Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Tak dodam, że w dzisiejszych czasach czym mniej jakichkolwiek przewidywań teoretycznych tym lepiej, bo z pewnością napiszą o tym w "popowych" edycjach, za co są również punkty, a fizyk z czegoś żyć musi. Czym więcej tupiących tęczowych jednorożców tym lepiej. Zaczynam się obawiać; z wahaniem otwieram lodówkę...

Gdzie te czasy, jak w przypadku OTW, gdy teoria aspirująca coś tam tłumaczyła więcej? (orbita Merkurego, pozycje gwiazd podczas zaćmienia itp.) Odnoszę wrażenie, że dziś czym bardziej "nauka" wbija się na poziom Faktu tym lepiej...

Share this post


Link to post
Share on other sites

Rzeczywiście, jedyne co mamy dobrze potwierdzone to np. symetria CPT, zachowanie energii, ograniczenie prędkości przyczynowości ... które oczywiście mogą się psuć w tych odległych skalach, ale jednak bezpieczniej bazować na tym co już potwierdzone niż zaczynać od zgadywania nowych hipotez - szczególnie niemożliwych do weryfikacji.

Na przykład hipoteza o początku czasu w naszym BB jest sprzeczna z powyższymi, ale te problemy znikają jeśli po prostu przedłużymy rozwiązanie przed ten punkt, zgodnie z tym co wiemy - przy okazji też np. tłumacząc przewagę materii nad antymaterią poprzez ustalenie liczby barionowej wszechświata (o ile nie może się zmieniać).

Oczywiście nie mamy pewności i pewnie nigdy nie będziemy mieli, ale podstawowym podejściem nie powinno być wprowadzanie dodatkowych zasad dla poszczególnych scenariuszy, tylko jednak zacząć od przeniesienia tego co wiemy - dopóki eksperyment nie wskaże inaczej.

 

ps. Strona z dużą ilością materiałów kilka dekad wstecz: https://januscosmologicalmodel.com/cptsymmetry

image.thumb.png.37a960218a09411dbabea009d98e9f36.png

Share this post


Link to post
Share on other sites
4 minuty temu, Jarek Duda napisał:

Rzeczywiście, jedyne co mamy dobrze potwierdzone to np. symetria CPT, zachowanie energii, ograniczenie prędkości przyczynowości ... które oczywiście mogą się psuć w tych odległych skalach, ale jednak bezpieczniej bazować na tym co już potwierdzone niż zaczynać od zgadywania nowych hipotez - szczególnie niemożliwych do weryfikacji.

Słusznie. Z tego właśnie powodu trzymamy się ciemnej materii i ciemnej energii. :)
Obawiam się jednak, że ślepe trzymanie się "skalowalności" tego co znamy niekoniecznie musi być dobrym pomysłem na Wszechświat.

6 minut temu, Jarek Duda napisał:

tylko jednak zacząć od przeniesienia tego co wiemy - dopóki eksperyment nie wskaże inaczej.

Ok, ale już wprowadziłeś parę jednorożców. Nie widzisz? :)

Share this post


Link to post
Share on other sites

Rzeczywiście ciemna materia i energia to hipotetyczne nowe byty dla naprawienia niezgodności - ale jak widać jeszcze daleko do w miarę pewnej wizji tych nowych koncepcji.

W którym miejscu wprowadziłem coś nowego? Mechanika Lagrażnowska pozwala ewoluować rozwiązanie wprzód w czasie, ale zmieniając znak czasu analogicznie też wstecz - dlaczego należy wprowadzać dodatkową koncepcję początku czasu: zabraniającego dalszą ewolucję wstecz i łamiącego większość znanych zasad fizyki jak symetria CPT?

