Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Odkryto gwiazdę niemal zbyt masywną, by istnieć

Recommended Posts

Gwiazdy neutronowe to najbardziej gęste – nie licząc czarnych dziur – obiekty we wszechświecie. Centymetr sześcienny ich materii waży miliony ton. Naukowcy wciąż je badają próbując znaleźć odpowiedzi na wiele pytań. Chcieliby np. dowiedzieć się, jak wyglądają neutrony ściśnięte tak potężnymi siłami czy gdzie leży granica pojawienia się czarnej dziury.

Naukowcy używający Green Bank Telescope donieśli właśnie o odkryciu najbardziej masywnej gwiazdy neutronowej. Pulsar J0740+6620 ma masę 2,17 większą od masy Słońca, a całość jest upakowana w kuli o średnicy zaledwie 30 kilometrów. To bardzo ważne odkrycie, gdyż z danych dostarczonych przez detektor LIGO, który zarejestrował fale grawitacyjne pochodzące ze zderzenia dwóch gwiazd neutronowych wynika, iż 2,17 masy Słońca to bardzo blisko granicy powstania czarnej dziury.

Gwiazdy neutronowe są tajemnicze i fascynujące. Te obiekty wielkości miasta przypominają ogromne jądro atomowe. Są tak masywne, że mają dziwaczne właściwości. Gdy dowiemy się, jaka może być ich maksymalna masa, poznamy wiele niedostępnych obecnie faktów z astrofizyki, mówi doktorant Thankful Cromartie.

Pulsar J0740+6620 tworzy układ podwójny z białym karłem. To właśnie dzięki temu udało się precyzyjnie określić jego masę. Pulsary emitują bowiem z obu biegunów fale radiowe. Emisja ma miejsce w bardzo regularnych odstępach. Jako, że wspomniany pulsar ma towarzysza, to gdy z ziemskiego punktu widzenia znajduje się za nim, obecność białego karła zagina przestrzeń, co powoduje pojawienie się zjawiska znanego jako opóźnienie Shapiro. Z powodu obecności obiektu zniekształcającego przestrzeń, sygnał radiowy musi przebyć nieco dłuższą drogę, by dotrzeć do Ziemi. W omawianym przypadku opóźnienie wynosi około 10 milisekund. To wystarczy, by na tej podstawie wyliczyć masę białego karła. Gdy już ją znamy, z łatwością da się wyliczyć masę towarzyszącego mu pulsara.

Położenie tego układu podwójnego względem Ziemi stworzyło nam wyjątkową okazję. Istnieje granica, poza którą gęstość we wnętrzu gwiazd neutronowych jest tak wielka, iż grawitacja przezwycięża materię i gwiazda dalej się zapada. Każda kolejna „rekordowo masywna” gwiazda neutronowa, którą odkrywamy, przybliża nas do odkrycia tej granicy i pozwala lepiej zrozumieć zjawiska fizyczne zachodzące przy tak olbrzymich gęstościach, mówi astronom Scott Ransom.

Badania były prowadzone w ramach programu NANOGrav Physics Frontiers Center.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      W październiku ubiegłego roku informowaliśmy, że Dziewiąta Planeta, hipotetyczny nieznany dotychczas obiekt wchodzący w skład Układu Słonecznego, może nie być planetą. Astronomowie Jakub Scholtz z Durham University i James Unwin z University of Illinois at Chicago zaproponowali hipotezę mówiącą, że to... pierwotna czarna dziura. Teraz Edward Witten z Princeton University zauważa, że takiego obiektu nie można by wykryć za pomocą teleskopów, jednak stwierdza, że można by go zauważyć wysyłając w kierunku jego domniemanego położenia setki lub tysiące niewielkich sond.
      Propozycja Wittena to modyfikacja projektu Breakthrough Starshot. Jak pisaliśmy, autorzy tego projektu proponują wysłanie do Alfa Centauri pojazdu napędzanego żaglem słonecznym. Pojazd taki zostałyby rozpędzony za pomocą światła lasera do prędkości 20% prędkości światła i dotarłby do Alfa Centauri w ciągu 20 lat. Witten oblicza zaś, że wykorzystując podobny system można by wysłać w podróż większy pojazd – o wadze około 100 gramów – dzięki czemu nie byłaby potrzebna tak wielka miniaturyzacja jak w Breakthrough Starshot. Pojazd taki, poruszając się z prędkością 0,001 (300 km/s) c mógłby w ciągu 10 lat przebyć odległość 500 jednostek astronomicznych.
