Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Odkryto gwiazdę niemal zbyt masywną, by istnieć

Rekomendowane odpowiedzi

Gwiazdy neutronowe to najbardziej gęste – nie licząc czarnych dziur – obiekty we wszechświecie. Centymetr sześcienny ich materii waży miliony ton. Naukowcy wciąż je badają próbując znaleźć odpowiedzi na wiele pytań. Chcieliby np. dowiedzieć się, jak wyglądają neutrony ściśnięte tak potężnymi siłami czy gdzie leży granica pojawienia się czarnej dziury.

Naukowcy używający Green Bank Telescope donieśli właśnie o odkryciu najbardziej masywnej gwiazdy neutronowej. Pulsar J0740+6620 ma masę 2,17 większą od masy Słońca, a całość jest upakowana w kuli o średnicy zaledwie 30 kilometrów. To bardzo ważne odkrycie, gdyż z danych dostarczonych przez detektor LIGO, który zarejestrował fale grawitacyjne pochodzące ze zderzenia dwóch gwiazd neutronowych wynika, iż 2,17 masy Słońca to bardzo blisko granicy powstania czarnej dziury.

Gwiazdy neutronowe są tajemnicze i fascynujące. Te obiekty wielkości miasta przypominają ogromne jądro atomowe. Są tak masywne, że mają dziwaczne właściwości. Gdy dowiemy się, jaka może być ich maksymalna masa, poznamy wiele niedostępnych obecnie faktów z astrofizyki, mówi doktorant Thankful Cromartie.

Pulsar J0740+6620 tworzy układ podwójny z białym karłem. To właśnie dzięki temu udało się precyzyjnie określić jego masę. Pulsary emitują bowiem z obu biegunów fale radiowe. Emisja ma miejsce w bardzo regularnych odstępach. Jako, że wspomniany pulsar ma towarzysza, to gdy z ziemskiego punktu widzenia znajduje się za nim, obecność białego karła zagina przestrzeń, co powoduje pojawienie się zjawiska znanego jako opóźnienie Shapiro. Z powodu obecności obiektu zniekształcającego przestrzeń, sygnał radiowy musi przebyć nieco dłuższą drogę, by dotrzeć do Ziemi. W omawianym przypadku opóźnienie wynosi około 10 milisekund. To wystarczy, by na tej podstawie wyliczyć masę białego karła. Gdy już ją znamy, z łatwością da się wyliczyć masę towarzyszącego mu pulsara.

Położenie tego układu podwójnego względem Ziemi stworzyło nam wyjątkową okazję. Istnieje granica, poza którą gęstość we wnętrzu gwiazd neutronowych jest tak wielka, iż grawitacja przezwycięża materię i gwiazda dalej się zapada. Każda kolejna „rekordowo masywna” gwiazda neutronowa, którą odkrywamy, przybliża nas do odkrycia tej granicy i pozwala lepiej zrozumieć zjawiska fizyczne zachodzące przy tak olbrzymich gęstościach, mówi astronom Scott Ransom.

