Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Potężna kolizja rozbiła jądro Jowisza

Recommended Posts

Podczas formowania się Układu Słonecznego mogło dość często dochodzić do zderzeń tworzących się planet. Podczas jednej z takich kolizji powstał ziemski Księżyc. Jednak to, co spotkało Jowisza jest czymś wyjątkowym.

Astronomowie z amerykańskiego Rice University i chińskiego Uniwersytetu Sun Jat-sena uważaja, że znaleźli wyjaśnienie dziwnych wyników pomiarów pola grawitacyjnego Jowisza dostarczonych przez sondę Juno.

Wiodące teorie dotyczące formowania się planet mówią, że Jowisz rozpoczął swoje życie jako gęsta skalista lub lodowa planeta i z czasem zyskał olbrzymią warstwę bardzo gęstej atmosfery złożonej z gazów i pyłów z rodzącego się Układu Słonecznego. Jednak odczyty z Juno wskazują, że jądro Jowisza jest znacznie większe i mniej gęste, niż w takim scenariuszu. To było zastanawiające. Wskazywało, że coś się stało z jądrem. W grę wchodzi wielka kolizja, mówi współautor badań Andrea Isella z Rice University.

Uczony przyznaje, że bardzo sceptycznie podszedł do hipotezy głównego autora badań, Shanga-Fei Liu, mówiącej o zderzeniu, które rozbiło jądro Jowisza i wymieszało je z rzadszymi częściami planety. To brzmiało bardzo nieprawdopodobnie. Jednak Shang-Fei przekonał mnie, za pomocą wielu obliczeń, że nie jest to nieprawdopodobne, stwierdził Isella.

Naukowcy przeprowadzili tysiące symulacji komputerowych i stwierdzili, że szybko rosnący Jowisz zaburzył orbity pobliskich protoplanet. Uruchomiono więc kolejne symulacje, by sprawdzić, jakie – w różnych warunkach – było prawdopodobieństwo, że doszło do kolizji. Okazało się, że podczas pierwszych kilku milionów lat swojego istnienia Jowisz mógł z co najmniej 40-procentowym prawdopodobieństwem zderzyć się z rodzącą się planetą i ją wchłonął. Modelowanie komputerowe wykazało, że gdyby Jowisz wciągnął planetę o masę Ziemi, opadałaby ona na jego jądro i rozpadłaby się w gęstej atmosferze. Jądro Jowisza pozostałoby nietknięte. Jedyny scenariusz, wyjaśniający, dlaczego obecnie jądro Jowisza wygląda tak, jak obecnie, zakłada, że protoplaneta, z którą się zderzył, miała masę około 10-krotnie większą od masy Ziemi, mówi Liu.

Obliczenia wskazują, że tak masywna protoplaneta rozbiła jądro Jowisza. Jeśli nawet do tego wydarzenia doszło 4,5 miliarda lat temu, to potrzeba będzie kolejnych miliardów lat, by jądro Jowisza powróciło do stanu sprzed zderzenia, mówi Isella.

 


