Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

ESA uchroniła satelitę przed zderzeniem z satelitą SpaceX

Recommended Posts

Europejska Agencja Kosmiczna poinformowała, że musiała przesunąć jednego ze swoich satelitów, by uniknąć zderzenia z satelitą Starlink firmy SpaceX. Jak poinformowano na Twitterze, konieczne było wykonanie manewru unikania kolizji, by zapobiec zderzeniu satelitą należącym do megakonstelacji Starlink.

ESA musiała uruchomić silniki manewrowe satelity Aeolus i wprowadzić go na większą wysokość, by mógł on przelecieć nad jednym ze Starlinków.

Aeolus to satelita naukowy wystrzelony w sierpniu 2018 roku. Jego głównym zadaniem jest poprawa jakości prognoz meteorologicznych. ESA informuje, że bardzo rzadko zdarza się konieczność przemieszczania satelitów, by uniknęły one zderzenia z innymi satelitami. Znacznie częściej zdarza się konieczność manewrowania, by uniknąć kosmicznych śmieci.
Orbita Aeolusa znajduje się niżej niż orbity satelitów konstelacji Starlink, jednak Starlink 44 znalazł się na kursie kolizyjnym z Aeolusem, gdyż SpaceX ćwiczyło techniki dezorbitacji satelity.

Konstelacja Starlink to zespół satelitów komunikacyjnych firmy SpaceX. Firma Muska chce za ich pomocą zapewnić łączność sateliterną na całym świecie. Konstelacja ma zostać uruchomiona, gdy na orbicie znajdzie się 800 satelitów Starlink. Docelowo zaś ma być ich 12 000.

Plany SpaceX i podobne zamiary innych firm, które łącznie chcą na orbicie okołoziemskiej umieścić dziesiątki tysięcy satelitów, niepokoją naukowców. Obawiają się oni, że tak olbrzymia liczba satelitów, przede wszystkim zaś satelitów komunikacyjnych, ciągle wysyłających i odbierających sygnały, utrudni lub wręcz uniemożliwi prowadzenie wilu badań. "Ostatnie postępy radioastronomii, takie jak stworzenie pierwszego obrazu czarnej dziury były możliwe tylko dzięki temu, że nieboskłon jest wolny od interferencji sztucznych sygnałów radiowych" – oświadczyła Międzynarodowa Unia Astronomiczna. Oczywiście właściciele firm, tacy jak Elon Musk, chcących robić biznes na satelitach, twierdzą, że nie będą one w żaden sposób zakłócały badań naukowych. Nie wyjaśniają jednak, jak tysiące takich obiektów miałyby pozostać bez wpływu na astronomię.

Jak zresztą widzimy, obawy naukowców były jak najbardziej uzasadnione. W przyszłości jednak ręczne unikanie kolizji może nie wystarczyć. Dlatego też ESA pracuje nad zautomatyzowanym systemem, który pozwoli na uchronienie satelitów przed zderzeniami. Agencja musi się pospieszyć, gdyż dziesiątki tysięcy nowych satelitów może trafić na orbity już w ciągu najbliższych 5–7 lat.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Australijscy astronomowie odkryli niezwykle rzadki typ galaktyki sprzed 11 miliardów lat. Opisali ją jako kosmiczny pierścień ognia. Galaktyka o masie podobnej do masy Drogi Mlecznej jest okrągła z dziurą w środku. Jej odkrycie może zmienić nasze poglądy na formowanie się i ewolucję najwcześniejszych galaktyk.
      To dziwaczny obiekt, jakiego wcześniej nie widzieliśmy. Wygląda jednocześnie dziwnie i znajomo, mówi doktor Tiantian Yuan z ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions.
      Galaktyka R5519 znajduje się w odległości 11 miliardów lat świetlnych od Układu Słonecznego. Obecna wewnątrz niej pusta przestrzeń jest kolosalna. Jej średnica wynosi 2 miliardy jednostek astronomicznych. Jest 3 miliony razy większa niż średnica supermasywnej czarnej dziury w galaktyce Messier 87, która w ubiegłym roku stała się pierwszą bezpośrednio zobrazowaną czarną dziurą.
