Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Kolejne tajemnicze bąble w centrum Drogi Mlecznej

Recommended Posts

W centrum Drogi Mlecznej znajduje się supermasywna czarna dziura o masie 4 milionów mas Słońca. Jest ona spokojna jak na aktywne jądro galaktyki, jednak obserwacje w zakresie promieniowania rentgenowskiego pokazują, że w okolicach czarnej dziury dochodzi do silnych rozbłysków. Ponadto chociaż tempo formowania się gwiazd w tamtym regionie jest od kilkuset milionów lat stabilne, mamy dowody, że czasami dochodzi tam do wysokoenergetycznych epizodów. Teraz na łamach Nature naukowcy donoszą o odkryciu dwóch bąbli emitujących promieniowanie radiowe i znajdujących się nad oraz pod płaszczyzną Galaktyki.

Rozmiary obu bąbli wynoszą 140x430 parseków, czyli każda z nich rozciąga się na 700 lat świetlnych. Wiek bąbli oceniono na kilka milionów lat, a całkowitą energię na 7x1052 ergów.

Naszym czytelnikom z pewnością coś to przypomina. Przed 9 laty informowaliśmy o odkryciu tajemniczych bąbli rozciągających się w obu kierunkach od centrum Drogi Mlecznej. Natura Bąbli Fermiego wciąż nie została wyjaśniona. A odkryte właśnie bąble emitujące promieniowanie radiowe nie są tym samym, co Bąble Fermiego. To zupełnie nowa, nieznana dotychczas struktura i jedna z największych istniejących w centrum Drogi Mlecznej.

Centrum naszej galaktyki jest dość spokojne w porównaniu z innymi galaktykami. Mimo to, nasza centralna czarna dziura może być czasami niezwykle aktywna, rozbłyskając, gdy wchłonie większe ilości pyłu i gazu. Możliwe, że podczas jednego z takich zdarzeń doszło do potężnego rozbłysku, który utworzył te bąble, mówi astrofizyk Ian Heywood z Uniwersytetu w Oksfordzie.

Na pierwsze ślady nowo odkrytych struktur trafił w latach 80. ubiegłego wieku astronom Farhad Yusef-Zadeh z Northwestern University, który wraz z kolegami zauważył w centrum galaktyki długie, wąskie dobrze zorganizowane i wysoce namagnetyzowane pasma gazu, rozciągające się na dziesiątki lat świetlnych, których szerokość wynosiła zaledwie rok świetlny. Gaz ten emitował promieniowanie synchrotronowe. Podobnych struktur nigdzie indziej nie zaobserwowano.

W międzyczasie powstał należący do National Radio Astronomy Observatory południowoafrykański teleskop MeerKAT, złożony z 64 anten. Gdy naukowcy nakierowali go na centrum Drogi Mlecznej zauważyli wspomniane bąble emitujące promieniowanie radiowe. Bąble odkryte przez MeerKAT rzucają nowe światło na pochodzenie pasm gazu, mówi Yusef-Zadeh. Niemal wszystkie z ponad 100 takich pasm znajdują się wewnątrz bąbli radiowych.

Cała nowo odkryta struktura przypomina klepsydrę, ma wyraźnie zaznaczone ostre krawędzie, jest niezwykle symetryczna. To ta symetria oraz całkowita długość struktury wynosząca 1400 lat świetlnych zdradzają kilka szczegółów na temat struktury. Kształt i symetria wskazują, że wydarzenie, które utworzyło tę strukturę miało miejsce przed kilkoma milionami lat w bezpośrednim pobliżu czarnej dziury. Prawdopodobnie doszło do erupcji wywołanej olbrzymią ilością gazu, który wpadł do czarnej dziury lub też masowym formowaniem się gwiazd, co wywołało falę uderzeniową, która przeszła przez centrum galaktyki. Wskutek tego wydarzenia w gorącym zjonizowanym gazie w pobliżu centrum galaktyki doszło do wygenerowania fal radiowych, które możemy obecnie rejestrować, wyjaśnia William Cotton z National Radio Astronomy Observatory.

