Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Zaskakujące odkrycie może zmienić sposób, w jaki przemysł używa niklu

Recommended Posts

Nikiel jest jednym z najbardziej rozpowszechnionych pierwiastków na Ziemi. Co ważne, jest wysoce odporny na korozję, dzięki czemu znajduje zastosowanie na wielu polach.

Jednak zaskakujące odkrycie dokonane przez naukowców z Texas A&M University wskazuje, że nikiel nie tylko ulega korozji, ale proces ten przebiega w sposób, którego naukowcy się nie spodziewali. O badaniach prowadzonych przez zespół profesora Michaela Demkowicza poinformowano na łamach Physical Reveiew Materials.

Korozja zwykle atakuje połączenia czy też granice pomiędzy ziarnami materiału. To tzw. korozja międzykrystaliczna, która osłabia metal od wewnątrz.

Istnieje jednak pewien szczególny typ granicy między ziarnami metalu, zwany koherentną granicą bliźniaczą, o którym sądzono, że jest on odporny na korozję. Tymczasem, ku zdumieniu naukowców z Teksasu, okazało się, że niemal cała korozja występująca w prowadzonych przez nich eksperymentach pojawiła się właśnie na koherentnych granicach bliźniaczych. To odkrycie odwraca do góry nogami dekady założeń dotyczących przebiegu korozji metali, mówi Demkowicz.

Koherentne granice bliźniacze to obszary, na których wewnętrzna struktura wzorców materiału jest swoim lustrzanym odbiciem wzdłuż całej takiej granicy. Tego typu granice powstają naturalnie wskutek krystalizacji, mogą być też wynikiem oddziaływań mechanicznych bądź termicznych.
Czysty nikiel jest niemal całkowicie odporny na korozję. Gdy jednak podaliśmy napięci od stron katody, która jest jeszcze mniej podatna na korozję, odkryliśmy ku swojemu zdumieniu widoczne znaki korozji na koherentny;ch granicach bliźniaczych, mówi Mengying Liu, jeden z członków zespołu badawczego. To odkrycie pozwoli przewidzieć, gdzie może pojawić się korozja. Być może dzięki temu zostaną zaprojektowane metale bardziej odporne na korozję, dodaje.

Przez dziesięciolecia specjaliści zakładali, że koherentne granice bliźniacze są odporne na korozję. Dlatego też pracowali nad metalami zawierającymi jak najwięcej takich granic. Próbując zapobiegać korozji tworzono metale zawierające tak dużo koherentnych granic bliźniaczych jak to tylko było możliwe. Teraz musimy przemyśleć tę strategię, stwierdza Demkowicz.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Naukowcy z Politechniki Wrocławskiej stoją na czele międzynarodowej grupy badawczej prowadzącej wraz z partnerami biznesowymi projekt, którego celem jest sprawdzenie możliwości pozyskiwania cennych metali z wód podziemnych. Uczeni zbadają solanki  znajdujące się na terenie Polski, Czech, Słowacji, Węgier, Hiszpanii i Portugalii. Projektem BrineRIS kieruje dr Magdalena Worsa-Kozak z Wydziału Geoinżynierii, Górnictwa i Geologii PWr.
      Uczeni przeprowadzą analizy 12 wybranych źródeł i będą badali możliwość pozyskiwania z nich np. litu jedną z trzech rozwijanych właśnie technologii. Lit jest tutaj szczególnie pożądanym metalem. Wykorzystuje się go m.in. do budowy akumulatorów samochodowych. W związku z rosnącą popularnością samochodów elektrycznych popyt na lit może do końca dekady wzrosnąć nawet pięciokrotnie.
      Obecnie znaczną część litu pozyskuje się ze zbiorników solankowych na wysoko położonych obszarach Boliwii, Argentyny czy Chile. Najpierw bogate w lit wody są pompowane do stawów ewaporacyjnych, tam przez kilka miesięcy woda odparowuje, następnie z osadu pozyskiwany jest węglan litu, który poddaje się kolejnym obróbkom. Jednak taki sposób pozyskiwania litu ma negatywny wpływ na środowisko naturalne. Stawy zajmują olbrzymie powierzchnie, prowadzi to też do obniżenia poziomu wód gruntowych z powodu wypompowywania solanek. Kolejnym problemem są środki chemiczne używane w tej metodzie.
