Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Tak dodam, że w dzisiejszych czasach czym mniej jakichkolwiek przewidywań teoretycznych tym lepiej, bo z pewnością napiszą o tym w "popowych" edycjach, za co są również punkty, a fizyk z czegoś żyć musi. Czym więcej tupiących tęczowych jednorożców tym lepiej. Zaczynam się obawiać; z wahaniem otwieram lodówkę...

Gdzie te czasy, jak w przypadku OTW, gdy teoria aspirująca coś tam tłumaczyła więcej? (orbita Merkurego, pozycje gwiazd podczas zaćmienia itp.) Odnoszę wrażenie, że dziś czym bardziej "nauka" wbija się na poziom Faktu tym lepiej...

Share this post


Link to post
Share on other sites

Rzeczywiście, jedyne co mamy dobrze potwierdzone to np. symetria CPT, zachowanie energii, ograniczenie prędkości przyczynowości ... które oczywiście mogą się psuć w tych odległych skalach, ale jednak bezpieczniej bazować na tym co już potwierdzone niż zaczynać od zgadywania nowych hipotez - szczególnie niemożliwych do weryfikacji.

Na przykład hipoteza o początku czasu w naszym BB jest sprzeczna z powyższymi, ale te problemy znikają jeśli po prostu przedłużymy rozwiązanie przed ten punkt, zgodnie z tym co wiemy - przy okazji też np. tłumacząc przewagę materii nad antymaterią poprzez ustalenie liczby barionowej wszechświata (o ile nie może się zmieniać).

Oczywiście nie mamy pewności i pewnie nigdy nie będziemy mieli, ale podstawowym podejściem nie powinno być wprowadzanie dodatkowych zasad dla poszczególnych scenariuszy, tylko jednak zacząć od przeniesienia tego co wiemy - dopóki eksperyment nie wskaże inaczej.

 

ps. Strona z dużą ilością materiałów kilka dekad wstecz: https://januscosmologicalmodel.com/cptsymmetry

image.thumb.png.37a960218a09411dbabea009d98e9f36.png

Share this post


Link to post
Share on other sites
4 minuty temu, Jarek Duda napisał:

Rzeczywiście, jedyne co mamy dobrze potwierdzone to np. symetria CPT, zachowanie energii, ograniczenie prędkości przyczynowości ... które oczywiście mogą się psuć w tych odległych skalach, ale jednak bezpieczniej bazować na tym co już potwierdzone niż zaczynać od zgadywania nowych hipotez - szczególnie niemożliwych do weryfikacji.

Słusznie. Z tego właśnie powodu trzymamy się ciemnej materii i ciemnej energii. :)
Obawiam się jednak, że ślepe trzymanie się "skalowalności" tego co znamy niekoniecznie musi być dobrym pomysłem na Wszechświat.

6 minut temu, Jarek Duda napisał:

tylko jednak zacząć od przeniesienia tego co wiemy - dopóki eksperyment nie wskaże inaczej.

Ok, ale już wprowadziłeś parę jednorożców. Nie widzisz? :)

Share this post


Link to post
Share on other sites

Rzeczywiście ciemna materia i energia to hipotetyczne nowe byty dla naprawienia niezgodności - ale jak widać jeszcze daleko do w miarę pewnej wizji tych nowych koncepcji.

W którym miejscu wprowadziłem coś nowego? Mechanika Lagrażnowska pozwala ewoluować rozwiązanie wprzód w czasie, ale zmieniając znak czasu analogicznie też wstecz - dlaczego należy wprowadzać dodatkową koncepcję początku czasu: zabraniającego dalszą ewolucję wstecz i łamiącego większość znanych zasad fizyki jak symetria CPT?

Share this post


Link to post
Share on other sites

Myślisz, że natura wie co robi i w jakim celu (twierdzenie Noether)? ;)
Widzisz, przez wiele już lat obserwuję to wszystko z boku i powiem nawet nieskromnie, że z grubsza ogarniam. Coraz więcej wspaniałych, błyskotliwych i wyszczekanych teoretyków ;), coraz więcej wspaniałych i napawających mnie dumą za ludzkość (taka nieliczna wśród faktów perełka) projektów badawczych, coraz więcej coraz piękniej wykrojonych puzzli, których składanie wychodzi nam... tak sobie. Właściwie - bądźmy szczerzy - nie wychodzi wcale. Przez te lata nabieram zwyczajnie coraz większego przekonania, że zwyczajnie nie wiemy czegoś fundamentalnego, albo, czego bym nie chciał - natura jest naprawdę brzydka. Bywa.

