Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Centymetrowy robot-ślimak napędzany światłem

Recommended Posts

Badacze z Wydziału Fizyki Uniwersytetu Warszawskiego, przy użyciu technologii światłoczułych elastomerów, zademonstrowali mikrorobota naśladującego ruch ślimaka. 10-milimetrowej długości robot, napędzany i sterowany przy pomocy modulowanej wiązki lasera, potrafi poruszać się po płaskim podłożu, wspinać po pionowej ścianie i pełzać po szklanym suficie.

W przyrodzie organizmy różnej wielkości – od mikroskopijnych nicieni, przez dżdżownice, po mięczaki – poruszają się w rozmaitych środowiskach dzięki przemieszczającym się deformacjom miękkiego ciała. W szczególności ślimaki używają śluzu – śliskiej, wodnistej wydzieliny – by poprawić kontakt między miękką nogą a podłożem. Taki sposób poruszania się ma kilka unikalnych cech: działa na różnych podłożach: drewnie, szkle, teflonie czy piasku i w różnych konfiguracjach, włączając w to pełzanie po suficie. W robotyce, prosty mechanizm pojedynczej nogi mógłby zapewnić odporność na warunki zewnętrzne i zużycie elementów oraz duży margines bezpieczeństwa dzięki ciągłemu kontaktowi z podłożem. Do tej pory zademonstrowano jedynie nieliczne roboty naśladujące pełzanie ślimaków w skali centymetrów, z napędem elektro-mechanicznym.

Ciekłokrystaliczne elastomery (LCE) to inteligentne materiały, które mogą szybko, w odwracalny sposób zmieniać kształt, na przykład po oświetleniu. Dzięki odpowiedniemu uporządkowaniu (orientacji) cząsteczek elastomeru można programować deformację takiego elementu. Umożliwia to zdalne zasilanie i sterowanie mechanizmów wykonawczych i robotów przy pomocy światła.

Wykorzystując technologię światłoczułych elastomerów badacze z Wydziału Fizyki Uniwersytetu Warszawskiego we współpracy z Wydziałem Matematyki Uniwersytetu w Suzhou w Chinach zbudowali pierwszego na świecie robota, który porusza się naśladując pełzanie ślimaka w naturalnej skali. Ruch robota generowany jest przez poruszające się deformacje miękkiego ciała, wywołane wiązką lasera i ich oddziaływanie z podłożem przez warstwę sztucznego śluzu. Oświetlany wiązką lasera 10-milimetrowy robot może wspinać się na pionową ścianę i pełzać po szklanym suficie z prędkością kilku milimetrów na minutę, wciąż około 50 razy wolniej niż ślimaki porównywalnej wielkości.

 Mimo niewielkiej prędkości, konieczności ciągłego uzupełniania warstwy śluzu i niskiej sprawności energetycznej, nasz robot umożliwia nowe spojrzenie na mikro-mechanikę inteligentnych materiałów oraz badania nad poruszaniem się ślimaków i podobnych zwierząt – mówi Piotr Wasylczyk z Pracowni Nanostruktur Fotonicznych, który kierował projektem. W naszych badaniach biorą udział studenci już od pierwszych lat studiów na Wydziale Fizyki. Pierwszym autorem publikacji o robocie-ślimaku w Macromolecular Rapid Communications jest Mikołaj Rogóż, laureat Diamentowego Grantu, który właśnie kończy pracę magisterską na temat ciekłokrystalicznych elastomerów i zaczyna doktorat w naszej grupie.

Badacze, którzy wcześniej zademonstrowali napędzanego światłem robota-gąsienicę naturalnej wielkości, wierzą, że nowe inteligentne materiały w połączeniu z nowatorskimi metodami wytwarzania miniaturowych elementów, pozwolą im konstruować kolejne mikro-roboty i napędy – obecnie pracują nad miniaturowym silnikiem i mikro-pęsetą sterowaną światłem.

Badania nad miękkimi mikro-robotami i polimerowymi mechanizmami wykonawczymi finansowane są przez Narodowe Centrum Nauki w ramach projektu „Mechanizmy wykonawcze w mikro-skali na bazie foto-responsywnych polimerów” oraz przez Ministerstwo Nauki i Szkolnictwa Wyższego w ramach "Diamentowego Grantu" przyznanego M. Rogóżowi.