      Jak mówi doktor Yuan, tempo powstawania gwiazd w R5519 jest 50-krotnie szybsze niż w Drodze Mlecznej. Większość jej aktywności ma miejsce w pierścieniu, więc to naprawdę pierścień ognia, dodaje.
      Dotychczas zdobyte dowody wskazują, że jest to typ galaktyki znanej jako kolizyjna galaktyka pierścieniowa. To pierwszy tego typu obiekt odkryty we wczesnym wszechświecie. Obecnie znamy dwa typy galaktyk pierścieniowych. Jeden z nich, bardziej rozpowszechniony, powstaje w wyniku procesów wewnętrznych. Drugi, jak sama nazwa wskazuje, powstaje w wyniku zderzeń z innymi galaktykami.
      W naszym najbliższym otoczeniu galaktyki kolizyjne są 1000-krotnie rzadsze niż galaktyki pierścieniowe powstałe w wyniku procesów wewnętrznych. Najnowsze odkrycie pokazuje, że zawsze były one czymś wyjątkowym. Dzięki niemu będziemy mogli zrozumieć, jak powstają galaktyki spiralne, takie jak Droga Mleczna
      Do pojawienia się kolizyjnej galaktyki pierścieniowej konieczna jest obecność cienkiego dysku w galaktyce, w którą uderzyła inna galaktyka. Takie cienkie dyski to niezbędny element galaktyk spiralnych. Zanim one powstają galaktyki takie są nieuporządkowane, nie można ich nazwać galaktykami spiralnymi. Tutaj mamy kolizyjną galaktykę pierścieniową przed 11 miliardów lat. Dla porównania, dysk Drogi Mlecznej zaczął formować się 9 miliardów lat temu. Dzięki odkryciu R5519 widzimy, że proces formowania się dysków galaktyk spiralnych pojawił się wcześniej, niż dotychczas sądziliśmy, mówi drugi za autorów badań, profesor Kenneth Freeman z Australian National University.
      Do zapoznania się ze szczegółami zapraszamy na łamy Nature.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Czternastego kwietnia Operational Land Imager (OLI) satelity Landsat 8 uwiecznił kwitnienie morza pozłotek kalifornijskich (zwanych też maczkami) w Antelope Valley California Poppy Reserve. A wszystko kilka mil na zachód od Centrum Badania Lotu imienia Neila A. Armstronga NASA.
      Naukowcy podkreślają, że zdjęcia wykonano w okolicach albo w samym szczycie kwitnienia. Pozłotki zakwitły po znaczących opadach w marcu i kwietniu. Tej wiosny w Lancaster spadło ok. 27 cm deszczu, ok. 10 cm powyżej średniej. Dodatkowe opady mogą spowodować, że kwiaty utrzymają się dłużej niż zwykle [...].
      Intensywne kwitnienie maczków w Antelope Valley California Poppy Reserve przypada zazwyczaj na koniec zimy-wczesną wiosnę, czyli na okres od połowy lutego do połowy maja. Dokładny czas zależy od ilości opadów. Jak podkreślają strażnicy, w tym roku padać zaczęło z opóźnieniem. Nazwa parku nawiązuje do maczków, ale tutejsze łąki cieszą oko także innymi kwiatami, np. Castilleja exserta.
       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Lekka silikonowa opaska może być zakładana pod kask w czasie uprawiania sportu. Wynalazek mierzy przyspieszenia działające na głowę człowieka i aktywność elektryczną kory mózgowej. Dzięki niemu od razu wiadomo, co dzieje się w mózgu, gdy dochodzi do upadku albo zderzenia.