      Wysyłając całą flotę w stronę, gdzie powinna znajdować się hipotetyczna czarna dziura krążąca w Układzie Słonecznym może zdarzyć się tak, że kilka z tych sond przeleci w odległości nie większej niż kilkadziesiąt jednostek astronomicznych. Oddziaływanie dziury spowodowałoby, że sondy by przyspieszyły. Jeśli wysyłałyby one regularne sygnały na Ziemię, oddziaływanie grawitacyjne czarnej dziury spowodowałyby wydłużenie interwału pomiędzy impulsami.
      Witten oblicza, że do wykrycia w ten sposób czarnej dziury potrzeba by było sygnałów, których opóźnienie lub przyspieszenie byłoby mniejsze niż 10-5 sekundy na rok. Taką dokładność można bez przeszkód uzyskać za pomocą współczesnych zegarów atomowych. Jednak trudno wyobrazić sobie umieszczenie zegara atomowego w pojeździe ważącym zaledwie 100 gramów. Witten przyznaje, że jego propozycja jest bardziej teoretyczna niż praktyczna. Nie wiem, ani czy taki pomysł da się zrealizować, ani czy – gdyby było to możliwe to realizacji – jest to najlepszy sposób.
      Na artykuł Wittena zareagowali Scott Lawrence i Zeeve Rogoszinski z University of Maryland, którzy zaproponowali rozwiązanie bez potrzeby używania zegarów atomowych. Ich zdaniem obecność czarnaj dziury można by stwierdzić wykrywając zaburzenia trajektorii ruchu sond wywołane przez jej oddziaływanie grawitacyjne. W przeciwieństwie do pomysłu Wittena, gdzie różnice w sygnałach są powodowane przyspieszeniem próbników w pobliżu czarnej dziury, pomysł Lawrence'a i Rogoszinskiego ma i tę zaletę, że zaburzenia orbity próbników kumulowałyby się przez wiele lat.
      Co po latach sondy zboczyłyby z toru lotu o 1000 kilometrów. Co prawda znajdowałyby się wówczas w odległości 500 j.a. od Ziemi, jednak – jak wyliczają naukowcy – zaburzenia trajektorii można by wykryć za pomocą interferometrii bazowej wykorzystującej wysokie częstotliwości radiowe. Tutaj jednak pojawiaj się inny problem techniczny. Sondy musiałyby albo emitować taki sygnał, albo przynajmniej go odbijać.
      Jednak być może obie propozycje należy wyrzucić do kosza. Jak bowiem zauważają w swojej pracy Theim Haong z Koreańskiego Instytutu Astronomii i Badań Kosmosu oraz Abraham Loez z Uniwersytetu Harvarda, autorzy dwóch wspomnianych pomysłów potraktowali sondy jako obiekty podlegające jedynie grawitacji. Tymczasem opory i oddziaływania elektromagnetyczne w nierównomiernie rozłożonej materii międzygwiezdnej również wpływałyby na trajektorię i prędkość sond, przykrywając wszelki wpływ czarnej dziury.
      Mike Brown z Caltechu, który wraz z Konstantinem Batyginem wysunęli hipotezę o istnieniu Dziewiątej Planety mówi, że podobają mu się te propozycje. Jednak uważam, że nie ma żadnych podstaw, by sądzić, że Dziewiąta Planeta jest w rzeczywistości czarną dziurą. Wciąż jej szukamy. Jeśli nie znajdziemy jej za pomocą obecnie dostępnych narzędzi, co myślę, że szybko zostanie ona zauważona dzięki Vera C Rubin Observatory. Nie wiem jednak, kiedy to nastąpi.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Grupa astronomów z Europejskiego Obserwatorium Południowego (ESO) poinformowała o odkryciu czarnej dziury znajdującej się w odległości zaledwie 1000 lat świetlnych od Ziemi. Stanowi ona część układu potrójnego, który można obserwować gołym okiem. Obecność czarnej dziury wykryto śledząc dwie towarzyszące jej gwiazdy. Specjaliści nie wykluczają, że w przyszłości znajdziemy więcej takich układów.
      Byliśmy bardzo zaskoczeni, gdy okazało się, że mamy do czynienia z pierwszym układem gwiazd z czarną dziurą, który można obserwować gołym okiem, mówi Petr Hardva z Akademii Nauk Republiki Czeskiej. Dziura wraz z gwiazdami znajduje się w gwiazdozbiorze Lunety. Można go obserwować z Półkuli Południowej.