      Dlatego też w wielu miejscach prowadzi się prace nad technologiami bezpośredniej ekstrakcji litu. Są one niezależne od pogody, ale problem stanowi cena energii elektrycznej używanej w tej metodzie.
      Rozwiązaniem może być sięgnięcie do solanek geotermalnych. Można by z nich uzyskiwać lit, a cały proces byłby zasilany energią pozyskiwaną z samej solanki. W ramach projektu BrineRIS analizowane będą dane dotyczące występowania solanek oraz ich składu, ze szczególnym uwzględnieniem litu, strontu i baru. Obecnie te dane są bardzo rozproszone. Nie ma jednego miejsca, w którym zainteresowany przedsiębiorca mógłby przejrzeć przekrojowo takie informacje. Do tego część np. badań składu chemicznego solanek została przeprowadzona w ramach projektów naukowych czy inwestycyjnych związanych z innymi tematami i te dane nie zostały nigdy przeanalizowane pod kątem odzysku pierwiastków, ani w jakiejkolwiek formie upublicznione, mówi dr Worsa-Kozak.
      Ponadto przeprowadzona zostanie analiza solanek pod kątem pozyskania z nich litu za pomocą jednej z trzech technologii. Elektrolitycznymi metodami pozyskiwania tego pierwiastka zajmą się naukowcy z Uniwersytetu Gandawskiego, technologią adsorbcyjną specjaliści z fińskiej służby GTK, a ekstrakcją rozpuszczalnikową GTK we współpracy z Politechniką Wrocławską.
      Będziemy także analizować te solanki, które mają niższe temperatury, czyli np. około 40 czy 60 stopni C. i w związku z tym nie nadają się do produkcji energii elektrycznej. Mogą natomiast być odpowiednie do produkcji ciepła i dlatego naukowcy z TU Freiberg będą klasyfikować te solanki, z których ciepło można byłoby wykorzystywać do poprawy samego procesu technologicznego, np. do podgrzania chłodniejszej wody i poprawy efektywności testowanych technologii, zmniejszając ich koszty, dodaje kierująca projektem.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W nadchodzących dekadach przewidywany jest gwałtowny wzrost zapotrzebowania na akumulatory dla samochodów elektrycznych. Tymczasem już teraz są problemy z dostawami miedzi, kobaltu, litu czy niklu. Możemy więc spodziewać się problemów z realizacją zamówień na metale i wzrostu cen. Niektóre firmy chcą więc wydobywać metale z dna morskiego. Może nie tyle wydobywać, co wysysać, gdyż pomiędzy Meksykiem a Hawajami na dnie spoczywają grudki zawierające więcej kobaltu i niklu niż wszystkie złoża lądowe. Jednak planom takim sprzeciwia się część naukowców, a w ich ślady idą wielkie światowe koncerny.
      Wydobycie metali znajdujących się na lądach wiąże się z olbrzymim zanieczyszczeniem i zniszczeniem środowiska, łamaniem praw człowieka i emisją gazów cieplarnianych. Dość wspomnieć, że większość światowych zasobów niklu znajduje się pod lasami deszczowymi Indonezji, Demokratyczna Republika Kongo dostarcza 70% kobaltu, a Chiny chętnie używają swojej pozycji na rynku metali ziem rzadkich oraz przetwórcy surowych materiałów w grze politycznej. Im bardziej wyczerpujemy złoża wysokiej jakości, tym bardziej sięgamy po te niższej jakości, z czym wiąże się coraz większe zanieczyszczenie środowiska.
      Pole konkrecjonośne Clarion-Clipperton (CCZ) rozciąga się pomiędzy Meksykiem a Hawajami. To tam na dnie oceanu, na głębokości kilku tysięcy metrów, spoczywają polimetaliczne konkrecje, grudki zawierające duże ilości różnych metali. Kanadyjska firma Metals Company chce być pierwszą, która dostarczy na rynek metale z tych konkrecji. Ma to się stać w 2024 roku.