      Nad opaską pracuje zespół naukowców z Wydziału Mechanicznego Politechniki Wrocławskiej i dwaj neurochirurdzy – z Wrocławia i Legnicy. Ich urządzenie składa się z kilkunastu czujników – akcelerometrów (mierzących przyspieszenia działające na głowę) oraz czujników pulsu, temperatury ciała, stopnia natlenienia krwi i kwasowości wydzielanego potu. Są tam także elektrody, dzięki którym możliwa jest elektroencefalografia, czyli EEG – pomiar aktywności elektrycznej kory mózgowej. Wszystkie te dane są zapisywanie na karcie pamięci, a potem przetwarzane przez komputer. Sama opaska jest wykonana z lekkiego i przyjemnego dla skóry silikonu i ma (opcjonalne) paski przechodzące przez środek głowy i wkładki douszne z czujnikami ruchu (IMU).
      Nikt do tej pory nie mierzył, co dzieje się z korą mózgową w czasie uderzenia głowy – podkreśla dr hab. inż. Mariusz Ptak z Katedry Konstrukcji Badań Maszyn i Pojazdów na Wydziale Mechanicznym, kierownik projektu. Zwykle gdy dochodzi do poważniejszego wypadku, EEG jest wykonywane kilkadziesiąt minut po takim zdarzeniu w szpitalu. My mamy szansę zobaczyć, jak zmienia się potencjał elektryczny w mózgu w czasie rzeczywistym. Przylegające do skóry elektrody są jednym z najważniejszych elementów naszej opaski. Każdy organizm jest bowiem inny i u niektórych ludzi nawet mały uraz może być przyczyną bardzo poważnych powikłań. Dlatego sam pomiar sił działających na głowę mógłby być niewystarczającym wskaźnikiem dla określenia ryzyka poważnego urazu. EEG pozwala nam bardzo dokładnie przyjrzeć się wszystkiemu, co dzieje się w głowie człowieka.
      Badania na zawodniku futbolu amerykańskiego
      Do tej pory badania na ludzkim mózgu związane z uderzeniami w czasie rzeczywistym – z oczywistych powodów – prowadzono na ciałach zmarłych.
      Nie wiemy natomiast, co dzieje się w mózgu osoby żyjącej. Wyniki mogą być zupełnie inne od tych dostępnych w literaturze, bo przecież wiele parametrów jest skrajnie odmiennych, jak choćby stopień nawodnienia organizmu – tłumaczy Johannes Wilhelm, doktorant na Wydziale Mechanicznym uczestniczący w tym projekcie. Dzięki opasce możemy dowiedzieć się np., co prowadzi do utraty świadomości człowieka. Będziemy mogli przeanalizować, jakie fale przechodzą przez mózg i jak on na nie reaguje.
      Naukowcy nie zamierzają oczywiście doprowadzać do wypadków osób zakładających zaprojektowaną i zbudowaną przez nich opaskę. Chcą przeprowadzić dużą liczbę badań, licząc na to, że przy okazji uda się zarejestrować także upadki czy zderzenia, które są nieuniknione przy aktywności fizycznej. Do udziału zaprosili więc wolontariuszy uprawiających różne dyscypliny sportu, w tym m.in. studenta naszej uczelni, który jest zawodowym graczem wrocławskiego zespołu futbolu amerykańskiego.
      Mamy już sporo danych dotyczących codziennej aktywności ludzi, np. podskakiwania czy biegania, które też są dla nas istotne, bo wiemy już, jak zachowuje się wtedy mózg i jakie naprężenia przez niego przechodzą – opowiada Marek Sawicki, doktorant na Wydziale Mechanicznym i współautor pomysłu.
      Naukowcy chcą stworzyć model pokazujący, jak rozchodzą się przyspieszenia w głowie człowieka przy konkretnym uderzeniu. Stąd potrzeba jak największej ilości danych, by model był wiarygodny.
      Chcemy zarejestrować dane od osób jeżdżących na rowerze, nartach, snowboardzie itd. Im większe zróżnicowanie, tym lepiej dla naszych badań – dodaje Johannes Wilhelm. Interesujące dla nas mogą być nawet dane z opaski osoby bawiącej się na dużym koncercie, stojącej niedaleko nagłośnienia.