      Naukowcy nie podejrzewali, że dokonają tak interesującego odkrycia. Obserwowali układ podwójny HR 6819. Jednak gdy przystąpili do analizy danych okazało się, że w układzie znajduje się też czarna dziura. Spektrograf FEROS znajdujący się na teleskopie MPG/ESO w La Silla wykazał, że jedna z gwiazd co 40 dni okrąża niewidoczny obiekt. Druga gwiazda znajduje się zaś w znaczniej odległości do tej pary.
      Czarna dziura w układzie HR 6819 to jeden z pierwszych znanych nam obiektów tego typu, który nie wchodzi w gwałtowne interakcje z otoczeniem, zatem naprawdę jest czarna i trudno ją zaobserwować. Jej obecność stwierdzono na podstawie badań orbity krążącej wokół gwiazdy. Obliczenia wskazały, że musi tam istnieć niewidoczny obiekt o masie co najmniej 4-krotnie większej od masy Słońca.
      Dotychczas znaleźliśmy jedynie kilkadziesiąt czarnych dziur w Drodze Mlecznej. Naukowcy sądzą jednak, że od początku istnienia wszechświata olbrzymia liczba gwiazd zapadła się w sobie i utworzyła czarna dziury. Specjaliści przypuszczają, że istnieją setki milionów czarnych dziur.
      Najnowsze odkrycie rzuca też nieco światła na inne układy. uczeni już przypuszczają, że jeden z nich – LB-1 – również może być układem potrójnym cz czarną dziurą. Znajduje się on niewiele dalej od HR 6819. Astronomowie już zapowiadają, że rozpoczną jego obserwacje.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Planetą wywierającą największy wpływ na Układ Słoneczny jest Jowisz. Ma on masę 300-krotnie większą od masy Ziemi i 2-krotnie większą od masy Saturna. Każdy jego ruch jest odczuwany przez inne planety. Jowisz jest odpowiedzialny za niewielkie rozmiary Marsa, obecność pasa asteroidów, to dzięki niemu na Ziemię spadły komety, które przyniosły tutaj wodę. Astronomowie z University of Hawai'i odkryli właśnie planetę, która ma 3-krotnie większą masę od Jowisza i jest „władcą” innego, już i tak dziwnego, systemu planetarnego.
      Masywną planetę, Kepler-88d, odkryto w układzie Kepler-88, który już wcześniej był słynny w środowisku astronomów. Dotychczas wiadomo było, że układ ten zawiera dwie planety, Kepler-88b i Kepler-88c. Dochodzi między nimi do niezwykłego rezonansu orbitalnego. Planeta oznaczona literą „b” ma masę mniejszą od masy Neptuna i okrąża gwiazdę w ciągu 11 dni. To Niemal dokładnie połowa wynoszącego 22 dni okresu orbitalnego planety oznaczonej literą „c”, która ma masę Jowisza. Niemal, gdyż wchodzi tutaj w grę wspomniany już rezonans. Co 2 okrążenia planeta Kepler-88b niezwykle silnie odczuwa oddziaływanie planety Kepler-88c, która jest 20-rotnie bardziej masywna. W wyniku tego oddziaływania Kepler-88b może okrążyć swoją gwiazdę nawet o pół dnia szybciej lub wolniej. Takie zmiany czasu wykonania pełnej orbity znane są również z innych układów planetarnych, a Kepler-88b wyraźnie się tutaj wyróżnia. W jego przypadku to jedne z najbardziej dramatycznych zmian.
      Teraz jednak astronomowie będą mogli spojrzeć zupełnie inaczej na dynamikę układu Kepler-88, gdyż odkryli w nim nowego władcę – planetę Kepler-88d. Ma ona trzykrotnie większą masę od Jowisza i prawdopodobnie wywiera większy wpływ na cały układ, niż jego dotychczasowy władca, Kepler-88c, którego masa jest równa masie Jowisza, mówi doktor Lauren Weiss, główna autorka badań.
      Artykuł informujący o odkryciu nowej planety został właśnie opublikowany na łamach The Astronomical Journal.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Wieloletnie obserwacje prowadzone za pomocą Very Large Telescope (VLT) potwierdzają, że gwiazda krążąca wokół supermasywnej czarnej dziury ulega precesji Schwarzschilda, zatem jej orbita jest zgodna z przewidywaniami ogólnej teorii względności Einsteina, a nie grawitacji Newtona. Jej kolejne orbity rysują rozetę.