Share this post


Link to post
Share on other sites

Myślisz, że natura wie co robi i w jakim celu (twierdzenie Noether)? ;)
Widzisz, przez wiele już lat obserwuję to wszystko z boku i powiem nawet nieskromnie, że z grubsza ogarniam. Coraz więcej wspaniałych, błyskotliwych i wyszczekanych teoretyków ;), coraz więcej wspaniałych i napawających mnie dumą za ludzkość (taka nieliczna wśród faktów perełka) projektów badawczych, coraz więcej coraz piękniej wykrojonych puzzli, których składanie wychodzi nam... tak sobie. Właściwie - bądźmy szczerzy - nie wychodzi wcale. Przez te lata nabieram zwyczajnie coraz większego przekonania, że zwyczajnie nie wiemy czegoś fundamentalnego, albo, czego bym nie chciał - natura jest naprawdę brzydka. Bywa.

Share this post


Link to post
Share on other sites

Mówię tylko że nie nowe teorie, ale potwierdzone zasady powinny być zawsze bazą - ostrożnie modyfikowaną na podstawie niezgodności z eksperymentem.

Natomiast ekscytującym acz bezsensownym podejściem do nowych sytuacji jest rozpoczynanie od zgadywania nowych hipotez - jak wymyślenie koncepcji punktu początku czasu (ok, adaptacji z religii): łamiącego potwierdzone zasady bez żadnej motywacji eksperymentalnej ... a potem "naprawianie" przez dokładanie kolejnych łat: nowych hipotez jak inflacja szybsza niż potwierdzone ograniczenie dla przyczynowości.

Share this post


Link to post
Share on other sites

Inflacja zakłada możliwość szybszej propagacji niż potwierdzona eksperymentalnie - tylko i wyłącznie na potrzeby łatania hipotezy początku czasu: niezgodnej z większością tego co potwierdzone.

Może jest prawdziwa, tylko mówię że nie tak powinna działać nauka: wymyślanie nowych hipotez ignorując to co potwierdzone, a później łatanie wynikłych niezgodności dokładaniem kolejnych problematycznych hipotez.

Problem w tym że nauka jest zjawiskiem społecznym, gdzie zamiast praktycznego zastosowania brzytwy Ockhama, np. "ekscytujące" rozwiązania przyciągają więcej ludzi: budujących na nich autorytety ... więc później pilnujących żeby to było "jedyne słuszne" rozwiązanie.

Share this post


Link to post
Share on other sites
8 godzin temu, Jarek Duda napisał:

Rzeczywiście, jedyne co mamy dobrze potwierdzone to np. symetria CPT, zachowanie energii, ograniczenie prędkości przyczynowości ... które oczywiście mogą się psuć w tych odległych skalach, ale jednak bezpieczniej bazować na tym co już potwierdzone niż zaczynać od zgadywania nowych hipotez - szczególnie niemożliwych do weryfikacji.

Co jest możliwe do weryfikacji, a co nie, dopiero kiedyś się okaże. Na razie zbyt mało wiemy, żeby móc to ocenić. Lepiej mieć pełny worek, z którego w odpowiednim momencie coś będzie można wyciągnąć, niż worek pusty... Zresztą taka jest natura rzeczy, że testuje się - w głowie i na papierze - różne warianty, też te, które okażą się błędne. Tego ani zakazać, ani zablokować nie można i nie miałoby to sensu. Powrót do kiedyś odrzuconej czy niedostrzeżonej hipotezy, to w nauce nic niezwykłego.

Nasze mózgi i ich oprogramowanie są ewolucyjnie przystosowane do działania w tym zakresie rzeczywistości, w którym żyjemy. To jest bardzo mocne ograniczenie, tym mocniejsze, im dalej od tego zakresu próbujemy odejść. A tutaj trzeba (pdp) odejść bardzo daleko, być może złamać wszystkie zakodowane przez miliony lat ewolucji wyobrażenia. Początek, (nie)skończoność, przyczynowość... to tylko niektóre z nich. Szukamy twardego kamienia, którym chcemy utłuc uciekającego zająca... chociaż i kamień, i zając, to tylko struktury i oddziaływania tych samych pól (czyli czego?), w których nic "twardego" nie ma.