      Członkowie zespołu sprawdzali wcześniej prototyp swojego wynalazku na manekinie o rozmiarach dziecka, służącym normalnie do laboratoryjnych badań zderzeniowych. Taką "lalkę" zrzucali z huśtawek i drabinek na placu zabaw, by porównywać zarejestrowane przyspieszenia.
      Przy okazji przekonaliśmy się, że zimą zabawa dziecka na placu pokrytym masą bitumiczną nie jest najlepszym pomysłem – opowiada dr hab. Ptak. Pomiary wykonywaliśmy przy temperaturze około 4 st. C. Podłoże, które normalnie służy do absorbowania części energii przy upadku, w takich warunkach jest twarde jak asfalt. Nasza opaska zarejestrowała, że na głowę manekina spadającego na podłoże z granulatu gumowego działało przyspieszenie 100 g, czyli naprawdę bardzo duże i grożące poważnymi konsekwencjami.
      W czym pomoże opaska?
      Twórcy opaski przekonują, że pozwoli ona nie tylko na dokładne prześledzenie, w jaki sposób dochodzi do uszkodzeń i dysfunkcji w mózgu w wyniku zderzeń i upadków, ale może pomóc np. w pracach nad sprzętem zabezpieczającym głowę (np. testach kasków). Naukowcy są także w kontakcie z neurobiologami z USA, zajmującymi się badaniami związanymi z poprawą pamięci poprzez oddziaływanie elektrodami na mózg. Być może opaska z Wrocławia będzie wykorzystywana również w tych badaniach.
      Mogłaby służyć także do monitorowania treningów profesjonalnych sportowców, pomagając w ocenie stanu skupienia i stresu, jakiemu te osoby są poddane w czasie przygotowań do sezonu zawodów swojej dyscypliny.
      Na razie zyskała uznanie w konkursie "Student-Wynalazca" organizowanym przez Politechnikę Świętokrzyską – nagrodzono ją wyróżnieniem w 2019 r. Opaska została też zgłoszona do tegorocznej siódmej edycji konkursu "Eureka! DGP. Odkrywamy polskie wynalazki" – jako jedno z 20 naukowych przedsięwzięć z całej Polski. Naukowcy chcą też ją opatentować – obecnie ich rozwiązanie jest na etapie zgłoszenia patentowego.
      Wynalazek jest częścią dużego projektu aHEAD  (z ang. advanced Head models for safety Enhancement And medical Development), realizowanego dzięki grantowi "Numeryczny system wielowariantowych modeli głowy człowieka do symulacji patofizjologii urazów czaszkowo-mózgowych" z programu "Lider" Narodowego Centrum Badań i Rozwoju.
      Nad opaską pracują: dr hab. inż. Mariusz Ptak (PWr), dr inż. Monika Ratajczak z Uniwersytetu Zielonogórskiego, dr inż. Fabio Fernandez z Uniwersytetu Aveiro w Portugalii, doktoranci Johannes Wilhelm, Marek Sawicki i Maciej Wnuk z Wydziału Mechanicznego PWr oraz neurochirurdzy dr Artur Kwiatkowski (Oddział Neurochirurgiczny Wojewódzkiego Specjalistycznego Szpitala w Legnicy) i Konrad Kubicki (Uniwersytecki Szpital Kliniczny we Wrocławiu – Klinika Neurochirurgii). W pracach informatycznych pomaga student W10 Oliwer Sobolewski.
      O projekcie można także przeczytać na jego stronie internetowej.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Przechwytywanie aerodynamiczne (aerocapture) to wciąż opracowywana metoda umieszczania pojazdów na orbicie innych planet i księżyców. Technika ta pozwoliłaby umieszczać na orbitach znacznie większe ładunki niż obecnie. To zaś oznacza olbrzymie oszczędności, gdyż zamiast dwóch lub trzech misji naukowych badających np. Jowisza, można by zorganizować jedną. Ten jeden pojazd mógłby bowiem zabrać na pokład znacznie więcej instrumentów naukowych niż obecnie.