      Ogólna teoria względności przewiduje, że związana orbita jednego obiektu krążącego wokół innego nie będzie zamknięta, jak wynikałoby z grawitacji newtonowskiej, ale będzie ulegała precesji w kierunku płaszczyzny ruchu. To słynne zjawisko, które po raz pierwszy zaobserwowano w przypadku orbity Merkurego wokół Słońca, było pierwszym dowodem na prawdziwość ogólnej teorii względności. Sto lat później obserwujemy ten sam efekt w ruchu gwiazdy wokół kompaktowego źródła sygnału radiowego Sagittarius A* w centrum Drogi Mlecznej. Te przełomowe badania potwierdzają, że Sagittarius A* musi być supermasywną czarną dziurą o masie 4 milionów mas Słońca, powiedział Reinhard Genzel, dyrektor Instytutu Fizyki Pozaziemskiej im Maxa Plancka i jeden z głównych autorów badań.
      Od 1992 roku międzynarodowy zespół naukowy prowadzony przez Franka Eisenhauera obserwuje gwiazdę S2 krążącą wokół czarnej dziury znajdującej się w centrum naszej galaktyki. W pobliżu Sagittarius A* znajduje się gęsta gromada gwiazd. Wyróżnia się w niej S2, która krąży wokół dziury, zbliżając się do nej na odległość około 120 jednostek astronomicznych. To jedna z gwiazd najbliższych tej czarnej dziurze. W miejscu, gdzie S2 podlatuje najbliżej Sagittarius A* prędkość gwiazdy wynosi niemal 3% prędkości światła (ok. 9000 km/s). Gwiazda okrąża dziurę w ciągu 16 lat.
      Orbity większości planet i gwiazd nie są kołowe, zatem raz są bliżej, a raz dalej od obiektu, wokół którego krążą. Orbita S2 ulega precesji, co oznacza, że z każdym okrążeniem zmienia się punkt, w którym gwiazda jest najbliżej czarnej dziury. W ten sposób gwiazda kreśli wokół niej kształt rozety. Ogólna teoria względności bardzo precyzyjnie przewiduje takie zmiany orbity, a przeprowadzone właśnie obserwacje dokładnie zgadzają się z teorią, dowodząc jej prawdziwości.
      To pierwszy przypadek zmierzenia precesji Schwarszschilda w przypadku gwiazdy krążącej wokół supermasywnej czarnej dziury. To bardzo ważne obserwacje, gdyż, jak mówią Guy Perrin i Karine Perrault z Francji, pasują do ogólnej teorii względności tak dobrze, że możemy ustalić ścisłe granice dotyczące ilości niewidocznego materiału, jak rozproszona ciemna materia czy mniejsze czarne dziury, znajduje się wokół Sagittarius A*.
      Ze szczegółami badań można zapoznać się na łamach Astronomy & Physics.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Jedną z największych tajemnic fizyki jądrowej jest odpowiedź na pytanie, dlaczego wszechświat jest zbudowany z takich a nie innych pierwiastków. Dlaczego nie z innych? Naukowców szczególnie interesują procesy fizyczne stojące u podstaw powstania ciężkich pierwiastków, jak złoto, platyna czy uran. Obecnie uważa się, że powstają one podczas łączenia się gwiazd neutronowych oraz eksplozji gwiazd.
      W Argonne National Laboratory opracowano nowe techniki badania natury i pochodzenia ciężkich pierwiastków, a uczeni z Argonne stanęli na czele międzynarodowej grupy badawczej, która prowadzi w CERN eksperymenty mające dać nam wgląd w procesy powstawania egzotycznych jąder i opracowani modeli tego, co dzieje się w gwiazdach i wydarzeń we wczesnym wszechświecie.
      Nie możemy sięgnąć do wnętrza supernowych, więc musimy stworzyć na Ziemi ekstremalne warunki, jakie w nich panują i badać reakcje, jakie tam zachodzą, stwierdził fizyk Ben Kay z Argonne National Laboratory i główny autor najnowszych badań.