Od dawna podejrzewam, że rozwiązaniem jest jakiś wariant multiwersum, coś w rodzaju niepodlegającej żadnym narzuconym regułom dynamicznej "piany" tworzących się i zanikających wszechświatów, którą być może można sprowadzić do realnego lub wirtualnego "nic". Wbrew pozorom, "nic" jest bardzo ciekawym bytem :D

A do naszego świata wracając... symetria czasu/CPT nie oznacza raczej, że jajecznica, którą przed chwilą zjadłem, wróci do brzucha kury, kiedy czas lub CPT odwrócimy. Czym innym jest symetria geometrii (ładunek tu też jako geometrię traktuję), a czym innym symetria (strzałka) zdarzeń. No chyba, że na serio potraktujemy jakiś absolutnie dokonały zegar Laplace'a albo wędrówkę po zawartości pudełka, w którym siedzi wszystko, co było, jest i będzie. Pdp jednego i drugiego jest chyba równie bliskie zera, co pdp siedzącego na którejś chmurce twórcy i szefa tego całego interesu... Chociaż z tym szefem kto wie - właśnie teraz z chmury pioruny solidne we mnie walą, czyli ;)

Zachowanie energii jest prawem statystycznym. I tylko tyle. Zresztą, czym ta "energia" jest?

Ograniczenie prędkości przyczynowości. Jeśli przyjąć wariant mniej czy bardziej holistyczny, to niekoniecznie.

Bazowanie na tym, co już potwierdzone, faktycznie jest bezpieczne, ale chyba tylko bezpieczne :D No i z tym "potwierdzone" też może być problem, bo potwierdzenie działa tylko w warunkach, w których zostało potwierdzone i z pewnością, która nigdy nie jest absolutna.

Co z tego wyniknie? Hmm... Pod koniec 19 w. podobno niektórzy twierdzili, że fizyka to nauka zamknięta, jeszcze tylko kilka pierdółek uzupełnić i po robocie... :D

Echch... dużo tekstu, mało treści, a nowego nic, ale tak mi się po tej jajecznicy jakoś... ;)

Share this post


Link to post
Share on other sites
4 godziny temu, ex nihilo napisał:

Zachowanie energii jest prawem statystycznym.

? 8|

Share this post


Link to post
Share on other sites
W dniu 3.08.2019 o 00:44, KopalniaWiedzy.pl napisał:

Jeśli specjaliści nie znajdą wyjaśnienia tego fenomenu może się okazać, że nie rozumiemy wielu mechanizmów działania wszechświata.

Zgadza się nie rozumiemy i współczesna fizyka i matematyka nam w tym nie pomaga. Po ponad 20 latach pasjonowania się tematyką astronomii, można dojść do wniosku, że to tylko teorie, hipotezy i przypuszczenia, ale najzabawniejsza, jak dla mnie jest teoria powstania wszystkigo z niczego i zupełnie bez przyczyny. Teorię Heima jeszcze w miarę ciekawie się czyta. 

Share this post


Link to post
Share on other sites

:)

Cytat

Thus the cosmic acceleration deduced from supernovae may be an artefact of our being non-Copernican observers, rather than evidence for a dominant component of “dark energy” in the Universe.

Wiele lat czekam na podobne zdanie (z abstraktu oryginalnej pracy). Teraz poczekajmy spokojnie (żarna nauki mielą powoli, ale systematycznie).

Share this post


Link to post
Share on other sites
36 minut temu, Astro napisał:

Wiele lat czekam na podobne zdanie (z abstraktu oryginalnej pracy).