Share this post


Link to post
Share on other sites

Mówię tylko że nie nowe teorie, ale potwierdzone zasady powinny być zawsze bazą - ostrożnie modyfikowaną na podstawie niezgodności z eksperymentem.

Natomiast ekscytującym acz bezsensownym podejściem do nowych sytuacji jest rozpoczynanie od zgadywania nowych hipotez - jak wymyślenie koncepcji punktu początku czasu (ok, adaptacji z religii): łamiącego potwierdzone zasady bez żadnej motywacji eksperymentalnej ... a potem "naprawianie" przez dokładanie kolejnych łat: nowych hipotez jak inflacja szybsza niż potwierdzone ograniczenie dla przyczynowości.

Share this post


Link to post
Share on other sites

Inflacja zakłada możliwość szybszej propagacji niż potwierdzona eksperymentalnie - tylko i wyłącznie na potrzeby łatania hipotezy początku czasu: niezgodnej z większością tego co potwierdzone.

Może jest prawdziwa, tylko mówię że nie tak powinna działać nauka: wymyślanie nowych hipotez ignorując to co potwierdzone, a później łatanie wynikłych niezgodności dokładaniem kolejnych problematycznych hipotez.

Problem w tym że nauka jest zjawiskiem społecznym, gdzie zamiast praktycznego zastosowania brzytwy Ockhama, np. "ekscytujące" rozwiązania przyciągają więcej ludzi: budujących na nich autorytety ... więc później pilnujących żeby to było "jedyne słuszne" rozwiązanie.

Share this post


Link to post
Share on other sites
8 godzin temu, Jarek Duda napisał:

Rzeczywiście, jedyne co mamy dobrze potwierdzone to np. symetria CPT, zachowanie energii, ograniczenie prędkości przyczynowości ... które oczywiście mogą się psuć w tych odległych skalach, ale jednak bezpieczniej bazować na tym co już potwierdzone niż zaczynać od zgadywania nowych hipotez - szczególnie niemożliwych do weryfikacji.

Co jest możliwe do weryfikacji, a co nie, dopiero kiedyś się okaże. Na razie zbyt mało wiemy, żeby móc to ocenić. Lepiej mieć pełny worek, z którego w odpowiednim momencie coś będzie można wyciągnąć, niż worek pusty... Zresztą taka jest natura rzeczy, że testuje się - w głowie i na papierze - różne warianty, też te, które okażą się błędne. Tego ani zakazać, ani zablokować nie można i nie miałoby to sensu. Powrót do kiedyś odrzuconej czy niedostrzeżonej hipotezy, to w nauce nic niezwykłego.

Nasze mózgi i ich oprogramowanie są ewolucyjnie przystosowane do działania w tym zakresie rzeczywistości, w którym żyjemy. To jest bardzo mocne ograniczenie, tym mocniejsze, im dalej od tego zakresu próbujemy odejść. A tutaj trzeba (pdp) odejść bardzo daleko, być może złamać wszystkie zakodowane przez miliony lat ewolucji wyobrażenia. Początek, (nie)skończoność, przyczynowość... to tylko niektóre z nich. Szukamy twardego kamienia, którym chcemy utłuc uciekającego zająca... chociaż i kamień, i zając, to tylko struktury i oddziaływania tych samych pól (czyli czego?), w których nic "twardego" nie ma.

Od dawna podejrzewam, że rozwiązaniem jest jakiś wariant multiwersum, coś w rodzaju niepodlegającej żadnym narzuconym regułom dynamicznej "piany" tworzących się i zanikających wszechświatów, którą być może można sprowadzić do realnego lub wirtualnego "nic". Wbrew pozorom, "nic" jest bardzo ciekawym bytem :D

A do naszego świata wracając... symetria czasu/CPT nie oznacza raczej, że jajecznica, którą przed chwilą zjadłem, wróci do brzucha kury, kiedy czas lub CPT odwrócimy. Czym innym jest symetria geometrii (ładunek tu też jako geometrię traktuję), a czym innym symetria (strzałka) zdarzeń. No chyba, że na serio potraktujemy jakiś absolutnie dokonały zegar Laplace'a albo wędrówkę po zawartości pudełka, w którym siedzi wszystko, co było, jest i będzie. Pdp jednego i drugiego jest chyba równie bliskie zera, co pdp siedzącego na którejś chmurce twórcy i szefa tego całego interesu... Chociaż z tym szefem kto wie - właśnie teraz z chmury pioruny solidne we mnie walą, czyli ;)

Zachowanie energii jest prawem statystycznym. I tylko tyle. Zresztą, czym ta "energia" jest?