      Uczonym biorącym udział w projekcie udało się – jako pierwszym w historii – zaobserwować strukturę jądra o mniejszej liczbie protonów niż w jądrze ołowiu i o liczbie neutronów przekraczających 126. To jedna z liczb magicznych fizyki jądrowej. Liczba magiczne dla protonów i neutronów wynoszą m.in. 8, 20, 28, 50 i 126. To wartości kanoniczne. Fizycy wiedzą, że jądra atomów o takich wartościach charakteryzują się zwiększoną stabilnością. Jądra o liczbie neutronów powyżej 126 są słabo zbadane, gdyż trudno je uzyskać. Wiedza o ich zachowaniu jest kluczowa dla zrozumienia procesu wychwytu neutronu (proces r), w wyniku którego powstaje wiele ciężkich pierwiastków.
      Obecnie obowiązujące teorie przewidują, że proces r zachodzi w gwiazdach. W tych bogatych w neutrony środowiskach jądra atomowe mogą rosnąć wychwytując neutrony i tworząc cięższe pierwiastki. Proces ten jest na tyle szybki, że nowe cięższe pierwiastki tworzą się zanim jeszcze dojdzie do rozpadu.
      Twórcy eksperymentu skupili się na izotopie rtęci 207Hg. Jego badanie może bowiem rzucić światło na ich bezpośrednich sąsiadów, jądra bezpośrednio zaangażowane w proces r. Naukowcy najpierw wykorzystali infrastrukturę HIE-ISOLDE w CERN. Wysokoenergetyczny strumień protonów skierowali na roztopiony ołów. W wyniku kolizji powstały setki egzotycznych radioaktywnych izotopów. Odseparowali z nich 206Hg i w akceleratorze HIE-ISOLDE wytworzyli strumień jąder o najwyższej osiągniętej tam energii. Strumień skierowali na deuter znajdujący się w ISOLDE Solenoidal Spectrometer.
      Żadne inne urządzenie na świecie nie jest w stanie wytworzyć strumienia jąder rtęci o tej masie i nadać mu takiej energii. To w połączeniu z wyjątkową rozdzielczością ISS pozwolió nam na przeprowadzenie pierwszych w historii obserwacji stanów wzbudzonych 207Hg, mówi Kay.  Dzięki ISS naukowcy mogli więc obserwować, jak jądra 206Hg przechwyciły neutron stając się 207Hg.
      Deuter to ciężki izotop wodoru. Zawiera proton i neutron. Gdy 206Hg przechwytuje z niego neutron, dochodzi do odrzutu protonu. Emitowane w tym procesie protony trafiają do detektora w ISS, a ich pozycja i energia zdradzają kluczowe informacje o strukturze jądra. Informacje te mają bardzo duży wpływ na proces r i uzyskane w ten sposób dane pozwalają na przeprowadzenie istotnych obliczeń.
      ISS korzysta z pionierskiej koncepcji opracowanej przez Johna Schiffera z Argonne National Laboratory. Na podstawie jego pomysłu zbudowano w Argone urządzenie HELIOS. Pozwoliło ono na badanie właściwości jąder atomowych, których wcześniej nie można było badać. HELIOS stał się inspiracją do zbudowania w CERN-ie ISS. Urządzenie to pracuje od 2008 roku i uzupełnia możliwości HELIOS.
      Przez ostatnich 100 lat fizycy mogli zbierać informacje o jądrach atomowych dzięki bombardowaniu ciężkich jąder lekkimi jonami. Jednak reakcja przeprowadzana w drugą stronę, gdy ciężkie jądra uderzały w lekkie cele, prowadziła do pojawiania się wielu zakłóceń, które trudno było wyeliminować. Udało się to dopiero za pomocą HELIOS.
      Gdy ciężka kula uderza w lekki cel dochodzi do zmiany kinematyki i uzyskane w ten sposób spektra są skompresowane. John Schiffer zauważył, że gdy do takiej kolizji dochodzi wewnątrz magnesu, wyemitowane w jej wyniku protony wędrują po spiralnym torze w kierunku detektora. Opracował pewną matematyczną sztuczkę, która opisuje tę kinematyczna kompresję, otrzymujemy więc zdekompresowane spektrum, z którego możemy wnioskować o strukturze jądrowej, wyjaśnia Kay.
      Pierwsze analizy uzyskanych danych potwierdziły prawdziwość przewidywań teoretycznych. Naukowcy planują zatem kolejne eksperymenty, podczas których chcą wykorzystać inne jądra z obszaru 207Hg.
      Ze szczegółami badań zapoznamy się na łamach Physical Review Letters.

      « powrót do artykułu
×
×
  • Create New...