Może ślepy zdziebko jestem (przeterminowanie? zima? wrodzone?), ale żadnej sensacji w tym nie widzę. "Obserwator kopernikański" to tylko założenie, sensowne i wygodne, jednak w praktyce trudne do realizacji. Niewielka niepewność danych może powodować istotne błędy przy interpretacji obserwacji.  Itd., itp.
Tak z pierwszego strzału:
https://arxiv.org/pdf/1609.07120.pdf
SH różne ciekawostki wyciąga, no i fajnie, ale...

Share this post


Link to post
Share on other sites

Fajny art, ale trochę nie ta skala. ;) Owszem, blisko.
Sensacji nie ma, bo i zima, i nikt tak nie powiedział. :)

2 godziny temu, Astro napisał:

Teraz poczekajmy spokojnie (żarna nauki mielą powoli, ale systematycznie).

Zauważysz zapewne, że w cytowanym przez Ciebie arcie nie ma tak "mocnego" sformułowania. ;)

Share this post


Link to post
Share on other sites

Ee tam... "may be", to wcale nie jest mocne sformułowanie. No może być, i tyle.


Od początku tematu DE szuka się innych możliwych możliwych przyczyn, w tym też możliwości naruszenia zasady kosmologicznej/kopernikańskiej - na poziomie teoretycznym lub praktycznym. Za to nie biją :D A że nie zawsze się wprost to nazywa? Bo nie ma takiej potrzeby.

Edited by ex nihilo

Share this post


Link to post
Share on other sites

A ja się zawsze zastanawiałem czy odległe galaktyki nie poruszają się szybciej tylko dlatego, że obserwujemy je, gdy były młodsze i wtedy wszystko uciekało od siebie szybciej...
Z góry też założyłem, że naukowcy już o tym pomyśleli i policzyli stosowne poprawki, a efekt wyszedł im taki, o jakim nam mówią.

Wciąż czekam na obalenie DE i DM, choć równie chętnie usłyszę o wyjaśnieniu tych zjawisk.

Share this post


Link to post
Share on other sites

Trochę nie tak Pogo. Założyłeś słusznie, bo nie ma o co się kłopotać, ale tu chodzi raczej nie o efekt Dopplera, a o to, że taki foton podróżując w rozszerzającym się Wszechświecie rozsmarowuje się bardziej, czyli wydłuża, a zatem kraśnieje na licu.

Share this post


Link to post
Share on other sites

Eee. Karzełki. Gubią się w otoczeniu silniejszych pól, ale nie mam czasu wnikać. Jakoś mnie nie dziwi i nie widzę sensacji. ;)