Mimo, że bąble radiowe są mniejsze i mają mniej energii niż Bąble Fermiego, nie można wykluczyć, że obie struktury powstały w wyniku podobnych, może nawet połączonych ze sobą, wydarzeń.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Ziemia jest bliżej supermasywnej centralnej czarnej dziury – Sagittariusa A* – naszej galaktyki i porusza się szybciej niż dotychczas sądzono. Tak wynika z nowej mapy sporządzonej na podstawie ponad 15-letnich badań prowadzonych przez japoński projekt astronomiczny VERA.
      VERA (VLBI Exploration of Radio Astrometry) wystartował w 2000 roku. Głównym zadaniem projektu jest określenie struktury przestrzennej i prędkości obiektów w Drodze Mlecznej. Naukowcy wykorzystują technikę interferometrii, która pozwala połączyć dane z różnych radioteleskopów znajdujących się w Japonii i uzyskać obraz o takiej rozdzielczości, jak z jednego radioteleskopu o średnicy 2300 kilometrów. Uzyskano w ten sposób rozdzielczość wynoszącą 10 mikrosekund kątowych. To rozdzielczość wystarczająca, by – przynajmniej teoretycznie – dostrzec z Ziemi 2-złotówkę leżącą na powierzchni Księżyca.
      Jako, że Ziemia znajduje się wewnątrz Drogi Mlecznej, nie możemy badać naszej galaktyki z zewnątrz. Żeby zrozumieć strukturę Drogi Mlecznej musimy posłużyć się astrometrią, dokładnymi pomiarami pozycji i ruchu obiektów w naszej galaktyce. Dzięki temu jesteśmy w stanie odtworzyć jej trójwymiarową strukturę.  Właśnie opublikowano First VERA Astrometry Catalog, w którym znajdują się dokładne dane dotyczące 99 obiektów Drogi Mlecznej.
      Dzięki temu dowiedzieliśmy się właśnie, że Ziemia porusza się wokół centrum Drogi Mlecznej z prędkością 227 km/s, czyli o 7 km/s szybciej, niż sądziliśmy. Jest też o 2000 lat świetlnych bliżej Sagittariusa A*. Od centralnej czarnej dziury dzieli nas zatem 25 800 lat świetlnych, a nie 27 700 lat świetlnych.
      Teraz VERA obserwuje kolejne obiekty, szczególnie te znajdujące się blisko czarnej dziury. Projekt VERA przystąpił też do programu EAVN (East Asian VLBI Network), w ramach którego współpracują ze sobą radioteleskopy w Japonii, Korei Południowej i Chin. Dzięki zwiększeniu liczby urządzeń oraz odległości pomiędzy nimi EAVN osiągnie większą rozdzielczość niż VERA i dostarczy jeszcze bardziej dokładnych danych.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Astronomowie nie od dzisiaj wiedzą, że galaktyki mogą rosnąć łącząc się z innymi galaktykami. W ten sposób mogła też ewoluować Droga Mleczna. Międzynarodowy zespół astronomów pracujący pod kierunkiem doktora Diederika Kruijssena z Uniwersytetu w Heidelbergu oraz doktora Joela Pfeffera z Liverpool John Moores University stworzył drzewo genealogiczne naszej galaktyki, a o wynikach swoich badań poinformował na łamach Monthly Notices of the Royal Astronomical Society.
      Gromady kuliste to gęste zgrupowania powiązanych grawitacyjnie gwiazd. To bardzo stare struktury. W skład gromady może wchodzić nawet milion gwiazd. Wiemy, że w Drodze Mlecznej występuje ponad 150 takich gromad. Wiele z nich powstało w mniejszych galaktykach, które łączyły się, by w końcu utworzyć Drogę Mleczną taką, jaką znamy ją dzisiaj. Naukowcy od dawna podejrzewali, że gromady kuliste mogą pełnić rolę swoistych „skamieniałości”, dzięki którym uda się kiedyś zbadać przeszłość naszej galaktyki. Teraz mamy już w ręku odpowiednie narzędzia, by podjąć się takiego zadania.
      Zespół Kruijssena i Pfeffera odtworzył drzewo genealogiczne Drogi Mlecznej opierając się przy tym wyłącznie na gromadach kulistych. Na potrzeby swoich badań naukowcy stworzyli zestaw zaawansowanych symulacji komputerowych modelujących powstawanie galaktyk podobnych do naszej. Zestaw ten, E-MOSAICS, jest jedynym, który zawiera kompletny model tworzenia się, ewolucji i niszczenia gromad kulistych.