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Analiza danych z misji InSight wykazała, że jądro Marsa jest całkowicie płynne. Ma więc inną budowę niż jądro Ziemi, gdzie stałe jądro wewnętrzne otoczone jest przez płynne jądro zewnętrzne. Dotychczas nikt nie był w stanie stwierdzić, jaki jest stan skupienia jądra Czerwonej Planety. Udało się to dopiero uczonym z USA, Belgii, Niemiec i Francji, którzy podczas swoich badań wykorzystali dane z InSight.
      Zrozumienie struktury wewnętrznej oraz atmosfery Marsa jest niezbędne do opisania historii tworzenia się i ewolucji planety. Wysłana w 2018 roku InSight zebrała unikatowe dane na temat jej budowy zewnętrznej. Misja zakończyła się w grudniu ubiegłego roku, ale naukowcy z całego świata wciąż analizują przysłane przez nią dane.
      Na ich podstawie badacze stwierdzili, że pod płaszczem, które w całości jest ciałem stałym, znajduje się jądro o średnicy 1835 ± 55 km i średniej gęstości 5955–6290 kg/m3. Nasze analizy danych z InSight stanowią argument przeciwko istnieniu stałego jądra wewnętrznego i pokazują kształt jądra wskazując, że głęboko w płaszczu istnieją wewnętrzne anomalie masy. Znaleźliśmy też dowody na powolny wzrost tempa ruchu obrotowego Marsa, który może być powodowany długoterminowym trendem w wewnętrznej dynamice Marsa lub wpływem jego atmosfery i pokryw lodowych, czytamy w artykule opublikowanym na łamach Nature.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Europejska Agencja Kosmiczna przeprowadziła udany start misji Juice (Jupiter Icy Moons Explorer), która – jak sama nazwa wskazuje – ma zbadać trzy Galileuszowe księżyce Jowisza, Ganimedesa, Kallisto i Europę. Na pokładzie misji znalazły się polskie urządzenia, wysięgniki firmy Astronika, na których zamontowano sondy do pomiarów plazmy. Mają one rozłożyć się na odległość 3 metrów od satelity i ustawić czujniki pod kątem 135 stopni, by umożliwić im zbadanie plazmy znajdującej się w atmosferze Jowisza.
      Juice wystartowała o godzinie 14:14 czasu polskiego, a 50 minut później stacja w Australii odebrała sygnał z pojazdu. ESA wstrzymała się z ogłoszeniem udanego startu do godziny 15:33, kiedy to nadeszły informacje o udanym rozłożeniu 27-metrowych paneli słonecznych. Dzięki nim pojazd będzie mógł polecieć do Jowisza. Juice to ostatnia misja wystrzelona za pomocą rakiety Ariane 5. Zadebiutowały one w 1999 roku podczas misji XMM-Newton, a w 2021 roku za pomocą jednej z nich wystrzelono Teleskop Kosmiczny Jamesa Webba.
      Dzięki wcześniejszym misjom w kierunku Jowisza wiemy, że na wymienionych księżycach znajdują się zamarznięte oceany. To jedne z najbardziej obiecujących miejsc, w których może istnieć pozaziemskie życie w Układzie Słonecznym. Juice powinno przybliżyć nas do odpowiedzi na pytanie o jego obecność tam.
      Dotychczas ludzkość zorganizowała 9 misji, które badały Jowisza. Na orbicie planety wciąż pracuje, wystrzelona w 2011 roku, sonda Juno. W styczniu 2021 NASA przedłużyła jej misję do września 2025. Od tamtej pory Juno dokonała przelotu w pobliżu Ganimedesa i Europy.
      Ponad 400 lat temu Galileusz odkrył księżyce Jowisza, co zaszokowało świat renesansu i zrewolucjonizowało nasze myślenie o miejscu ludzkości we wszechświecie. Dzisiaj wysyłamy zestaw przełomowych narzędzi, które dadzą nam wyjątkowy ogląd tych księżyców, stwierdziła Carole Mundell, dyrektor ds. naukowych ESA.
      Teraz przez 2,5 tygodnia Juice będzie rozkładała liczne anteny i instrumenty. Podczas ośmioletniej podróży do Jowisza pojazd czterokrotnie skorzysta z asysty grawitacyjnej Ziemi i Wenus. Pierwszy taki przelot odbędzie się w kwietniu przyszłego roku, kiedy to Juice najpierw minie Księżyc, a 1,5 doby później wykorzysta oddziaływanie grawitacyjne Ziemi.
      Sondę wyposażono w osłony, które mają chronić jej elektronikę przed olbrzymimi dawkami promieniowania w pobliżu Jowisza oraz w wielowarstwową izolację, dzięki której wewnątrz urządzenia utrzymywana będzie stabilna temperatura. Izolacja będzie musiała poradzić sobie z temperaturami ponad 250 stopni Celsjusza podczas przelotu w pobliżu Wenus i -230 stopniami w pobliżu Jowisza.
      Obecnie planuje się, że podczas pobytu na orbicie Jowisza Juice wykona 35 przelotów w pobliżu trzech wspomnianych księżyców, a następnie wejdzie na orbitę Ganimedesa. To zaś będzie wymagało olbrzymiej precyzji podczas nawigacji. Mają ją zapewnić nadajniki w Hiszpanii, Argentynie i Australii oraz Europejskie Centrum Operacji Kosmicznych w Darmstadt. Będzie to jedna z najbardziej skomplikowanych misji podjętych przez ESA. Od przelotów w pobliżu księżyców Jowisza w ciągu 2,5 roku poprzez olbrzymie wyzwanie jakim jest zmiana orbity między olbrzymim Jowiszem, a Ganimedesem, opisuje trudności Angela Dietz, zastępca menadżera misji ds. operacyjnych.
