcin Drąg.
      Koszt cytometru masowego to nieco ponad 3,6 mln zł, a roczny koszt użytkowania wynosi ok. 400 tys. zł. Jest to obecnie jedyne tego typu urządzenie w Polsce i trzecie w tej części Europy – podobne aparaty znajdują się jeszcze w Czechach i na Węgrzech.
      Mikroskop w uzupełnieniu
      W ramach powstającego Laboratorium Obrazowania naukowcy z Wydziału Chemicznego będą także korzystali z nowego mikroskopu konfokalnego. Będzie on wykorzystywany przede wszystkim do oznaczania parametrów komórkowych metodami fluorescencyjnymi w komórkach żywych i utrwalonych.
      Jego olbrzymią zaletą jest fakt, że możemy wizualizować co najmniej cztery parametry w tym samym czasie, a więc wybarwić interesujące nas białka w czterech różnych kolorach. Urządzenie pozwala także mierzyć parametry na poziomie subkomórkowym, dzięki czemu badanie komórek może być prowadzone w rozdzielczości ok. 120 nanometrów. Jesteśmy w stanie pokazać nie tylko to, co dzieje się w komórce czy jądrze komórkowym, ale nawet w jeszcze mniejszych strukturach komórki jak jąderko czy lizosomy – podkreśla dr inż. Marcin Poręba.
      Mikroskop pozwala także na obrazowanie żywych komórek i zachodzących w nich procesów, gdyż został wyposażony m.in. w komorę regulacji temperatury oraz dysze do regulacji poziomu dwutlenku węgla i tlenu. Pozwala to na mimikowanie naturalnego środowiska, dzięki czemu badane komórki się nie stresują. W niesprzyjających warunkach komórki rzeczywiście mogą się stresować, a w efekcie zostaje zaburzony ich cykl komórkowy, morfologia czy nawet zdolność do produkcji wielu białek, co znacząco wpływa na wyniki badań – wyjaśnia dr inż. Marcin Poręba.
      Co ciekawe przy użyciu odpowiedniego medium hodowlanego, w tym mikroskopie, komórki mogą być podtrzymywane przy życiu nawet przez wiele dni, a to pozwala analizę procesów, które zachodzą niekiedy bardzo wolno. Koszt mikroskopu to ok. 2 mln zł.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Studenci Politechniki Wrocławskiej organizują międzynarodowe zawody crossowych motocykli elektrycznych. To pierwsze tego typu wydarzenie w Polsce.
      SmartMoto Challenge odbywa się cyklicznie w Barcelonie i Moskwie. W wyścigach biorą udział zespoły, które samodzielnie przygotowują projekt pojazdu. Rywalizacyjna przebiega w konkurencjach statycznych (prezentacja biznesplanu, omówienie szczegółów technicznych) oraz dynamicznych (testy sprawnościowe i na przyspieszenie oraz wyścig). Po raz pierwszy SmartMoto Challenge odbędzie się we Wrocławiu.
      Wyścigowi będzie towarzyszył dwudniowy Festiwal Elektromobilności, w takcie którego swoje usługi i produkty zaprezentują firmy z branży automotive.
      Konkurs SmartMoto Challenge polega na zaprojektowaniu i zbudowaniu crossowego motocykla elektrycznego. Studenci w procesie projektowania muszą uwzględnić ramę, poszycie, zawieszenie, układ hamulcowy, sterowanie, zasilanie oraz inne elementy pojazdu. Głównym celem współzawodnictwa jest wykorzystanie wiedzy zdobytej na studiach w prawdziwym przemysłowym projekcie. Podczas zawodów oceniany jest motocykl i jego możliwości dynamiczne, statyczne, a także umiejętności drużyny w aspektach biznesowych.
      Wrocławska edycja zwodów startuje 24 sierpnia. Studenckie pojazdy będzie można zobaczyć najpierw na terenie kampusu Politechniki Wrocławskiej (24-25 sierpnia), potem na torze off-road przy Wzgórzu Kilimandżaro we Wrocławiu (26 sierpnia). Do konkursu zakwalifikowało się 7 motocykli skonstruowanych przez drużyny z Polski i Rosji.
      Patronat honorowy nad wydarzeniem objęli minister energii, minister infrastruktury, minister nauki i szkolnictwa wyższego, minister środowiska oraz marszałek województwa dolnośląskiego i prezydent Wrocławia. Zadanie dofinansowano ze środków budżetu Samorządu Województwa Dolnośląskiego, dzięki zwycięstwu w programie Aktywny Dolny Śląsk.
      Więcej informacji można znaleźć na stronie internetowej i profilu facebookowym zawodów.

      « powrót do artykułu
×
×
  • Create New...