      Naukowcy byli w stanie powiązać wiek gromad kulistych, ich skład chemiczny oraz ruch orbitalny z właściwościami galaktyk, w których powstały ponad 10 miliardów lat temu. Stosując tę metodę do gromad kulistych w naszej galaktyce uczeni zdołali obliczyć nie tylko, z ilu gwiazd składały się galaktyki, w skład których oryginalnie gwiazdy z gromad wchodziły, ale również, kiedy doszło do ich połączenia z Drogą Mleczną.
      Głównym wyzwaniem był fakt, że zderzenia galaktyk to bardzo chaotyczny proces, podczas którego orbity gromad kulistych zostają całkowicie zmienione. Wykorzystaliśmy więc sztuczną inteligencję, którą pomogła nam zrozumieć cały złożony system, który istnieje dzisiaj. Wytrenowaliśmy sieć neuronową na symulacjach E-MOSAICS tak, by łączyła właściwości gromad kulistych z historią ich oryginalnych galaktyk. Przetestowaliśmy nasz algorytm dziesiątki tysięcy razy i byliśmy zaskoczeni jak dokładnie reoknstruował łączenie się symulowanych galaktyk, wykorzystując w tym celu jedynie gromady kuliste, mówi Kruijssen.
      Zachęceni wysoką dokładnością algorytmu naukowcy postanowili odszyfrować za jego pomocą historię Drogi Mlecznej. Symulacje nie tylko ujawniły masy moment łączenia się mniejszych galaktyk z Drogą Mleczną, ale pozwoliły na odkrycie nieznanej dotychczas kolizji Drogi Mlecznej z galaktyką, którą badacze nazwali Krakenem.
      Zderzenie z Krakenem musiało być najważniejszym takim wydarzeniem w historii Drogi Mlecznej. Dotychczas powszechnie sądzono, że największym zderzeniem była kolizja z galaktyką karłowatą Gaia-Enceladus do którego doszło przed 9 miliardami lat.
      Teraz dowiadujemy się, że 11 miliardów lat temu, gdy Droga Mleczna była 4-krotnie mniej masywna, połączyła się z galaktyką Kraken. Kolizja ta musiała całkowicie zmienić wygląd Drogi Mlecznej, mówi Kruijssen.
      Dzięki rekonstrukcji wiemy, że dotychczas Droga Mleczna wchłonęła około 5 galaktyk, z których każda miała ponad 100 milionów gwiazd oraz około 15 galaktyk, z których każda miała co najmniej 10 milionów gwiazd. Do zderzenia z najbardziej masywną galaktyką doszło pomiędzy 6 a 11 miliardów lat temu.
      Pozostałości po pięciu wielkich galaktykach zostały już zidentyfikowane. Obecne i przyszłe teleskopy powinny umożliwić identyfikację pozostałości wszystkich galaktyk wchłoniętych przez Drogę Mleczna, mówi Kruijssen.
      Warto tutaj przypomnieć, że – jak informowaliśmy – naukowcy sądzą, że za kilka miliardów lat dojdzie do połączenia Drogi Mlecznej i Galaktyki Andromedy.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Supermasywna czarna dziura w centrum Drogi Mlecznej – Sagittarius A* – obraca się wolniej niż się spodziewano. Jej obrót jest wolniejszy, a prawdopodobnie znacznie wolniejszy, niż 10% prędkości światła. To niezwykle powoli jak na obracającą się czarną o masie 4,15 miliona razy większej od masy Słońca.
      Prędkość obrotowa czarnej dziury jest ważna z dwóch powodów. Po pierwsze horyzont zdarzeń czarnej dziury, czyli miejsce spoza którego nic nie może się wydostać, jest coraz większy i większy w miarę, jak czarna dziura pochłania coraz więcej materii. Jednak im szybciej dziura się obraca, tym bardziej kurczy się jej horyzont zdarzeń. To zaś powoduje, że szybko obracające się czarne dziury mają mniejszy horyzont zdarzeń niż wolno obracające się czarne dziury o tej samej masie. Po drugie, tempo obrotu czarnej dziury odgrywa rolę w pojawianiu się dżetów z obu stron czarnej dziury. Większość galaktyk podobnych do Drogi Mlecznej posiada supermasywne czarna dziury, a wielu z nich towarzyszą potężne dżety.