      Umieszczenie satelity na orbicie innej planety to niełatwe zadanie. Pędzący z olbrzymią prędkością pojazd trzeba bowiem wyhamować do odpowiedniej prędkości i umieścić go na orbicie. Najlepiej kołowej. Manewry takie wymagają zużycia olbrzymich ilości paliwa. A im pojazd cięższy, tym więcej paliwa potrzebuje. To poważny czynnik ograniczający masę sond, które obecnie wysyłamy, by badały Układ Słoneczny.
      Przechwytywanie aerodynamiczne to pomysł, który polega na chwilowym wejściu pojazdu w atmosferę planety. W wyniku oddziaływania z atmosferą pojazd zwalnia, a gdy osiągnie odpowiednią prędkość, opuszcza atmosferę i trafia na orbitę planety. Tego typu manewr wymagałby znacznie mniej paliwa niż obecnie używane techniki spowalniania sond kosmicznych.
      Już wcześniejsze wyliczenia dla ośmiu potencjalnych misji planetarnych, w których dokonano bezpośredniego porównania pomiędzy przechwytywaniem aerodynamicznym a innymi zaawansowanymi technikami, takimi jak hamowanie atmosferyczne, wykorzystanie energii chemicznej lub słonecznej elektrycznej do spowolnienia pojazdu, wykazały jak olbrzymie korzyści niesie ze sobą nowa technika.
      Porównanie wykazało, że przechwytywanie atmosferyczne umożliwia umieszczenie pojazdu na orbicie eliptycznej wokół Neptuna i na orbitach kołowych Jowisza i Saturna. Ponadto w przypadku pięciu innych misji pozwala na umieszczenie na orbicie ładunku o znacznie większej masie bez zwiększania kosztów misji. I tak pojazd na orbicie kołowej wokół Wenus mógłby mieć o 79% większą masę, niż gdy do wyhamowania użyje się innych technik. Jeśli byśmy chcieli umieścić ten pojazd na orbicie eliptycznej, to jego masa mogłaby być o 43% większa. Dla orbity kołowej Marsa możemy zwiększyć masę pojazdu o 15%, dla orbity kołowej wokół Tytana jego masa może być większa o 280%, a jeśli chcielibyśmy wysłać sondę na orbitę eliptyczną Urana, to może on mieć masę o 218% większa, niż w przypadku innych technik.
      Dotychczasowe badania wykazały też, że na przykład wykorzystanie przechwytywania atmosferycznego dla misji na Neptuna wymaga budowy pojazdu o doskonałości aerodynamicznej między 0,6 a 0,8. Obecnie stosowane nosy pojazdów wchodzących w atmosferę innych planet mają doskonałość aerodynamiczną rzędu około 0,25. Badania sprzed kilkunastu lat dowiodły, że w takim przypadku wykorzystanie przechwytywania atmosferycznego wymagałoby stosowania olbrzymich osłon termicznych na niemal całym pojeździe, a i tak pojazd uległby zniszczeniu. Najnowsze osłony termiczne również nie zdałyby egzaminu.
      Zespół Roberta Mosesa z Langley Research Center informuje, że właśnie rozwiązał zarówno problem doskonałości aerodynamicznej jak i osłon termicznych. Naukowcy proponują umieszczenie w pojeździe magnesów. Pole magnetyczne tych, znajdujących się blisko czubka nosa pojazdu znacząco odsunie miejsce powstawania fali uderzeniowej, znacząco zmniejszając przepływ ciepła, dzięki czemu nie trzeba będzie stosować olbrzymich osłon termicznych. Z kolei magnesy umieszczone na bokach nosa zwiększą siłę nośną, a przez to i doskonałość aerodynamiczną.