Fizyka i astronomia na Uniwersytecie Warszawskim pojawiły się w 1816 roku w ramach ówczesnego Wydziału Filozofii. W roku 1825 powstało Obserwatorium Astronomiczne. Obecnie w skład Wydziału Fizyki UW wchodzą Instytuty: Fizyki Doświadczalnej, Fizyki Teoretycznej, Geofizyki, Katedra Metod Matematycznych oraz Obserwatorium Astronomiczne. Badania pokrywają niemal wszystkie dziedziny współczesnej fizyki, w skalach od kwantowej do kosmologicznej. Kadra naukowo-dydaktyczna Wydziału składa się z ponad 200 nauczycieli akademickich, wśród których jest 77 pracowników z tytułem profesora. Na Wydziale Fizyki UW studiuje ok. 1000 studentów i ponad 170 doktorantów.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Uczestnicy słynnego eksperymentu Milgrama tak bardzo ulegali autorytetowi prowadzącego, że byli w stanie na jego polecenie zadawać silny ból innemu człowiekowi. Takie bezwzględne bezrefleksyjne posłuszeństwo może prowadzić do zbrodni. Naukowcy z Uniwersytetu SWPS powtórzyli eksperyment Milgrama, ale prowadzącym był robot. Okazało się, że ludzie są skłonni podporządkować się poleceniom robota i na jego rozkaz krzywdzić innych.
      W latach 60. XX wieku amerykański psycholog Stanley Milgram, zastanawiając się nad przyczynami, dla których ludzie w czasie II wojny światowej wykonywali zbrodnicze rozkazy, przeprowadził eksperyment, którego celem było wykazanie, na ile H. sapiens ma skłonność do ulegania autorytetom. Osobom, które brały udział w eksperymencie powiedziano, że jego celem jest zbadanie wpływu kar na skuteczność uczenia się. W eksperymencie brał udział uczestnik-nauczyciel oraz uczeń. Eksperymentator zaś kazał nauczycielowi karać ucznia aplikując mu coraz silniejszy wstrząs elektryczny. Uczeń, którym była podstawiona osoba, w rzeczywistości nie był rażonym prądem (ale uczestnik-nauczyciel o tym nie wiedział), jednak w odpowiedzi na rzekomo podawane napięcie elektryczne, krzyczał z bólu. Eksperyment wykazał, że aż 62% uczestników – ulegając autorytetowi eksperymentatora – nacisnęło w końcu na generatorze przycisk 450 V, czyli najwyższy.
      Naukowcy z Uniwersytetu SWPS postanowili sprawdzić, czy ludzie będą równie posłuszni robotowi, jak innemu człowiekowi. Przeniesienie różnych funkcji nadzoru i podejmowania decyzji na robota budzi jednak szczególnie silne emocje, ponieważ wiąże się z różnymi zagrożeniami etycznymi i moralnymi. Pojawia się pytanie, czy wspomniane wyżej posłuszeństwo wykazywane przez badanych zgodnie z paradygmatem Milgrama nadal występowałoby, gdyby to robot (zamiast człowieka, tj. profesora uczelni) kazał uczestnikom zadać elektrowstrząsy innej osobie? Celem naszego badania było udzielenie odpowiedzi na to pytanie, mówi doktor Konrad Maj.
      Doktor Maj we współpracy z profesorem Dariuszem Dolińskim i doktorem Tomaszem Grzybem, powtórzył eksperyment Milgrama, ale w roli eksperymentatora osadzono robota. W grupie kontrolnej eksperymentatorem był człowiek. W badaniach wzięli udział uczestnicy, którzy nie wiedzieli, na czym polegał eksperyment Milgrama. Okazało się, że ludzie ulegają też autorytetowi robota i na jego polecenie są skłonni krzywdzić innych ludzi. Co więcej, zarejestrowano bardzo wysoki poziom posłuszeństwa. Aż 90% uczestników w obu grupach – badanej i kontrolnej – nacisnęło wszystkie przyciski na generatorze, dochodząc do wartości 150 V. Od kilku dekad z powodów etycznych te 150 V przyjmuje się za górną wartość przy eksperymencie Milgrama.
      O ile nam wiadomo, to pierwsze badanie, które pokazuje, że ludzie są skłonni szkodzić innemu człowiekowi, gdy robot nakazuje im to zrobić. Co więcej, nasz eksperyment pokazał również, że jeśli robot eskaluje żądania, instruując człowieka, aby zadawał coraz większy ból innemu człowiekowi, ludzie też są skłonni to zrobić, dodaje doktor Maj.
      Już wcześniejsze badania wykazały, że ludzie tak mocno uznają autorytet robota, że podążają za jego poleceniami, nawet gdy nie mają one sensu. Tak było np. podczas eksperymentu, w czasie którego osoby ewakuowane z – symulowanego – pożaru, podążały za poleceniami robota, mimo że wskazał im on drogę ewakuacji przez ciemne pomieszczenie bez widocznego wyjścia.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Inżynierowie z Politechniki Federalnej w Lozannie (EPFL) wykorzystali ChatGPT-3 do zaprojektowania robotycznego ramienia do zbierania pomidorów. To pierwszy przykład użycia sztucznej inteligencji do pomocy w projektowaniu robotów. Eksperyment przeprowadzony przez Josie Hughes, dyrektor Laboratorium Obliczeniowego Projektowania i Wytwarzania Robotów na Wydziale Inżynierii EPFL, doktoranta Francesco Stellę i Cosimo Della Santinę z Uniwersytetu Technicznego w Delfcie, został opisany na łamach Nature Machine Intelligence.