Ograniczenie prędkości przyczynowości. Jeśli przyjąć wariant mniej czy bardziej holistyczny, to niekoniecznie.

Bazowanie na tym, co już potwierdzone, faktycznie jest bezpieczne, ale chyba tylko bezpieczne :D No i z tym "potwierdzone" też może być problem, bo potwierdzenie działa tylko w warunkach, w których zostało potwierdzone i z pewnością, która nigdy nie jest absolutna.

Co z tego wyniknie? Hmm... Pod koniec 19 w. podobno niektórzy twierdzili, że fizyka to nauka zamknięta, jeszcze tylko kilka pierdółek uzupełnić i po robocie... :D

Echch... dużo tekstu, mało treści, a nowego nic, ale tak mi się po tej jajecznicy jakoś... ;)

Share this post


Link to post
Share on other sites
4 godziny temu, ex nihilo napisał:

Zachowanie energii jest prawem statystycznym.

? 8|

Share this post


Link to post
Share on other sites
W dniu 3.08.2019 o 00:44, KopalniaWiedzy.pl napisał:

Jeśli specjaliści nie znajdą wyjaśnienia tego fenomenu może się okazać, że nie rozumiemy wielu mechanizmów działania wszechświata.

Zgadza się nie rozumiemy i współczesna fizyka i matematyka nam w tym nie pomaga. Po ponad 20 latach pasjonowania się tematyką astronomii, można dojść do wniosku, że to tylko teorie, hipotezy i przypuszczenia, ale najzabawniejsza, jak dla mnie jest teoria powstania wszystkigo z niczego i zupełnie bez przyczyny. Teorię Heima jeszcze w miarę ciekawie się czyta. 

Share this post


Link to post
Share on other sites

:)

Cytat

Thus the cosmic acceleration deduced from supernovae may be an artefact of our being non-Copernican observers, rather than evidence for a dominant component of “dark energy” in the Universe.

Wiele lat czekam na podobne zdanie (z abstraktu oryginalnej pracy). Teraz poczekajmy spokojnie (żarna nauki mielą powoli, ale systematycznie).

Share this post


Link to post
Share on other sites
36 minut temu, Astro napisał:

Wiele lat czekam na podobne zdanie (z abstraktu oryginalnej pracy).

Może ślepy zdziebko jestem (przeterminowanie? zima? wrodzone?), ale żadnej sensacji w tym nie widzę. "Obserwator kopernikański" to tylko założenie, sensowne i wygodne, jednak w praktyce trudne do realizacji. Niewielka niepewność danych może powodować istotne błędy przy interpretacji obserwacji.  Itd., itp.
Tak z pierwszego strzału:
https://arxiv.org/pdf/1609.07120.pdf
SH różne ciekawostki wyciąga, no i fajnie, ale...

Share this post


Link to post
Share on other sites

Fajny art, ale trochę nie ta skala. ;) Owszem, blisko.
Sensacji nie ma, bo i zima, i nikt tak nie powiedział. :)

2 godziny temu, Astro napisał:

Teraz poczekajmy spokojnie (żarna nauki mielą powoli, ale systematycznie).

Zauważysz zapewne, że w cytowanym przez Ciebie arcie nie ma tak "mocnego" sformułowania. ;)

Share this post


Link to post
Share on other sites

Ee tam... "may be", to wcale nie jest mocne sformułowanie. No może być, i tyle.


Od początku tematu DE szuka się innych możliwych możliwych przyczyn, w tym też możliwości naruszenia zasady kosmologicznej/kopernikańskiej - na poziomie teoretycznym lub praktycznym. Za to nie biją :D A że nie zawsze się wprost to nazywa? Bo nie ma takiej potrzeby.