      Głównym celem naukowym misji jest Ganimedes, księżyc większy od Merkurego. Juice spędzi na jego orbicie około 9 miesięcy. Ganimedes nie tylko pokryty jest oceanem, ale to jedyny w  w Układzie Słonecznym księżyc generujący własne pole magnetyczne. Tylko dwa inne ciała skaliste – Merkury i Ziemia – generują takie pole.
      Mamy tutaj do czynienia z interesującym zjawiskiem niewielkiej „bańki magnetycznej” generowanej przez Ganimedesa, która znajduje się wewnątrz większej bańki generowanej przez Jowisza. Obie wchodzą ze sobą w skomplikowane interakcje. Dzięki misji Juice naukowcy chcą poznać strukturę wewnętrzną Ganimedesa, co powinno dać odpowiedź na pytanie o sposób generowania i utrzymywania pola magnetycznego. To zaś pozwoli zrozumieć, w jaki sposób księżyc ewoluował i czy może na nim istnieć życie.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Większość współczesnych teorii dotyczących powstania Księżyca mówi, że miliardy lat temu w Ziemię uderzył obiekt wielkości Marsa, zwany Theią. W wyniku kolizji pojawiła się olbrzymia liczba szczątków, które krążąc wokół Ziemi przez miesiące i lata, uformowały Księżyc. Jednak autorzy autorzy najnowszych badań, w ramach których przeprowadzono symulację w wysokiej rozdzielczości, uważają, że Księżyc powstał... w ciągu kilku godzin.
      To otwiera całą gamę nowych możliwości badawczych dotyczących początku ewolucji Księżyca, mówi główny autor badań, Jacob Kegerris. Rozpoczęliśmy ten projekt, nie wiedząc, jakie będą wyniki symulacji w wysokiej rozdzielczości. Byliśmy niezwykle zaskoczeni faktem, że symulacje o standardowej rozdzielczości mogą dawać tak bardzo mylne odpowiedzi.
      Uczeni z należącego do NASA Ames Research Center przeprowadzili najbardziej szczegółową symulację dotyczącą powstania Księżyca czy też wyników innych wielkich kolizji. Wykazała ona, że symulacje o niższej rozdzielczości, biorące pod uwagę mniej danych, mogą omijać bardzo ważne aspekty i skutki takich kolizji.
      Jeśli chcemy zrozumieć proces powstawania księżyca musimy wziąć pod uwagę to, co o nim wiemy – jego masę, orbitę oraz szczegółowe wyniki analizy skał księżycowych – i stworzyć scenariusz, w wyniku którego zobaczymy taki Księżyc, jakim widzimy go obecnie.
      Wcześniejsze teorie dobrze wyjaśniały niektóre właściwości Srebrnego Globu, ale pozostawiały poważne luki. Jedną z takich tajemnic był skład księżycowych skał. Ich sygnatury izotopowe są bardzo podobne do sygnatur izotopowych skał z Ziemi, a odmienne od materiału z Marsa czy innych ciał niebieskich. To najprawdopodobniej oznacza, że materiał, z którego zbudowany jest Księżyc, pochodzi z Ziemi.
      Jedne z branych wcześniej pod uwagę scenariuszy zakładały, że po zderzeniu materiał z Thei trafił na orbitę Ziemi i wymieszał się z niewielką ilością materiału z Ziemi. Jednak w takim wypadku izotopowy skład Księżyca nie byłby aż tak bardzo podobny do składu Ziemi. Chyba, że Theia była pod tym względem do Ziemi podobna, co jest jednak mało prawdopodobne. Dlatego też znacznie bardziej prawdopodobnym scenariuszem jest ten, według którego Księżyc powstał głównie z materiału z górnych warstw skorupy ziemskiej. Istnieje też hipoteza mówiąca, że Księżyc powstał wewnątrz obracającej się kuli materiału odparowanego w wyniku kolizji. Jednak nie wyjaśnia ona obecnej orbity Księżyca.
      Najnowsza symulacja, pokazująca, że Księżyc uformował się bardzo szybko z materiału z Ziemi, wyjaśnia zarówno jego skład, jak i obecną orbitę. Wynika z niej, że Srebrny Glob utworzył się w ciągu kilku godzin, a jego jądro nie było całkowicie stopione. To wyjaśnia zarówno cienką skorupę oraz orbitę wokół naszej planety. Jest to najbardziej pełne wyjaśnienie obserwowanych obecnie właściwości Księżyca.
      Uczeni zaznaczają, że dokładne określenie, która z obecnie proponowanych hipotez jest tą prawdziwą będzie możliwe w przyszłości, gdy kolejne misje przywiozą pobrane z większych głębokości próbki z innych części Księżyca. Wówczas można będzie porównać wyniki badań próbek z proponowanymi scenariuszami.
      Prowadzone badania mają znaczenie nie tylko dla określenia ewolucji Księżyca, ale dla lepszego poznania kosmosu. Przestrzeń kosmiczna jest pełna kolizji i pozostałości po nich. Mają one olbrzymi wpływ na tworzenie się i formowanie układów planetarnych.