      Naukowcy opisali korzyści i ryzyka związane z wykorzystaniem systemów sztucznej inteligencji (SI) do projektowania robotów. Mimo tego, że ChatGPT to model językowy i generuje tekst, to dostarczył nam on istotnych wskazówek odnośnie fizycznego projektu i wykazał się wielkim potencjałem pobudzania ludzkiej kreatywności, mówi Hughes.
      Naukowcy najpierw „przedyskutowali” z ChatGPT samą ideę robota, określili, czemu ma on służyć, opisali jego parametry i specyfikację. Na tym etapie rozmawiali z SI na temat przyszłych wyzwań stojących przed ludzkością oraz robotów-ogrodników, które mogą rozwiązać problem niedoborów siły roboczej przy uprawie roślin. Następnie, korzystając z faktu, że ChatGPT ma dostęp do danych naukowych, podręczników i innych źródeł, zadawali mu pytania o to na przykład, jakimi cechami powinien charakteryzować się przyszły robot-ogrodnik.
      Gdy już cechy te zostały opisane i zdecydowano, że chodzi o robotyczne ramię zbierające pomidory, przyszedł czas na zapytanie się sztucznej inteligencji o takie szczegóły jak np. kształt chwytaka oraz poproszenie jej o dane techniczne ramienia oraz kod, za pomocą którego byłoby ono kontrolowane. Przeprowadzone przez SI obliczenia posłużyły nam głównie do pomocy inżynierom w implementacji rozwiązań technicznych. Jednak po raz pierwszy sztuczna inteligencja sformułowała tutaj nowe pomysły, mamy tutaj zatem do czynienia ze zautomatyzowaniem procesów wyższych poziomów poznawczych. Rola człowieka w całym procesie przesunęła się bardziej w stronę techniczną, mówi Stella.
      Naukowcy zwracają też uwagę na problemy związane z wykorzystaniem podobnych systemów. Są to zarówno podnoszone już wątpliwości dotyczące plagiatów czy praw autorskich, jak i np. pytanie o to, na ile innowacyjna jest sztuczna inteligencja i na ile ulega schematom. ChatGPT zaproponował ramię do zbierania pomidorów, gdyż uznał pomidory za najbardziej wartościową uprawę, dla której warto zaprojektować robota. To zaś może po prostu oznaczać, że wybrał tą roślinę, która jest najczęściej opisywana, a nie tę, która jest najbardziej potrzebna.
      Pomimo różnych zastrzeżeń uczeni uważają, że podobne do ChatGPT modele językowe mogą spełniać niezwykle użyteczną rolę. Specjaliści od robotyki muszą się zastanowić, jak wykorzystać te narzędzia w sposób etyczny i przynoszący korzyść społeczeństwu, mówi Hughes.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W Irinjadappilly Sree Krishna Temple w Kerali żywego słonia zastąpił rzeczywistych rozmiarów mechaniczny model. Będzie on wykorzystywany w różnych rytuałach, np. do przewożenia posągów bóstw podczas procesji. Robot został przekazany przez PETA India oraz aktorkę Parvathy Thiruvothu.
      Irinjadappilly Raman, bo takie imię nadano mechanicznemu słoniowi, potrafi poruszać głową, oczami, uszami i trąbą. Waży 800 kg i ma 3,3 m wysokości. Stworzyła go grupa artystów z dystryktu Thrissur (wcześniej dostarczała ona figury słoni na Dubai Shopping Festival).
      Umożliwienie słoniom życia na wolności powinno być właściwą formą oddawania czci Ganeśi [bogowi mądrości i pomyślności; jest on przedstawiany jako tęgi mężczyzna z głową słonia] - powiedział Rajkumar Namboothiri. Wyraził też nadzieję, że inne świątynie pójdą za przykładem Irinjadappilly Sree Krishna Temple i również zastąpią żywe słonie mechanicznymi.
      Wcześniej świątynia wypożyczała słonie na czas festiwali, ale w ostatnich latach przestała to robić ze względu na wysokie koszty i reakcje zwierząt. Gdy usłyszeliśmy o grupie konstruującej figury do Dubaju, zorganizowaliśmy spotkanie i poprosiliśmy o dostosowanego do naszych sugestii zmodyfikowanego mechanicznego słonia. Później pojawiła się oferta finansowania przez PETA India - opowiada Namboothiri.