Edited by ex nihilo

Share this post


Link to post
Share on other sites

A ja się zawsze zastanawiałem czy odległe galaktyki nie poruszają się szybciej tylko dlatego, że obserwujemy je, gdy były młodsze i wtedy wszystko uciekało od siebie szybciej...
Z góry też założyłem, że naukowcy już o tym pomyśleli i policzyli stosowne poprawki, a efekt wyszedł im taki, o jakim nam mówią.

Wciąż czekam na obalenie DE i DM, choć równie chętnie usłyszę o wyjaśnieniu tych zjawisk.

Share this post


Link to post
Share on other sites

Trochę nie tak Pogo. Założyłeś słusznie, bo nie ma o co się kłopotać, ale tu chodzi raczej nie o efekt Dopplera, a o to, że taki foton podróżując w rozszerzającym się Wszechświecie rozsmarowuje się bardziej, czyli wydłuża, a zatem kraśnieje na licu.

Share this post


Link to post
Share on other sites

Eee. Karzełki. Gubią się w otoczeniu silniejszych pól, ale nie mam czasu wnikać. Jakoś mnie nie dziwi i nie widzę sensacji. ;)

Share this post


Link to post
Share on other sites
W dniu 4.08.2019 o 13:42, Jarek Duda napisał:

thinkim, dla mnie zasada zachowania energii to jest coś dobrze zweryfikowanego - potrzeba baardzo silnych argumentów żeby mieć pewność że może być łamana.

Zasada zachowania energii to wynik twierdzenia Noetherowej, więc nie stosuje się do sytuacji które nie spełniają jego założeń.
Łatwo to zobaczyć dla modelu cyklicznego wszechświata który zamienia pył z promieniowaniem przy zmianie fazy ekspansji i w punkcie osobliwym.
Warto też zauważyć, że coś bezczelnie zżera energię promieniowania tła ;) 

Share this post


Link to post
Share on other sites
37 minut temu, peceed napisał:

Zasada zachowania energii to wynik twierdzenia Noetherowej

W życiu nie ośmieliłbym się tak twierdzić. Warto odróżniać wielowiekową empirię, którą do zasady zachowania energii można sprowadzić od piękna symetrii pewnej teorii, z której tę zasadę można wywieść. Czy kolega dopuszcza empirię, czy też im bardziej teoria nie zgadza się z faktami, to tym gorzej dla faktów??