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Astronomom udało się odnaleźć gwiazdę zaginioną od ponad 30 lat. W 1987 roku zaobserwowano eksplozję supernowej, a dane z badań neutrino wskazują, że pozostałością supernowej powinna być gwiazda neutronowa. Jednak od tamtej pory nie udało się jej odnaleźć.
      SN 1987A jest najbliższą Ziemi supernową od 1604 roku. Znajduje się ona w Wielkim Obłoku Magellana, w odległości 163 000 lat świetlnych od Ziemi. Zwykle widzimy tylko bardzo jasne światło z odległej galaktyki, ale nie możemy zbyt dokładnie się temu przyjrzeć. Tutaj po raz pierwszy mamy supernową tak blisko, że możemy zajrzeć do jej wnętrza, mówi Phil Cigan, z Cardiff University. Jest też pierwszą nową supernową, którą współczesna astronomia może szczegółowo badać. Nic więc dziwnego, że budzi ona szczególne zainteresowanie, a zaginiona gwiazda neutronowa tylko napędza ciekawość.
      Olbrzymia ilość pyłu i gazu nie pozwoliła dotychczas dojrzeć gwiazdy neutronowej. Teraz Cigan i jego koledzy odnaleźli jej sygnaturę za pomocą urządzenia ALMA (Atacama Large Milimeter/submilimeter Array), złożonego z 66 radioteleskopów w Chile.
      Dzięki temu potężnemu narzędziu udało się zarejestrować obszar jaśniejszy i cieplejszy niż otoczenie. Znajduje się on dokładnie w miejscu, w którym powinna być gwiazda neutronowa. Przetestowaliśmy wiele innych scenariuszy istnienia tego obszaru, ale najbardziej prawdopodobny jest ten mówiący o istnieniu tam gwiazdy neutronowej, która podgrzewa otaczający ją pył i gaz, powodując ich świecenie, wyjaśnia Cigan.
      Uczony mówi, że obecnie nie jesteśmy w stanie bezpośrednio zobaczyć gwiazdy neutronowej pozostałej po ekplozji SN 1987A. Jednak w ciągu 50–100 lat gaz i pył powinny na tyle się rozproszyć, że ją zobaczymy. Wówczas astronomowie będą mogli zbadać ją bardziej szczegółowo, co z kolei pozwoli nam lepiej zrozumieć ewolucję supernowych.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Przed dwoma tygodniami rozpoczęto testowanie nowego potężnego narzędzia, którego zadaniem jest stworzenie mapy milionów galaktyk oraz dokonanie pomiarów ich ruchu. Robotyczny instrument o nazwie DESI pozwoli astronomom na określenie ilości ciemnej energii oraz zachodzących w niej zmian.
      Dark Energy Spectroscopic Instrument (DESI) został zainstalowany w teleskopie znajdującym się w Kitt Peak National Observatory w Arizonie. Jego instalowanie zajęło specjalistom aż 18 miesięcy.
      DESI oficjalnie rozpocznie pracę na początku przyszłego roku. W idealnych warunkach instrument będzie rejestrował nawet 5000 galaktyk w ciągu 20 minut. Naukowcy spodziewają się, że w ciągu 5 lat pracy DESI zarejestruje światło z 35 milionów galaktyk i 2,4 miliona kwazarów. Tak wysoka wydajność jest możliwa dzięki zastosowaniu robotyki. Wewnątrz instrumentu umieszczono 5000 światłowodów oraz urządzenia do precyzyjnego pozycjonowania każdego z nich. Urządzenia te są w stanie w ciągu kilku minut ustawić wszystkie światłowody w predefiniowanej pozycji.
      DESI będzie zbierał konkretne długości fali światła z poszczególnych galaktyk, a astronomowie na tej podstawie określą, jak szybko oddalają się one od nas. Możliwe będzie też dokonanie pomiarów odległości każdej z galaktyk do Ziemi względem innych galaktyk. Lokalizacja galaktyk oraz ich względne odległości posłużą do stworzenia trójwymiarowej mapy wszechświata obejmującej przestrzeń w promieniu do 11 miliardów lat świetlnych.
      Dzięki pomiarom na temat tempa ruchu galaktyk astronomowie będą mogli ocenić ilość ciemnej energii, a jako że DESI dostarczy indywidualnych danych dla milionów galaktyk, możliwe będzie określenie ilości ciemnej energii w konkretnym miejscu i konkretnym czasie. To zaś pozwoli stwierdzić czy, zgodnie z założeniami współczesnej kosmologii, ilość ciemnej energii we wszechświecie jest stała czy też w jakiś sposób zmienia się w czasie.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcom udało się przeprowadzić symulację okresu „ponownego ogrzewania” (reheating), który stworzył warunki do Wielkiego Wybuchu. Wielki Wybuch nastąpił około 13,8 miliardów lat temu. Jednak obecnie fizycy nie postrzegają Wielkiego Wybuchu jako wydarzenia inicjującego, które nastąpiło w czasie t=0.
      Współczesna kosmologia, mówiąc o Wielkim Wybuchu ma na myśli moment, na samym początku istnienia wszechświata, w którym zaistniały warunki konieczne do zaistnienia Wielkiego Wybuchu. To zaś oznacza, że ówczesny wszechświat był wypełniony wieloma różnymi typami gorącej materii, znajdującej się w termicznej równowadze. To stan równowagi zdominowany przez promieniowanie. Masy cząstek wypełniających wówczas wszechświat były znacznie mniejsze niż średnia temperatura wszechświata.
      W takim pojęciu mieści się więc założenie, że przed Wielkim Wybuchem miały miejsce wydarzenia, w wyniku których powstały warunki do Wielkiego Wybuchu. I właśnie te warunki postanowił zbadać profesor David I. Kaiser wraz ze swoim zespołem z MIT oraz Kenyon College.