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Atmosfera Jowisza słynna jest ze swoich wielkich kolorowych wirów. Ma też jednak mniej znaną niezwykłą cechę. Jej górna część jest wyjątkowo gorąca. O setki stopni cieplejsza, niż być powinna. Teraz naukowcy poinformowali o odkryciu gigantycznej, rozciągającej się na 130 000 kilometrów fali ciepła o temperaturze przekraczającej 700 stopni.
      Do Jowisza dociera ponad 25-krotnie mniej promieniowania słonecznego niż do Ziemi. Z obliczeń wynika, że górne partie jego atmosfery powinny mieć temperaturę -70 stopni Celsjusza. Tymczasem pomiary wykonywane w różnych miejscach wskazują, że w górnych partiach chmur panują temperatury powyżej 400 stopni Celsjusza.
      James O'Donoghue z Japońskiej Agencji Kosmicznej (JAXA) stworzył wraz z kolegami pierwszą mapę górnych warstw atmosfery Jowisza, która pozwalała na zidentyfikowanie dominujących źródeł ciepła w atmosferze. Teraz uczeni poinformowali, że za podgrzewanie atmosfery mogą odpowiadać zorze polarne.
      Zorze znamy też z Ziemi, jednak o ile na Błękitnej Planecie jest to zjawisko czasowe, do którego dochodzi podczas zwiększonej aktywności Słońca, o tyle na Jowiszu zorze istnieją bez przerwy, zmienia się tylko ich intensywność. Naukowcy z JAXA zauważyli, że potężne zorze rozgrzewają atmosferę wokół biegunów Jowisza do temperatury ponad 700 stopni Celsjusza, a później ciepło to jest roznoszone przez wiatr wokół całej planety.
      Uczeni odkryli, wspomnianą na wstępie, szczególnie intensywną falę gorąca bezpośrednio pod zorzą północną i stwierdzili, że fala ta przemieszcza się w stronę równika z prędkością tysięcy kilometrów na godzinę. Pojawiła się ona prawdopodobnie w wyniku silniejszego impulsu wiatru słonecznego, który zderzył się z polem magnetycznym Jowisza i dodatkowo podgrzał atmosferę.
      Zorze bez przerwy podgrzewają atmosferę Jowisza, a fale, jak ta przez nas odkryta, są dodatkowym ważnym źródłem energii, stwierdził O'Donoghoue podczas odczytu wygłoszonego w trakcie Europlanet Science Congress (EPSC) 2022 w Granadzie.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Już za tydzień, 26 września, przez całą noc będziemy mogli cieszyć się wyjątkowym widokiem Jowisza. Planeta znajdzie się w wielkiej opozycji, a to oznacza, że będzie doskonale widoczna. Wystarczy dobra lornetka by zaobserwować charakterystyczne barwne pasy planety i trzy z czterech księżyców galileuszowych. To największe księżyce Jowisza, które Galileusz odkrył w 1610 roku.
      Opozycja ma miejsce, gdy dwa ciała oglądane z Ziemi znajdują się naprzeciwko siebie. Najczęściej mówimy tutaj o opozycji obserwowanego ciała do Słońca. Opozycja Jowisza, a zatem sytuacja gdy Słońce i Jowisz znajdują się po przeciwnych sobie stronach Ziemi, zachodzi co 13 miesięcy. Jowisz wydaje się wówczas jaśniejszy i większy. Tym razem jednak opozycja będzie wyjątkowa, gdyż jednocześnie Jowisz będzie w peryhelium, czyli najbliższym Słońcu punkcie swojej orbity. Będziemy więc mieli do czynienia z wielką opozycją, zwaną też wielkim zbliżeniem, które ma miejsce co kilkanaście lat. Tym razem jednak Jowisz podczas opozycji znajdzie się najbliżej Ziemi od 70 lat.
      Opozycja Jowisza rzadko zbiega się z jego peryhelium. Dlatego warto poświęcić część nocy na obserwacje. Jowisz będzie jednym z najjaśniejszych – a może nawet najjaśniejszym – obiektem na nocnym niebie. Zaraz po Księżycu, rzecz jasna.
      Na kolejne wielkie zbliżenie Jowisza trzeba będzie poczekać do 2 października 2034 roku. Jednak wówczas planeta będzie o 700 000 kilometrów dalej od Ziemi niż przy obecnym wielkim zbliżeniu.
      Jowisz bardzo interesuje naukowców. Obecnie planeta jest badana przez misję Juno. Została ona wystrzelona w 2011 roku i dotarła do planety w roku 2016. Początkowo planowano, że cała misja potrwa 7 lat. Juno pracuje już 11 lat a niedawno NASA przedłużyła jej misję do roku 2025. Na rok 2024 zaplanowano wystrzelenie misji Europa, która ma badać jeden z księżyców galileuszowych – Europę.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...