      Jednak Droga Mleczna nie posiada dżetów. Już samo to sugeruje, że SgrA* nie obraca się zbyt szybko. Specjaliści sądzą bowiem, że dżet to materia z dysku akrecyjnego, która znajduje się zaraz poza horyzontem zdarzeń i która została przyspieszona w wyniku szybkiego obrotu czarnej dziury. Brak dżetu może sugerować, że albo takiej materii w dysku akrecyjnym SgrA* jest bardzo mało, albo dziura obraca się wolno, albo też mają miejsce obie te sytuacje.
      Autorzy najnowszych badań postanowili zmierzyć obrót Sagittariusa A*. Wykorzystali w tym celu gwiazdy znajdujące się w bezpośrednim otoczeniu czarnej dziury. Stwierdzili, że wszystkie te gwiazdy znajdują się na dwóch płaszczyznach. Gdyby narysować ich orbity i przyjrzeć im się z boku, okaże się, że tworzą one kształt X. Z obliczeń wynika, że gdyby SgrA* obracała się szybciej niż 10% prędkości światła, to gwiazdy te zostałyby wyrzucone z takich orbit. Orbity te są najprawdopodobniej równie stare co same gwiazdy. Powstały one w momencie narodzin tych gwiazd. Gdyby czarna dziura wirowała bardzo szybko, już byśmy takich orbit nie obserwowali.
      Wszystko, co w przestrzeni kosmicznej obraca się bardzo szybko wywiera wpływ na obiektu znajdujące się na orbitach. Z czasem oddziaływanie takiego szybko obracającego się obiektu powoduje, że orbity mniejszych obiektów wokół niego coraz bardziej do płaszczyzny obrotu masywnego obiektu. Jeśli zaś masywny obiekt obraca się powoli, słabiej oddziałuje na obiekty na jego orbitach, dzięki czemu mogą one utrzymać swoje pierwotne orbity.
      Więcej na temat badań można przeczytać na łamach Astrophysical Journal Letters.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Very Large Telescope zauważył sześć galaktyk zgromadzonych wokół supermasywnej czarnej dziury z czasów, gdy wszechświat liczył sobie mniej niż miliard lat. Po raz pierwszy zauważono takie zgrupowanie z czasów tak nieodległych od Wielkiego Wybuchu. Odkrycie pomaga lepiej zrozumieć, w jaki sposób supermasywne czarne dziury mogą powstawać i ewoluować tak szybko.
      Głównym celem naszych badań było lepsze zrozumienie jednych z najbardziej niezwykłych obiektów astronomicznych – supermasywnych czarnych dziur istniejących już we wczesnym wszechświecie. Dotychczas nikt nie potrafi dobrze wyjaśnić ich istnienia, mówi główny autor badań, Marco Mignoli z Narodowego Instytutu Astrofizyki w Bolonii.
      Nowe obserwacje ujawniły istnienie galaktyk znajdujących się w okolicach supermasywnej czarnej dziury, a całość otoczona jest „pajęczą siecią” gazu rozciągającego się na obszarze 300-krotnie większym niż obszar Drogi Mlecznej. Olbrzymia ilość gazu zasila zarówno galaktyki, jak i czarną dziurę. Naukowcy szacują, że czarna dziura ma masę miliarda mas Słońca, a otaczająca całość gazowa struktura powstała, gdy wszechświat liczył sobie zaledwie 900 milionów lat.
      Obecnie uważa się, że pierwsze czarne dziury powstały z pierwszych gwiazd, które się zapadły. Musiały one błyskawicznie ewoluować, skoro po 900 milionach lat istnienia wszechświata osiągały masę miliarda Słońc. Astronomowie mają jednak problemy z wyjaśnieniem tej ewolucji. Takie czarne dziury musiałyby bowiem bardzo szybko wchłaniać olbrzymie ilości materii. Odkrycie galaktyk otaczających czarną dziurę i spowijającej wszystko sieci gazu może wyjaśniać tę błyskawiczną ewolucję.