      Moses twierdzi, że taki system można wykorzystać nie tylko do umieszczania pojazdów na orbicie, ale również i w pojazdach, które mają lądować. Dzięki temu zaś misja załogowa mogłaby dotrzeć do Marsa w ciągu 39 dni, a nie – jak się obecnie prognozuje – w ciągu 100 lub więcej dni.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Astronomowie poinformowali o zniknięciu planety wchodzącej w skład niezwykłego układu potrójnego Fomalhaut. Odkryta w 2008 roku planeta Fomalhaut b nagle przestała się pokazywać. Uczeni nie podejrzewają jednak, że spotkał ją ten sam los co platentę Supermana Krypton, która eksplodowała. Proponują znacznie prostsze wyjaśnienie.
      Jedna z hipotez zakłada, że obiekt, który po raz pierwszy sfotografowano w 2004 roku, nie był planetą, a wielką rozszerzającą się chmurą pyłu pochodzącą ze zderzenia dwóch wielkich obiektów w pobliżu gwiazdy. Takie zderzenia są niezwykle rzadkie i mielibyśmy wielkie szczęście, gdybyśmy ja zaobserwowali. Sądzimy, że Hubble przeprowadził właściwe obserwacje we właściwym miejscu, dzięki czemu mogliśmy obserwować tak niezwykłe wydarzanie, stwierdza Andras Gaspar z University of Arizona.
      Obiekt Fomalhaut b został odkryty w 2008 roku na podstawie danych zebranych w roku 2004 i 2006. Przez lata obserwowano go za pomocą Teleskopu Hubble'a. W przeciwieństwie do wielu innych planet pozasłonecznych, Fomalhaut b można było obserwować bezpośrednio. Jednak już od samego początku domniemana planeta stanowiła sporą zagadkę dla specjalistów. W przeciwieństwie bowiem do innych bezpośrednio obserwowanych planet, obiekt ten był niezwykle jasny w świetle widzialnym, ale nie można było wykryć żadnej emisji w podczerwieni, która by z niego pochodziła. Astronomowie stwierdzili wówczas, że niezwykła jasność pochodzi z otaczającej planetę olbrzymiej chmury pyłu.
      Również orbita Fomalhaut b była nietypowa. Nasze badania, w ramach których przeanalizowaliśmy wszystkie archiwalne dane z Hubble'a dotyczące tego obiektu, wskazywały, że ma on pewne cechy, które połączone razem wskazywały, iż taka planeta może nie istnieć, dodaje Gaspar. Gwoździem do trumny dla planety okazały się zdjęcia wykonane przez Hubble'a w 2014 roku. Okazało się, że Fomalhaut b zniknął.
      Naukowcy sądzą, że na krótko przed pierwszymi obserwacjami doszło do do zderzenia dwóch dużych obiektów. Powstała rozszerzająca się chmura pyłu, która składa się z drobinek wielkości 1 mikrometra. Obecnie jest ona niewykrywalna dla Hubble'a. Z obliczeń wynika, że obecnie może być ona większa niż obszar zakreślony orbitą Ziemi wokół Słońca.
      Zdaniem Gaspara, obiekty, które się zderzyły tworząc Fomalhaut b to dwie komety o średnicy około 200 kilometrów każda. Modele obliczeniowe, na podstawie których wysnuł taką hipotezę, wykazały, że zgadza się ona ze wszystkimi charakterystykami Fomalhaut b, od tempa rozszerzania się, po zniknięcie i trajektorię chmury. Z obliczeń wynika też, że do takiego zderzenia dochodzi w systemie Fomalhaut nie częściej niż raz na 200 000 lat.
      Naukowcy już zapowiadają, że w przyszłości mają zamiar wykorzystać Teleskop Kosmiczny Jamesa Webba (JWST) do obserwacji systemu Fomalhaut. Dzięki temu będą w stanie bezpośrednio obrazować wewnętrzne regiony systemu, obserwować pas asteroid w tym systemie oraz poszukać w nim naprawdę istniejących planet.

      « powrót do artykułu
×
×
  • Create New...