      Jako, że konkrecje leżą na dnie, nie są potrzebne żadne wiercenia czy kopanie. Metals Company chce wysłać statek, który za pomocą specjalnego urządzenia będzie zasysał grudki. Następnie zostaną one przewiezione do zakładu, który pozyska z nich kobalt, nikiel, miedź czy mangan. Zakład taki będzie prawdopodobnie znajdował się w Teksasie, gdyż jest tam łatwy dostęp do portów oraz tania energia ze źródeł odnawialnych. Kanadyjczycy twierdzą, że chcą pozyskiwać metale wyłącznie za pomocą energii odnawialnej i nie produkując przy tym żadnych odpadów stałych. Nie chcemy, by z rynkiem samochodów elektrycznych stało się to, co z rynkiem półprzewodników, który w tym roku ucierpiał z powodu braku surowców. Pytanie brzmi, gdzie będziemy wydobywać metale. Zróbmy to na podmorskich pustyniach, na równinach abisalnych, miejscach, w których życie występuje bardzo rzadko, w przeciwieństwie do życia w lasach deszczowych. Tam na 1 m2 powierzchni występuje 1500 razy mniej życia niż w lasach deszczowych, mówi Craig Shesky, prezes ds. finansowych Metal Company.
      Jednak sytuacja nie jest taka oczywista. Profesor oceanografii Craig Smith z Uniwersytetu Hawajskiego, który prowadził kilka ekspedycji badawczych w CCZ mówi, że równiny abisalne to bardzo wrażliwy, dziewiczy ekosystem, nietknięty ręką człowieka. I trudno jest w tej chwili ocenić jego wartość. Co prawda ilość biomasy jest tam znacznie mniejsza niż w lasach deszczowych, ale bioróżnorodność jest zadziwiająco duża. Większość gatunków, na które natknęliśmy się podczas naszych badań była wcześniej nieznana nauce. Sądzimy, że to centrum bioróżnorodności, mówi uczony. Jego zdaniem, działania wydobywcze na równinach abisalnych mogą poważnie zaszkodzić, a może nawet całkowicie wytępić wiele gatunków, których jeszcze nie znamy, a osady morskie, wzniesione podczas wydobywania konkrecji, mogą przemieszczać się przez setki kilometrów, zagrażając różnym organizmom na swojej trasie. Poza tym same konkrecje to habitaty tysięcy mikroorganizmów.
      Shesky odpowiada, że 70% organizmów żywych w tamtych regionach to bakterie, a niedawno prowadzone badania wykazały, że wzruszone podczas prac wydobywczych osady opadają szybciej niż dotychczas sądzono. Powołuje się też na badania, które mówią, że wytwarzanie metali z konkrecji będzie powodowało 10-krotnie mniejszą emisję gazów cieplarnianych, niż pozyskiwanie tych samych metali z rud w złożach lądowych.
      Problemem dla Metals Company może być nie tylko postawa naukowców, ale niektórych wielkich koncernów. BMW, Google, Samsung i Volvo oświadczyły, że nie będą kupowały metali pozyskanych z konkrecji, dopóki lepiej nie będziemy rozumieli wpływu ich wydobycia na środowisko naturalne.
      W ubiegłym roku Metals Company przyznała grant w wysokości 2,9 milionów dolarów na zbadanie wpływu działalności wydobywczej w CCZ na środowisko naturalne. Badania mają objąć całą kolumnę wodną, od dna do powierzchni oceanu. Będą je prowadzili naukowcy z Uniwersytetu Hawajskiego, Texas A&M University oraz Japan Agency for Marine-Earth Science and Technology.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Materiały stosowane w biomedycynie muszą cechować się kontrolowaną biodegradowalnością, odpowiednią wytrzymałością i całkowitym brakiem toksyczności dla ludzkiego organizmu. Poszukiwanie takich materiałów nie jest więc prostym zadaniem. W tym kontekście naukowcy od dłuższego czasu interesują się magnezem. Wykorzystując między innymi spektroskopię anihilacji pozytonów, badaczom udało się wykazać, że magnez poddany powierzchniowej obróbce mechaniczno-ściernej uzyskuje niezbędne dla materiału biokompatybilnego właściwości.