      Przed Wielkim Wybuchem miała miejsce inflacja kosmologiczna. Trwała ona biliardową część sekundy, jednak w tym czasie zima materia zaczęła się gwałtownie rozszerzać, zanim procesy Wielkiego Wybuchu przejęły kontrolę, spowolniły to rozszerzanie i doprowadziły do dywersyfikacji rodzącego się wszechświata.
      Dokonane w ostatnim czasie obserwacje potwierdzają Wielki Wybuch oraz inflację kosmologiczną, jednak zjawiska te są tak bardzo od siebie różne, że naukowcy mieli dotychczas problem z ich połączeniem.
      Kaiser wraz z zespołem przeprowadzili szczegółową symulację fazy przejściowej, która połączyła inflację z Wielkim Wybuchem. Faza ta, znana pod nazwą „ponownego ogrzewania” (reheating) miała miejsce na samym końcu inflacji, a w jej wyniku z zimnej homogenicznej zupy wyłoniła się super gorąca złożona mieszanina, która dała początek Wielkiemu Wybuchowi.
      Postinflacyjne ponowne ogrzewanie stworzyło warunki dla Wielkiego Wybuchu. Podpaliło lont. To okres, w którym rozpętało się piekło, a materia zaczęła zachowywać się w bardzo złożony sposób, wyjaśnia Kaiser.
      Uczeni symulowali interakcje jaki zachodziły pomiędzy poszczególnymi rodzajami materii po zakończeniu procesu inflacji. ich badania wykazały, że olbrzymia ilość energii, która napędzała inflację, błyskawicznie się rozprzestrzeniła, tworząc warunki do Wielkiego Wybuchu.
      Okazało się także, że do takich gwałtownych zmian mogło dojść jeszcze szybciej i zachodziły one bardziej efektywnie, jeśli zjawiska kwantowe zmodyfikowały sposób, w jaki materia przy wysokich energiach reaguje na oddziaływanie grawitacji. Zjawiska te odbiegają od tych opisanych przez ogólną teorię względności. To pozwala nam opisanie całego ciągu wydarzeń, od inflacji, poprzez okres postinflacyjny po Wielki Wybuch i dalej. Możemy śledzić rozwój poszczególnych znanych procesów fizycznych i stwierdzić na tej podstawie, że jest to prawdopodobny rozwój wydarzeń, które doprowadziły do tego, że obecnie wszechświat jest taki, jakim go widzimy, dodaje uczony.
      Teoria inflacji została opracowana w latach 80. przez Alana Gutha z MIT. Mówi ona, że historia wszechświata rozpoczęła się od niezwykle małe punktu, wielkości miliardowych części średnicy protonu. Ten punkt był wypełniono wysokoenergetyczną materią. Jej energia była tak wielka, że powstały siły grawitacyjne odpychające się wzajemnie, które wywołały gwałtowną inflację. Proces ten był niezwykle gwałtowny. W czasie krótszym niż bilionowa część sekundy ten zaczątek wszechświata zwiększył swoją objętość kwadryliard (1027) razy.
      Kaiser i jego zespół badali, co stało się po zakończeniu inflacji, a przed Wielkim Wybuchem. Najwcześniejsza faza ponownego ogrzewania powinna charakteryzować się istnieniem rezonansów. Dominuje jedna forma wysokoenergetycznej materii która wstrząsa w tę i z powrotem całą olbrzymią przestrzenią, rezonując sama ze sobą, prowadząc do gwałtownego powstawania nowych cząstek. To nie trwa wiecznie. W miarę, jak przekazuje ona swoją energię drugiej formie materii, jej własne oscylacje stają się bardziej chaotyczne i nierówne. Chcieliśmy się dowiedzieć, jak długo trwało, zanim ten efekt rezonansowy się załamał i jak stworzone cząstki rozpraszały się na sobie nawzajem tworząc równowagę termiczną, warunki potrzebne do powstania Wielkiego Wybuchu.
      Uczeni do symulacji wybrali konkretny model inflacyjny i jego warunki wyjściowe. Zdecydowali się na ten, którego założenia najlepiej odpowiadają precyzyjnym pomiarom mikrofalowego promieniowania tła. Podczas symulacji śledzono zachowanie dwóch typów materii podobnych do bozonu Higgsa, które były dominującymi typami w czasie inflacji. Model zmodyfikowali też o taki rodzaj oddziaływań grawitacyjnych, jakie powinny istnieć w świecie materii o znacznie wyższych energiach, tak, jak to było w czasie inflacji. W takich warunkach siła grawitacji może być różna w czasie i przestrzeni.
      Symulacja wykazała, że im silniejszy wpływ grawitacji zmodyfikowanej o efekt kwantowy, tym szybciej zachodziła przemiana ze stanu zimnej homogenicznej materii, w zróżnicowane formy gorącej materii, które są charakterystyczne dla Wielkiego Wybuchu.
      Ponowne ogrzewanie to był szalony okres, w którym wszystko oszalało. Wykazaliśmy, że materia wchodziła w tak silne interakcje, że mogło dojść do równie szybkiego rozprężenia i pojawienia się warunków do Wielkiego Wybuchu. Nie wiemy, czy tak to wyglądało, ale tak wynika z naszych symulacji, którą przeprowadziliśmy wyłącznie z uwzględnieniem znanych nam praw fizyki, mówi Kaiser.
      Prace Amerykanów pochwalił profesor Richard Easther z University of Auckland. Istnieją setki propozycji dotyczących inflacji. Jednak przejście od inflacji do Wielkiego Wybuchu jest najmniej zbadanym elementem całości. Ta praca kładzie podwaliny pod precyzyjne symulowania epoki postinflacyjnej.
      Ze szczegółami pracy można zapoznać się na serwerze arXiv [PDF].