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Jedną z największych tajemnic fizyki jądrowej jest odpowiedź na pytanie, dlaczego wszechświat jest zbudowany z takich a nie innych pierwiastków. Dlaczego nie z innych? Naukowców szczególnie interesują procesy fizyczne stojące u podstaw powstania ciężkich pierwiastków, jak złoto, platyna czy uran. Obecnie uważa się, że powstają one podczas łączenia się gwiazd neutronowych oraz eksplozji gwiazd.
      W Argonne National Laboratory opracowano nowe techniki badania natury i pochodzenia ciężkich pierwiastków, a uczeni z Argonne stanęli na czele międzynarodowej grupy badawczej, która prowadzi w CERN eksperymenty mające dać nam wgląd w procesy powstawania egzotycznych jąder i opracowani modeli tego, co dzieje się w gwiazdach i wydarzeń we wczesnym wszechświecie.
      Nie możemy sięgnąć do wnętrza supernowych, więc musimy stworzyć na Ziemi ekstremalne warunki, jakie w nich panują i badać reakcje, jakie tam zachodzą, stwierdził fizyk Ben Kay z Argonne National Laboratory i główny autor najnowszych badań.
      Uczonym biorącym udział w projekcie udało się – jako pierwszym w historii – zaobserwować strukturę jądra o mniejszej liczbie protonów niż w jądrze ołowiu i o liczbie neutronów przekraczających 126. To jedna z liczb magicznych fizyki jądrowej. Liczba magiczne dla protonów i neutronów wynoszą m.in. 8, 20, 28, 50 i 126. To wartości kanoniczne. Fizycy wiedzą, że jądra atomów o takich wartościach charakteryzują się zwiększoną stabilnością. Jądra o liczbie neutronów powyżej 126 są słabo zbadane, gdyż trudno je uzyskać. Wiedza o ich zachowaniu jest kluczowa dla zrozumienia procesu wychwytu neutronu (proces r), w wyniku którego powstaje wiele ciężkich pierwiastków.
      Obecnie obowiązujące teorie przewidują, że proces r zachodzi w gwiazdach. W tych bogatych w neutrony środowiskach jądra atomowe mogą rosnąć wychwytując neutrony i tworząc cięższe pierwiastki. Proces ten jest na tyle szybki, że nowe cięższe pierwiastki tworzą się zanim jeszcze dojdzie do rozpadu.
      Twórcy eksperymentu skupili się na izotopie rtęci 207Hg. Jego badanie może bowiem rzucić światło na ich bezpośrednich sąsiadów, jądra bezpośrednio zaangażowane w proces r. Naukowcy najpierw wykorzystali infrastrukturę HIE-ISOLDE w CERN. Wysokoenergetyczny strumień protonów skierowali na roztopiony ołów. W wyniku kolizji powstały setki egzotycznych radioaktywnych izotopów. Odseparowali z nich 206Hg i w akceleratorze HIE-ISOLDE wytworzyli strumień jąder o najwyższej osiągniętej tam energii. Strumień skierowali na deuter znajdujący się w ISOLDE Solenoidal Spectrometer.
      Żadne inne urządzenie na świecie nie jest w stanie wytworzyć strumienia jąder rtęci o tej masie i nadać mu takiej energii. To w połączeniu z wyjątkową rozdzielczością ISS pozwolió nam na przeprowadzenie pierwszych w historii obserwacji stanów wzbudzonych 207Hg, mówi Kay.  Dzięki ISS naukowcy mogli więc obserwować, jak jądra 206Hg przechwyciły neutron stając się 207Hg.
      Deuter to ciężki izotop wodoru. Zawiera proton i neutron. Gdy 206Hg przechwytuje z niego neutron, dochodzi do odrzutu protonu. Emitowane w tym procesie protony trafiają do detektora w ISS, a ich pozycja i energia zdradzają kluczowe informacje o strukturze jądra. Informacje te mają bardzo duży wpływ na proces r i uzyskane w ten sposób dane pozwalają na przeprowadzenie istotnych obliczeń.
      ISS korzysta z pionierskiej koncepcji opracowanej przez Johna Schiffera z Argonne National Laboratory. Na podstawie jego pomysłu zbudowano w Argone urządzenie HELIOS. Pozwoliło ono na badanie właściwości jąder atomowych, których wcześniej nie można było badać. HELIOS stał się inspiracją do zbudowania w CERN-ie ISS. Urządzenie to pracuje od 2008 roku i uzupełnia możliwości HELIOS.
      Przez ostatnich 100 lat fizycy mogli zbierać informacje o jądrach atomowych dzięki bombardowaniu ciężkich jąder lekkimi jonami. Jednak reakcja przeprowadzana w drugą stronę, gdy ciężkie jądra uderzały w lekkie cele, prowadziła do pojawiania się wielu zakłóceń, które trudno było wyeliminować. Udało się to dopiero za pomocą HELIOS.