      W ostatnim czasie coraz większe zainteresowanie zyskują materiały korodujące w sposób kontrolowany. W szczególności dotyczy to biomedycyny, gdzie stosuje się implanty wykonane z polimerów naturalnych lub syntetycznych. Ich zaletą jest łatwość dostosowania szybkości rozkładu w warunkach fizjologicznych. Z drugiej strony, właściwości mechaniczne tych materiałów ulegają pogorszeniu w środowisku organizmu ludzkiego, przez co nie nadają się do zastosowań narażonych na duże obciążenia. Z tego powodu dobrym rozwiązaniem wydają się implanty metaliczne, stworzone na bazie całkowicie nieszkodliwego dla ludzkiego organizmu magnezu.
      Ze względu na swoje właściwości mechaniczne, termiczne i elektryczne oraz biodegradowalność, a także kontrolowane tempo korozji, magnez wzbudza duże zainteresowanie badaczy zajmujących się biokompatybilnymi implantami. Pomimo tych zalet, zastosowanie magnezu jako biomateriału używanego przy produkcji implantów okazało się niełatwe ze względu na stosunkowo wysoką szybkość korozji w środowisku ludzkiego ciała. Problem ten da się jednak pokonać, stosując odpowiednie powłoki.
      W trakcie wieloletnich badań zauważono, że rozdrobnienie mikrostruktury materiałów nie tylko poprawia ich właściwości mechaniczne, ale może także wyraźnie zwiększyć odporność korozyjną. Dlatego międzynarodowy zespół naukowy, kierowany przez dr hab. Ewę Dryzek z Instytutu Fizyki Jądrowej Polskiej Akademii Nauk w Krakowie, postawił sobie za cel ilościowe zbadanie wpływu powierzchniowej obróbki mechaniczno-ściernej SMAT (Surface Mechanical Attrition Treatment) komercyjnego magnezu na jego odporność korozyjną. W tej metodzie duża liczba twardych kulek o średnicy kilku milimetrów uderza w powierzchnię obrabianego materiału, powodując odkształcenie plastyczne warstwy przypowierzchniowej lub warstwy leżącej tuż pod nią. Odkształceniu plastycznemu towarzyszy wytworzenie dużej liczby defektów sieci krystalicznej.
      Do scharakteryzowania mikrostruktury zastosowano typowe techniki badawcze, np. mikroskopię świetlną i elektronową, dyfrakcję promieni rentgenowskich oraz elektronów rozproszonych wstecznie, a także pomiary mikrotwardości.
      Badania mikroskopowe ujawniły stopniowo zmieniającą się mikrostrukturę warstwy wierzchniej materiału powstałej podczas obróbki SMAT. Zaobserwowaliśmy znaczne rozdrobnienie ziaren w pobliżu obrobionej powierzchni. Głębiej widoczne były bliźniaki odkształcenia, których gęstość malała wraz ze wzrostem odległości od tej powierzchni – wyjaśnia dr hab. Dryzek.
      W ramach opisywanych prac po raz pierwszy użyto również spektroskopii anihilacji pozytonów PAS (Positron Annihilation Spectroscopy). Technika ta jest metodą nieniszczącą i pozwala na identyfikację defektów sieci krystalicznej na poziomie atomowym. Polega ona na tym, że gdy pozytony trafiające do próbki materiału napotykają swoje antycząstki – elektrony – anihilują i zamieniają się w fotony, które można rejestrować. Pozyton, który na swojej drodze znajdzie puste miejsce w sieci krystalicznej, może zostać schwytany, co wydłuża czas do momentu jego anihilacji. Pomiar czasu życia pozytonów daje badaczom obraz struktury próbki na poziomie atomowym.
      Celem zastosowania tej metody było, między innymi, uzyskanie informacji na temat rozkładu defektów sieci krystalicznej w warstwie powierzchniowej powstałej w wyniku obróbki SMAT, a także badanie warstwy materiału o grubości rzędu kilku mikrometrów, leżącej tuż pod obrobioną powierzchnią oraz powiązanie uzyskanych informacji z własnościami korozyjnymi. Jest to o tyle ważne, że defekty sieci krystalicznej determinują kluczowe właściwości materiałów. Z tego względu procedura ta znajduje również zastosowanie w metalurgii i technologiach półprzewodnikowych.