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Tegoroczne Nagrody Nobla z dziedziny fizyki zostały przyznane za wkład w zrozumienie ewolucji wszechświata i miejsca Ziemi w kosmosie. Otrzymali je James Peebles za teoretyczne odkrycia w dziedzinie kosmologii fizycznej oraz Michel Mayor i Didier Queloz za odkrycie egzoplanety krążącej wokół gwiazdy typu Słońca.
      James Peebles to Kanadyjczyk pracujący obecnie na Princeton University. Michel Mayor jest Szwajcarem, pracuje na Uniwersytecie w Genewie. Podobnie zresztą jak Didier Queloz, który dodatkowo zatrudniony jest na Cambridge University.
      Profesor Peebles, odpowiadając podczas konferencji prasowej na pytanie o możliwość istnienia życia na innych planetach, stwierdził: Ironią jest, że możemy być pewni, że istnieje wiele planet zdolnych do podtrzymania życia [...], ironią jest, że mamy wizję życia na innych planetach, ale możemy być pewni, że nigdy nie zobaczymy tych form życia, tych planet. To pokazuje, jak wielkie są możliwości i jak wielkie są ograniczenia nauki, powiedział noblista.
      Niestety, wbrew naszym oczekiwaniom, tegorocznym laureatem nie został profesor Artur Ekert, o którego szansach na nagrodę informowaliśmy wczoraj.

      « powrót do artykułu
×
×
  • Create New...