      Mechaniczny słoń może przewieźć na swoim grzbiecie do 5 osób. Kornak steruje jego trąbą za pomocą specjalnego przełącznika. W maszynie znajduje się 5 silników. Ramę z metalu pokrywa „skóra” z gumy.
       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Amerykańska firma Biometryks LLC podpisała umowę licencyjną na patent należący do Uniwersytetu Warszawskiego (UW). Patent obejmuje nowatorską technologię produkcji matrycy grafenowej. Wynalazek może być wykorzystany w konstrukcji biosensora, który w nieinwazyjny sposób prowadzi analizy próbek potu, moczu lub krwi, monitorując lub diagnozując choroby nabyte i przewlekłe.
      Matryca grafenowa ma być kluczowym elementem sensora. Jego nowa generacja ma pozwolić na analizę na bieżąco próbek potu, moczu i krwi.
      W pierwszym etapie projektu Biometryks opracuje nieinwazyjną technologię do oznaczania i analizy biomarkerów w pocie. Po przyklejeniu do skóry sensor będzie mógł działać przez kilka tygodni.
      Jak podkreślono w komunikacie prasowym UW, dane z pomiarów zostaną przeanalizowane w chmurze w czasie rzeczywistym przez algorytm sztucznej inteligencji. Pacjent będzie mógł zobaczyć wyniki analizy w aplikacji na smartfonie. Tam znajdzie on również personalizowane (dostosowane do aktualnego stanu zdrowia) zalecenia związane ze zdrowym stylem życia. W oddzielnej aplikacji wgląd do danych będzie miał lekarz; pozwoli mu to na wczesne podjęcie decyzji o ewentualnym pogłębieniu diagnostyki czy wdrożeniu leczenia.
      Współpraca środowiska naukowego i biznesowego zaowocuje powstaniem sensora, który dokona rewolucji we wczesnej diagnostyce oraz monitorowaniu pacjentów z chorobami przewlekłymi. Takiej technologii nie ma jeszcze nikt. Dzięki innowacyjnemu rozwiązaniu Biometryks poprawi jakość życia pacjentów na całym świecie – zaznacza dr n. med. Kris Siemionow, prezes zarządu Biometryksu LLC.
      Matryca grafenowa została opracowana przez naukowców z Wydziału Chemii UW, którzy pracowali pod kierownictwem dr Barbary Kowalewskiej. Należy podkreślić, że to pierwsza na świecie matryca, która wykazuje na tyle wysoką stabilność, by dało się ją wykorzystać w rozwiązaniach medycznych. Zastosowanie grafenu pozwoliło uzyskać bezkonkurencyjne parametry transmisji danych pozyskiwanych przez projektowane biosensory.
      Dzięki umowie licencyjnej będzie można kontynuować prace badawcze nad innowacyjną i nieinwazyjną technologią diagnostyczną. Amerykańskie urządzenie jest roboczo nazywane Biometryksem B1.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W Parku Archeologicznym Pompejów pracę rozpoczął Spot, czworonożny robot, który pomaga w monitorowaniu zabytkowego miejsca i dba o bezpieczeństwo jego pracowników. Spot przeprowadza inspekcję ruin, dostarczając nagrań, które następnie są wykorzystywane podczas badań archeologicznych i podejmowania decyzji dotyczących m.in. konieczności przeprowadzenia prac zabezpieczających.
      Spot pracuje w ramach szerszego projektu o nazwie Smart @ POMPEI. W jego ramach tworzony jest inteligentny samowystarczalny system zarządzania Parkiem. Obecnie w ramach projektu pracują Leica BLK2FLY, czyli pierwszy latający skaner laserowy zdolny do autonomicznego wykonywania skanów 3D oraz wspomniany już Spot firmy Boston Dynamics. Analizą danych dostarczonych przez urządzenia zajmują się specjalne stworzone na potrzeby Pompejów inteligentne platformy.
      Postęp technologiczny w dziedzinie robotyki, sztucznej inteligencji i systemów autonomicznych doprowadził do pojawienia się rozwiązań, które łatwo znalazły zastosowanie w przemyśle i produkcji. Dotychczas nie stosowano takich rozwiązań w archeologii, gdyż to rozległe heterogeniczne środowisko. Dzisiaj, dzięki współpracy z przemysłem wysokich technologii chcemy przetestować roboty w podziemnych tunelach wykopanych przez złodziei rabujących Pompeje. Tunele takie to często bardzo niebezpieczne miejsca. Dzięki robotom będziemy w stanie szybko i bezpiecznie je eksplorować, mówi dyrektor Parku Gabriel Zuchtriegel.
      Od 2012 roku aktywność złodziei rabujących Pompeje wyraźnie się zmniejszyła, gdyż włoska policja zintensyfikowała wysiłki na rzecz walki z nimi. Jednak na terenie otaczającym Pompeje wciąż znajdowane są nowe tunele wykopane przez rabusiów.
       


      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...