      Średni czas życia pozytonów w warstwie o grubości 200 mikrometrów, uzyskanej w wyniku trwającej 120 sekund obróbki SMAT, wykazuje wysoką stałą wartość 244 pikosekund. Oznacza to, że wszystkie emitowane ze źródła pozytony docierające do tej warstwy anihilują w defektach struktury, którymi są wakancje – czyli braki atomów w węzłach sieci krystalicznej – związane z dyslokacjami. Warstwa ta odpowiada silnie odkształconemu obszarowi z rozdrobnionymi ziarnami. Głębiej średni czas życia pozytonów maleje, co wskazuje na zmniejszającą się koncentrację defektów, osiągając w odległości około 1 milimetra od powierzchni wartość charakterystyczną dla dobrze wygrzanego magnezu o stosunkowo małej gęstości defektów struktury, który stanowił materiał porównawczy – opisuje szczegóły prac doktorant Konrad Skowron, główny autor artykułu i pomysłodawca badań.
      Proces SMAT w istotny sposób wpłynął także na zachowanie próbek magnezu podczas elektrochemicznych testów korozyjnych. Zmiany struktury wywołane przez SMAT zwiększyły podatność magnezu na utlenianie anodowe, intensyfikując tworzenie się powłoki wodorotlenkowej na powierzchni oraz w konsekwencji prowadząc do lepszej odporności na korozję. Potwierdzają to dane uzyskane dzięki użyciu wiązki pozytonów w Zjednoczonym Instytucie Badań Jądrowych w Dubnej. Wyniki pokazują, że oprócz granic ziaren i podziaren obecnych na powierzchni, także inne defekty krystaliczne, takie jak dyslokacje i wakancje, mogą odgrywać istotną rolę w zachowaniu korozyjnym magnezu.
      Obecnie prowadzimy analogiczne badania dla tytanu. Tytan jest metalem szeroko stosowanym w lotnictwie, motoryzacji, energetyce i przemyśle chemicznym. Służy również jako materiał do produkcji urządzeń i implantów biomedycznych. Ekonomicznie akceptowalna metoda, umożliwiająca uzyskanie czystego tytanu o mikrostrukturze gradientowej z ziarnem o wielkości nanometrycznej w warstwach przylegających do powierzchni, może otworzyć szersze perspektywy zastosowania tytanu w wyrobach ważnych dla gospodarki i dla poprawy komfortu życia człowieka – mówi dr hab. Dryzek.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Specjaliści z Austriackiej Akademii Nauk opracowali nową metodę identyfikacji piwa i innych spożywczych ekstraktów słodowych w zapiskach archeologicznych. Efektem ubocznym naszych badań jest potwierdzenie, że już w 4. tysiącleciu przed naszą erą w centralnej Europie wytwarzano napoje słodowe (być może piwo). Osiągnięcie zespołu pracującego pod kierunkiem Andreasa G. Heissa zostało opisane na łamach PLOS ONE.
      Piwo od tysięcy lat odgrywa olbrzymią rolę religijną, społeczną i dietetyczną w ludzkich społecznościach. Jednak badanie jego historii oraz wpływu na cywilizacje i kultury jest o tyle utrudnione, że bardzo trudno jest w dowodach archeologicznych zidentyfikować ślady produkcji piwa. Ziarno łatwo ulega rozkładowi, a zachować się może jedynie w sprzyjających warunkach, gdy np. zostało zwęglone.
      Austriaccy uczeni postanowili poszukać potencjalnych zmian mikrostrukturalnych, jakie zachodzą w ziarnach wykorzystywanych do produkcji piwa oraz zbadać, jak zmiany te przechowują się w czasie. Na warsztat wzięli więc współczesny jęczmień, który wcześniej był używany do produkcji piwa i symulowali jego zachowanie się poprzez proces zwęglenia. Następnie porównali mikrostrukturę tak przygotowanego ziarna z ziarnem z pięciu stanowisk archeologicznych, którego wiek sięgał nawet 4. tysiąclecia przed Chrystusem. Dwa z tych stanowisk były znanymi miejscami produkcji piwa w predynastycznym Egipcie, a trzy to pozostałości dawnych osad nad jeziorami Europy Centralnej, w których znaleziono pojemniki z żywnością produkowaną z ziaren, jednak nie potwierdzono tam produkcji piwa.