Badania były prowadzone w ramach programu NANOGrav Physics Frontiers Center.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Najbliższe Ziemi czarne dziury znajdują się w gromadzie Hiady, informuje międzynarodowy zespół naukowy na łamach Monthly Notices of the Royal Astronomical Society. Hiady (Dżdżownice) to najbliższa Układowi Słonecznemu gromada otwarta. Najnowsze badania pokazują, że znajduje się tam co najmniej kilka czarnych dziur. Gromady otwarte to luźno powiązane grawitacją grupy setek do tysięcy zwykle młodych gwiazd. W Hiadach gwiazd jest około 300, a większości z nich nie widać gołym okiem.
      Dzięki obserwacjom prowadzonym przez należące do ESA obserwatorium kosmiczne Gaia znamy dokładne prędkości i pozycje gwiazd w Hiadach. Naukowcy z Włoch, Hiszpanii, Chin, Niemiec i Holandii przeprowadzili symulacje ruchu wszystkich gwiazd w Hiadach i porównali je z danymi z Gai. "Nasze symulacje odpowiadają rzeczywistej masie i rozmiarom Hiad tylko wówczas, gdy w centrum gromady znajdują się – lub znajdowały się niedawno – czarne dziury", mówi Stefano Torniamenti z Uniwersytetu w Padwie.
      Obserwowane właściwości Hiad najlepiej odpowiadają symulacjom, gdy przyjmiemy, że w gromadzie znajdują się 2-3 gwiazdowe czarne dziury. Symulacje, w których dziury zostały wyrzucone z gromady nie dawniej niż 150 milionów lat temu (Hiady mają ok. 600 milionów lat), także – choć nie tak dobrze – odpowiadają danym obserwacyjnym.
      Czarne dziury znajdujące się w Hiadach lub w pobliżu są zatem najbliższymi nam obiektami tego typu. Ich odległość od Układu Słonecznego wynosi około 45 parseków, czyli ok. 150 lat świetlnych. Dotychczas najbliższa nam znaną czarną dziurą była Gaia BH1 o odległości 480 parseków (1560 l.ś.) od Słońca.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Indie nie ustają w podboju kosmosu. Przed 9 laty kraj zadziwił świat wprowadzając przy pierwszej próbie swojego satelitę na orbitę Marsa, a przed dwoma tygodniami umieścił na Księżycu lądownik i łazik. Teraz dowiadujemy się, że Indyjska Organizacja Badań Kosmicznych (ISRO) z powodzeniem wystrzeliła pierwszą indyjską misję w kierunku Słońca.
      Misja Aditya-L1, nazwana tak od boga Słońca, zostanie umieszczona – jak wskazuje drugi człon jej nazwy – w punkcie libracyjnym L1. Znajduje się on pomiędzy Słońcem a Ziemią, w odległości około 1,5 miliona kilometrów od naszej planety. Dotrze tam na początku przyszłego roku. Dotychczas pojazd z powodzeniem wykonał dwa manewry orbitalne.
      Na pokładzie misji znalazło się siedem instrumentów naukowych. Jej głównymi celami jest zbadanie korony słonecznej, wiatru słonecznego, zrozumienie procesów inicjalizacji koronalnych wyrzutów masy, rozbłysków i ich wpływów na pogodę kosmiczną w pobliżu Ziemi, zbadanie dynamiki atmosfery Słońca oraz rozkładu wiatru słonecznego i anizotropii temperatury.
      Za badania korony naszej gwiazdy i dynamiki koronalnych wyrzutów masy odpowiadał będzie instrument VELC (Visible Emission Line Coronograph), z kolei SUI (Solar Ultra-violet Imaging Telescope) zobrazuje foto- i chromosferę gwiazd w bliskim ultrafiolecie i zbada zmiany irradiancji. APEX i PAPA (Aditya Solar wind Particle EXperiment i Plasma Analyser Package for Aditya) będą opowiadały za badania wiatru słonecznego, jonów i rozkładu energii, a dzięki instrumentom SoLEX i HEL1OS (Solar Low Energy X-ray Spectrometer, High Energy L1 Orbiting X-ray Spectrometer) pogłębimy naszą wiedzę o rozbłyskach w zakresie promieniowania rentgenowskiego. Ostatni z instrumentów, magnetometr, zbada pola magnetyczne w L1.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Astronomowie odkryli brązowego karła, którego powierzchnia jest znacznie bardziej gorąca niż powierzchnia Słońca. Tymczasem brązowe karły nie są gwiazdami. To obiekty gwiazdopodobne, których masa jest zbyt mała, by mógł w nich zachodzić proces przemiany wodoru w hel. Mają masę co najmniej 13 razy większą od Jowisza. Od olbrzymich planet różnie je to, że są zdolne do fuzji deuteru. Po jakimś czasie proces ten zatrzymuje się. Najgorętsze i najmłodsze brązowe karły osiągają temperaturę ok. 2500 stopni Celsjusza. Później stygną. Temperatura najstarszych i najmniejszych z nich to około -26 stopni.
      W najnowszym numerze Nature Astronomy naukowcy opisali brązowego karła, którego temperatura powierzchni sięga 7700 stopni Celsjusza. To znacznie więcej, niż 5500 stopni, jaką ma temperatura Słońca. Nic więc dziwnego, że gdy na początku XXI wieku po raz pierwszy zauważono ten obiekt, omyłkowo go sklasyfikowano. Dopiero powtórna analiza danych przeprowadzona przez Na'amę Hallakoun z izraelskiego Instytutu Naukowego Weizmanna i jej zespół pokazały, z czym mamy do czynienia.
      Nasz brązowy karzeł ma tan olbrzymią temperaturę, gdyż obiega po bardzo ciasnej orbicie białego karła WD 0032-317. To właśnie jego promieniowanie ogrzewa brązowego karła do tak olbrzymich temperatur. Brązowy karzeł znajduje się w obrocie sychronicznym wokół WD 0032-317, co oznacza, że jest cały czas zwrócony w jej kierunku tylko jedną stroną. To zaś powoduje olbrzymie różnice temperatur. Strona nocna brązowego karła jest aż o 6000 stopni Celsjusza chłodniejsza niż strona dzienna.