      Powstaje jednak pytanie, w jaki sposób dochodzi do tworzenia się „pajęczej sieci” gazu. Astronomowie sądzą, że bierze w tym udział ciemna materia. To ona przyciąga gaz, który tworzy olbrzymie struktury, wystarczające, by wyewoluowały z nich zarówno galaktyki, jak i czarne dziury.
      Nasze badania wspierają hipotezę mówiącą, że najbardziej odległe masywne czarne dziury tworzą się i rosną w masywnym halo ciemnej materii. Dotychczas takich struktur nie wykrywaliśmy, gdyż ograniczały nas nasze możliwości obserwacyjne, wyjaśnia współautor badań Colin Norman z Uniwersytetu Johnsa Hopkinsa. Zaobserwowane teraz galaktyki są jednymi z najsłabiej świecących, jakie udało się zarejestrować.  Aby je zauważyć, konieczne były wielogodzinne obserwacje za pomocą jednych z najpotężniejszych teleskopów optycznych. Dzięki temu uczeni dowiedli też, że istnieje związek pomiędzy czterema galaktykami, a czarną dziurą
      Sądzimy, że obserwujemy wierzchołek góry lodowej. Że te galaktyki, które widzimy, są najjaśniejszymi, jakie się tam znajdują, przyznaje Barbara Balmaverde z Narodowego Instytutu Astrofizyki w Turynie.
      Pozostaje tylko mieć nadzieję, że jeszcze większe teleskopy optyczne, jak budowany właśnie Extremely Large Telescope, pozwolą dostrzec więcej szczegółów.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Teorie mówią, że nie istnieją gwiazdowe czarne dziury o takiej masie. Ale, jak wiemy, natura zawsze znajdzie jakiś sposób, mówi Stan Woosley, astrofizyk z University of California, Santa Cruz. Uczony skomentował w ten sposób to, co zarejestrowały wykrywacze fal grawitacyjnych LIGO i Virgo. A przechwyciły one sygnał świadczący o niezwykle mało prawdopodobnej kolizji czarnych dziur o rzadko spotykanej masie.
      Eksperci,  którymi kontaktowali się dziennikarze poinformowali, że wśród 22 fal grawitacyjnych zarejestrowanych od kwietnia przez LIGO/Virgo znajduje się taki, który pochodzi od czarnej dziury o masie nawet 100 mas Słońca. Dzisiaj naukowcy potwierdzili, że zauważyli kolizję dwóch czarnych dziur o masach 65 i 85 mas Słońca, w wyniku której powstała czarna dziura o masie 150 mas Słońca.
      Krzysztof Bełczyński, astrofizyk z Uniwersytetu Warszawskiego, był tak pewien, iż zderzenie takich czarnych dziur jest mało prawdopodobne, że w 2017 roku w podczas spotkania w Aspen Center For Physics wraz z Danielem Holzem z University of Chicago zawarli zakład stwierdzając, iż żadna czarna dziura o takiej masie nie zostanie wykryta w pierwszych 100 sygnałach LIGO/Virgo. Do zakładu dołączył później też Woosley. Zakład przyjęło troje innych naukowców. Myślę, że przegramy ten zakład. Ku chwale nauki, mówi Bełczyński.
      W 1967 roku fizycy z Uniwersytetu Hebrajskiego w Jerozolimie odkryli, że jeśli umierająca gwiazda ma bardzo masywne jądro, to nie zapadnie się ono w czarną dziurę. Gwiazda taka zmieni się w supernową niestabilności kreacji par (pair-instability supernova).
      Do jej powstania dochodzi, gdy jądro gwiazdy staje się tak gorące, iż światło spontanicznie zamienia się w nim w pary elektron-pozyton. Dotychczas ciśnienie światła zapewniało stabilność jądra. Gdy zaczyna się ono zamieniać w materię ciśnienie to spada, jądro gwałtownie się kurczy, staje się coraz gorętsze, to z kolei przyspiesza produkcję par elektron-pozyton. Powstaje samonapędzający się mechanizm. W końcu temperatura rośnie do tego stopnia, że dochodzi do fuzji tlenu. W jego wyniku implozja zostanie zatrzymana, a rozpoczyna się proces odwrotny. Następuje eksplozja jądra. Jeśli jądro miało masę 65–130 mas Słońca, cała materia zostaje rozrzucona. Po gwieździe pozostaje mgławica. Jądro nie zapada się, nie powstaje czarna dziura.