      Gdy ciężka kula uderza w lekki cel dochodzi do zmiany kinematyki i uzyskane w ten sposób spektra są skompresowane. John Schiffer zauważył, że gdy do takiej kolizji dochodzi wewnątrz magnesu, wyemitowane w jej wyniku protony wędrują po spiralnym torze w kierunku detektora. Opracował pewną matematyczną sztuczkę, która opisuje tę kinematyczna kompresję, otrzymujemy więc zdekompresowane spektrum, z którego możemy wnioskować o strukturze jądrowej, wyjaśnia Kay.
      Pierwsze analizy uzyskanych danych potwierdziły prawdziwość przewidywań teoretycznych. Naukowcy planują zatem kolejne eksperymenty, podczas których chcą wykorzystać inne jądra z obszaru 207Hg.
      Ze szczegółami badań zapoznamy się na łamach Physical Review Letters.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Fizyk z Uniwersytetu w Genewie zaproponował rozwiązanie poważnego kryzysu, trapiącego kosmologię. Kryzysowi temu na imię stała Hubble'a. To jedna z podstawowych stałych kosmologicznych. Opisuje ona tempo rozszerzania się wszechświata. Problem w tym, że dotychczasowe obliczenia i badania dają co najmniej dwa różne, zbyt różne, wyniki. Profesor Lucas Lombriser twierdzi, że wie, skąd bierze się ta różnica.
      Stałą Hubbla wyznacza się za pomocą dwóch głównych metod. Pierwsza, pomiary promieniowania mikrofalowego tła, wskazuje, że wszechświat rozszerza się z prędkością 64,4 km/s/Mpc, czyli, że na każdy megaparsek (3,26 miliona lat świetlnych) tempo rozszerzania się wszechświata rośnie o 64,4 km/s. Jednak obliczenia z wykorzystaniem cefeid, zmiennych gwiazd pulsujących, dają wartość 73,4 km/s/Mpc. Różnica jest tak duża, że obliczeń tych nie da się pogodzić. W miarę upływu lat te dwie wartości były wyznaczane coraz bardziej precyzyjnie, ale różnica między nimi pozostawała. To doprowadziło do sporu naukowego. Pojawiły się głosy, że mamy do czynienia z „nową fizyką”.
      Lombriser wysunął jednak hipotezę, która nie wymaga odwoływania się do „nowej fizyki”. Zdaniem uczonego, należy przyjąć wszechświat nie jest homogeniczny. Oczywiście takie założenie jest prawdziwe, jednak w dość niewielkich skalach. Nie ma wątpliwości, że w galaktykach i poza nimi materia rozłożona jest inaczej. Jednak trudno wyobrazić sobie różnice w skalach tysiąckrotnie większych niż galaktyki.
      Jeśli znajdowalibyśmy się w gigantycznym „bąblu”, w którym gęstość materii jest znacząco mniejsza niż gęstość materii we wszechświecie, miałoby to konsekwencje dla odległości do supernowych i dla określenia stałej Hubble'a, mówi Lombriser. Naukowiec zaproponował hipotezę, że Droga Mleczna i tysiące innych galaktyk poruszają się w bąblu o średnicy 250 milionów lat świetlnych, w którym gęstość materii jest o 50% niższa niż w reszcie wszechświata.
      Jeśli w takim bąblu znajdują się obiekty, z galaktyk których używamy do wyznaczania stałej Hubble'a, to po przeprowadzeniu obliczeń okazuje się, że uzyskane wyniki w wysokim stopniu zgadzają się z obliczeniami, w których uwzględniane jest mikrofalowe promieniowanie tła. Prawdopodobieństwo, że istnieje tego typu fluktuacja [wspomniany bąbel – red.] wynosi między 1/20 a 1/5, co oznacza, że to nie jest tylko fantazja teoretyka. We wszechświecie istnieje wiele takich regionów jak nasz, mówi Lombriser.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Czerwony nadolbrzym Betelgeza, jedna z najjaśniejszych gwiazd na niebie, przygasła w ciągu ostatnich tygodni bardziej niż przez ostatnie sto lat. Podekscytowani astronomowie z całego świata zastanawiają się co to oznacza. Nie można wykluczyć, że gwiazda wybuchnie i zamieni się w supernową. Nadolbrzymy wciąż kryją wiele zagadek, a naukowcy mają nadzieję, że dzięki obserwowanemu właśnie procesowi, dowiedzą się więcej o takich gwiazdach.
      Astronomowie od ponad wieku obserwują, jak Betelgeza raz przygasa, raz robi się jaśniejsza. Materia z gwiazdy wędruje ku jej powierzchni i ponownie tonie w jej wnętrzu, powodując, że powierzchnia jest raz chłodniejsza, raz cieplejsza. Stąd właśnie zmienna jasność gwiazdy.