      Gdy układ ten po raz pierwszy zaobserwowano przed dwoma dziesięcioleciami, sądzono, że jest to układ podwójny dwóch białych karłów. Jednak gdy Hallakoun i jej zespół przyjrzeli się danym, zauważyli coś, co kazało im ponownie przyjrzeć się temu układowi. Mogli obserwować go rejestrując linie emisji pochodzące z dziennej strony brązowego karła. Dane były tak zaskakujące, że początkowo naukowcy sądzili, że nieprawidłowo je opracowali. Później zauważyli, że tak naprawdę obserwują układ składający się z białego karła, wokół którego krąży brązowy karzeł. Uczeni, którzy przed 20 laty zaobserwowali ten system, nie zauważyli tego, gdyż obserwowali nocną stronę brązowego karła.
      Autorzy odkrycia mówią, że przyda się ono do badania ultragorących Jowiszów, czyli olbrzymich planet krążących blisko swojej gwiazdy. Znalezienie takich planet nastręcza na tyle dużo trudności, że obecnie znamy pojedyncze planety tego typu. Dlatego też astronomowie nie od dzisiaj myślą o wykorzystaniu brązowych karłów krążących blisko gwiazd w roli modelu do badań ultragorących Jowiszów. Brązowe karły łatwiej jest obserwować.
      Układ WD 0032-317 rzuci też światło na ewolucję gwiazd. Na podstawie obecnie obowiązujących modeli naukowcy stwierdzili, że brązowy karzeł ma kilka miliardów lat. Z kolei niezwykle wysoka temperatura białego karła WD 0032-317 wskazuje, że istnieje on zaledwie od około miliona lat. Co więcej, ma on masę zaledwie 0,4 mas Słońca. Zgodnie z obowiązującymi teoriami, biały karzeł o tak małej masie nie może istnieć. Ewolucja gwiazdy do takiego stanu musiałaby bowiem trwać dłużej, niż istnieje wszechświat.
      Dlatego naukowcy sądzą, że brązowy karzeł przyspieszył ewolucję towarzyszącej mu gwiazdy. Hallakoun i jej zespół uważają, że przez pewien czas oba obiekty znajdowały się we wspólnej otoczce gazowej. Pojawiła się ona, gdy gwiazda macierzysta zmieniła się w czerwonego olbrzyma i pochłonęła brązowego karła. Z czasem wspólna otoczka została usunięta, w czym swój udział miał brązowy karzeł, co doprowadziło do szybszego pojawienia się białego karła.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Dzisiaj, 17 lat od wystrzelenia, pojazd STEREO-A po raz pierwszy przeleciał pomiędzy Ziemią a Słońcem, dokonując tym samym pierwszego przelotu w pobliżu naszej planety. Bliźniacza misja STEREO (Solar TErrestrial RElations Obserwatory) została wstrzelona 25 października 2006 roku.  Pierwszy leciał STEREO-A (Ahead), za nim zaś STEREO-B (Behind). Pojazdy ruszyły po podobnej do ziemskich orbitach wokół Słońca.
      Już w pierwszych latach misja osiągnęła swój główny cel – dostarczyła stereoskopowych obrazów Słońca. Natomiast pięć lat po wystrzeleniu, 6 lutego 2011 roku, separacja pomiędzy orbitami obu pojazdów wyniosła 180 stopni. Wówczas ludzkość po raz pierwszy zobaczyła Słońce jako kulę. Wcześniej byliśmy „uwiązani” na linii Ziemia-Słońce. W danym momencie widzieliśmy tylko jedną stronę Słońca. STEREO zerwała tę uwięź i zobaczyliśmy Słońce jako obiekt trójwymiarowy, mówi Lika Guhathakurta, pracująca przy misji STEREO.
      Misja osiągnęła wiele innych celów naukowych, aż w 2014 roku po planowanym resecie NASA utraciła kontakt z pojazdem STEREO-B. Jednak STEREO-A wciąż jest pod kontrolą i dzisiaj po raz pierwszy dogonił Ziemię w jej podróży wokół Słońca, dostarczając w międzyczasie danych niedostępnych z Ziemi. W ciągu ostatnich i kolejnych kilku tygodni kontrola naziemna będzie mogła postawić przed pojazdem nowe zadania. Pojazd dostarczy nowych obrazów stereoskopowych. Tym razy we współpracy z satelitami SOHO (Solar and Heliospheric Observatory) i SDO (Solar Dynamic Observatory). Co więcej, odległość pomiędzy STEREO-A a Ziemią będzie się zmieniała, co pozwoli na zoptymalizowanie obrazu.
      Naukowcy wykorzystają bliski przelot pojazdu do dokonania wielu różnych pomiarów, zidentyfikowania aktywnych magnetycznie regionów pod plamami słonecznymi. Mają nadzieję, że w ten sposób uda im się uzyskać trójwymiarowy obraz tych regionów. Przetestują też nową teorię dotyczącą pętli koronalnych, mówiącą, że nie są one tym, czym się dotychczas wydawały. Ostatnio pojawiła się hipoteza, że pętle koronalne to iluzje optyczne. Jeśli przyjrzymy im się z różnych punktów, powinno być to bardziej widoczne, mówi inny z naukowców, Terry Kucera.
      Naukowcy mają też nadzieję, że podczas przelotu STEREO-A w pobliżu Ziemi pojazd doświadczy koronalnego wyrzutu masy i dostarczy nam niedostępnych dotychczas informacji na jego temat. Tak wielkie nadzieje pokładane w przelocie w pobliżu Ziemi związane są z faktem, że ostatnio STEREO-A był równie blisko naszej planety wkrótce po wystrzeleniu. Jednak wówczaw mieliśmy do czynienia z minimum słonecznym, najniższą aktywnością naszej gwiazdy w jej 11-letnim cyklu. Obecnie zbliżamy się do maksimum słonecznego, które powinno mieć miejsce w 2025 roku. W tej fazie cyklu STEREO-A doświadczy zupełnie innego Słońca. To może nam dostarczyć olbrzymiej ilości nowych danych, wyjaśnia Guhathakurta.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...