      Badania przeprowadzone za pomocą mikroskopu elektronowego wykazały, że ziarna przygotowane na potrzeby badań miały niezwykle cienką warstwę aleuronową, czyli najbardziej zewnętrzną warstwę bielma. Identyczne zmniejszenie grubości tej warstwy stwierdzono w ziarnie ze wszystkich pięciu stanowisk archeologicznych. Co prawda istnieją inne potencjalne mechanizmy zmniejszenia grubości warstwy aleuronowej – takie jak np. rozkład przez grzyby, rozkład enzymatyczny czy degradacja pod wpływem temperatury – jednak wszystkie te powody można wykluczyć przeprowadzając dodatkowe analizy.
      Okazuje się zatem, że badanie warstwy aleuronowej ziaren ze stanowisk archeologicznych może być użytecznym narzędziem do stwierdzenia, czy ziarna były poddawane procesowi pozyskiwania słodu.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Zainspirowani podwodnymi dzwonami topików i tratwami mrówek z rodzaju Solenopsis, inżynierowie z Uniwersytetu w Rochesterze wygrawerowali laserem femtosekundowym 2 płytki z glinu. Uzyskali superhydrofobowe powierzchnie, które po złożeniu z odpowiednim "rozstawem" są przez długi czas niezatapialne. Można je na siłę zanurzać, a nawet dziurawić, a i tak będą się utrzymywać na powierzchni.
      Prof. Chunlei Guo uważa, że bioinspirowane rozwiązanie może w przyszłości znaleźć rozwiązanie w niezatapialnych statkach i łodziach, kamizelkach ratunkowych, które będą spełniać swoją rolę również po uszkodzeniu czy w elektronicznych urządzeniach monitorujących, które bez problemu wytrzymają długi czas w oceanie.
      Jak tłumaczą autorzy artykułu z pisma ACS Applied Materials and Interfaces, za pomocą femtosekundowego lasera w metalu graweruje się mikro- i nanowzory, które więżą powietrze i sprawiają, że powierzchnia staje się superhydrofobowa.
      Kluczowe spostrzeżenie jest takie, że wielofasetkowe superhydrofobowe powierzchnie (SH) mogą zachowywać spore objętości powietrza, co rodzi możliwość, że powierzchnie SH uda się [kiedyś] wykorzystać do uzyskania pływalnych urządzeń.
      Zespół Guo stworzył strukturę złożoną z 2 płytek z aluminium. Ich wygrawerowane powierzchnie były zwrócone do wewnątrz, w ten sposób chroniono je np. przed ścieraniem (abrazją). Odległość między okrągłymi płytkami była taka, by udało się między nimi schwycić i utrzymać ilość powietrza, która wystarczy do unoszenia struktury na wodzie.
      Okazało się, że nawet po wymuszonym 2-miesięcznym zanurzeniu struktura wypływała na powierzchnię od razu po usunięciu obciążenia. Struktury zachowywały tę zdolność nawet po wielokrotnym przedziurawieniu (wystarczyło powietrze uwięzione w zachowanych fragmentach "przegrody").
      Choć zespół Guo grawerował glin, proces można zastosować do dowolnego metalu.
      Gdy Amerykanie pierwszy raz demonstrowali swoją technikę, do wygrawerowania fragmentu o wymiarach cal na cal (ok. 6,45 cm2) potrzebna była godzina. Dzisiejsza moc laserów i szybkość skanowania przyspieszają proces, dzięki czemu można zacząć myśleć o przeskalowaniu go do zastosowań komercyjnych.
      Poszukując idealnej konfiguracji, ekipa eksperymentuje z innymi kształtami płytek metalu i różnymi rozmiarami szczeliny dzielącej płytki.
      Warto dodać, że przynajmniej na obecnym etapie badań, po długim okresie zanurzenia w wodzie taka powierzchnia może zacząć tracić właściwości hydrofobowe.
       


      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...