      Jeśli natomiast jądro, w którym doszło do niestabilności kreacji par miało masę od 50 do 65 mas Słońca, dochodzi do serii eksplozji, które stopniowo wyrzucają materię dopóty, dopóki masa jądra nie spadnie poniżej limitu, w którym niestabilność kreacji par już nie zachodzi. Z tego wynika, że nie powinny istnieć gwiazdowe czarne dziury o masie pomiędzy 50 a 130 mas Słońca. To bardzo proste obliczenia, mówi Woosley, którego praca z 2002 roku na ten temat jest uważana za ostateczne wyjaśnienie problemu.
      Mogą za to istnieć, i istnieją, czarne dziury o masie większej niż 130 mas Słońca, gdyż implozja tak masywnego jądra nie może zostać zatrzymana, nawet w wyniku fuzji tlenu. Jądro zapada się do czarnej dziury. Jednak, jako że gwiazdy tracą masę przez całe swoje życie, gwiazda, która utworzyłaby jądro o masie ponad 130 mas Słońca musiałaby mieć co najmniej masę 300 mas Słońca. Tak masywne gwiazdy są niezwykle rzadkie. Dlatego też większość ekspertów uznaje, że LIGo/Virgo może wykryć kolizje czarnych dziur o masach nie przekraczających 50 mas Słońca.
      Znamy też supermasywne czarne dziury o masach miliony i miliardy raza większych od masy Słońca, jednak powstają one w inny sposób, a LIGO i Virgo nie są w stanie wykryć ich zderzeń.
      Dlatego tylko niewielu specjalistów uważało, że LIGO i Virgo zauważą kolizje czarnych dziur o masach ponad 50 mas Słońca. Stąd wyzwanie, jakie w formie zakładu rzucili im Bełczyński, Holz i Wooley. Zakład ten przyjęli Carl Rodriguez z MIT, Sourav Chatterjee z Tata Institute for Fundamental Research z Mombasy, do których dołączył później Fred Rasio z Northwestern University. Przegrani mają kupić każdemu z wygranych butelkę wina o wartości 100 USD.
      Rodriguez, Chatterjee i Rasio stwierdzili, że co prawda większość kolizji wykrywanych przez LIGO i Virgo prawdopodobnie ma swój początek w izolowanych układach podwójnych, ale niewielka część z nich może zachodzić w gęstych środowiskach takich jak gromady kuliste. Tam zaś, ich zdaniem, może zdarzyć się tak, że np. czarna dziura o masie 50 mas Słońca najpierw wchłonie czarną dziurę o masie 30 mas Słońca, a później znowu połączy się z jakąś czarną dziurą. LIGO/Virgo może zarejestrować to drugie zdarzenie, zatem zauważy zderzenie czarnych dziur, z których co najmniej jedna będzie miała masę pomiędzy 50 a 130 mas Słońca. Istnieje też jeszcze inna możliwość. Otóż kolizja taka może rozpocząć się również w izolowanym układzie podwójnym. Jeśli jedna z gwiazd układu utworzy czarną dziurę, a układ nadal będzie istniał, to czarna dziura może wchłaniać masę z towarzyszącej jej gwiazdy, rosnąc powyżej „zakazanego” limitu. Później, gdy druga z gwiazd utworzy czarną dziurę, może dojść do kolizji obu czarnych dziur i zarejestrowania tego wydarzenia na Ziemi.
      Krzysztof Baczyński i jego koledzy przegrali więc zakład. Woosley wciąż uważa, że granica „zakazanej masy” istnieje. Jego zdaniem, wśród olbrzymiej liczby czarnych dziur musi istnieć – mimo nielicznych wyjątków – wyraźny spadek liczby czarnych dziur w zakresie masy od 50 do 130 mas Słońca. A te nieliczne istniejące wyjątki to wynik tego, że natura nie znosi próżni.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...