      Richard Wasatonic, astronom z Villanova Univrsity w Pennsylvanii od 25 lat dokonuje pomiarów jasności Betelgezy za pomocą niewielkiego prywatnego teleskopu. W październiku wraz ze swoim kolegą Edwardem Guinanem i astronomem-amatorem Thomasem Calderwoodem zauważyli, że Betelgeza ponownie przygasa. Do grudnia stała się ciemniejsza niż w ciągu ostatnich 25 lat.
      Na łamach witryny The Astronomer's Telegram poinformowali o tym innych astronomów. Każdej nocy była ciemniejsza niż nocy poprzedniej, mówi Guinan. Obserwujący spodziewali się, że wkrótce gwiazda przestanie zmniejszać swoją jasność. Jednak tak się nie stało. Dnia 23 grudnia zaktualizowali swój wpis, stwierdzając, że Betelgeza nadal przygasa i jest już ciemniejsza niż była w ciągu ostatni 100 lat, czyli w całym okresie, w którym nauka mierzy jasność gwiazd za pomocą urządzeń, a nie ocenia ją „na oko”.
      Betelgeza, która jest zwykle 6. lub 7. najjaśniejszą gwiazdą na niebie, do połowy grudnia bieżącego roku stała się 21. najjaśniejszą gwiazdą nieboskłonu.
      Nic więc dziwnego, że pojawiły się głosy, iż możemy być świadkami końca Betelgezy. Na podstawie obliczeń masy astronomowie stwierdzili, że Betelgeza stanie się supernową w wieku około 9 milionów lat. Właśnie tyle mniej więcej lat liczy sobie gwiazda. Już jakiś czas temu obliczano, że Betelgeza stanie się supernową w ciągu najbliższych 100 000 lat. Jeśli nadolbrzym wybuchnie stanie się dla nas tak jasny, jak połowa jasności Księżyca w pełni. Przez wiele miesięcy będziemy mogli obserwować taką supernową nawet za dnia. Nie powinniśmy się jednak obawiać o nasze bezpieczeństwo, gdyż gwiazda znajduje się w odległości około 420 – 640 lat świetlnych od Ziemi.
      Niejednokrotnie mieli dotychczas okazję badać supernowe. Nigdy jednak nie udało się obserwować procesów zachodzących zanim gwiazda stanie się supernową. Stąd też nie wiadomo, czy obecne przygasanie gwiazdy oznacza jej rychły koniec.
      Betelgeza już kilkukrotnie zwracała na siebie naszą uwagę. Przed 10 laty informowaliśmy, że gwiazda mocno się skurczyła, ale jej jasność nie spadła. Po kilku latach astronomowie odkryli tajemniczą wielką ścianę pyłu, w kierunku której zmierza Betelgeza, a z którą w przyszłości się zderzy. Niedługo później na Betelgezie zaobserwowanie istnienie gorących punktów, a trzy lata temu okazało się, że gwiazda obraca się szybciej, niż powinna.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Astronomom udało się odnaleźć gwiazdę zaginioną od ponad 30 lat. W 1987 roku zaobserwowano eksplozję supernowej, a dane z badań neutrino wskazują, że pozostałością supernowej powinna być gwiazda neutronowa. Jednak od tamtej pory nie udało się jej odnaleźć.
      SN 1987A jest najbliższą Ziemi supernową od 1604 roku. Znajduje się ona w Wielkim Obłoku Magellana, w odległości 163 000 lat świetlnych od Ziemi. Zwykle widzimy tylko bardzo jasne światło z odległej galaktyki, ale nie możemy zbyt dokładnie się temu przyjrzeć. Tutaj po raz pierwszy mamy supernową tak blisko, że możemy zajrzeć do jej wnętrza, mówi Phil Cigan, z Cardiff University. Jest też pierwszą nową supernową, którą współczesna astronomia może szczegółowo badać. Nic więc dziwnego, że budzi ona szczególne zainteresowanie, a zaginiona gwiazda neutronowa tylko napędza ciekawość.
      Olbrzymia ilość pyłu i gazu nie pozwoliła dotychczas dojrzeć gwiazdy neutronowej. Teraz Cigan i jego koledzy odnaleźli jej sygnaturę za pomocą urządzenia ALMA (Atacama Large Milimeter/submilimeter Array), złożonego z 66 radioteleskopów w Chile.
      Dzięki temu potężnemu narzędziu udało się zarejestrować obszar jaśniejszy i cieplejszy niż otoczenie. Znajduje się on dokładnie w miejscu, w którym powinna być gwiazda neutronowa. Przetestowaliśmy wiele innych scenariuszy istnienia tego obszaru, ale najbardziej prawdopodobny jest ten mówiący o istnieniu tam gwiazdy neutronowej, która podgrzewa otaczający ją pył i gaz, powodując ich świecenie, wyjaśnia Cigan.
      Uczony mówi, że obecnie nie jesteśmy w stanie bezpośrednio zobaczyć gwiazdy neutronowej pozostałej po ekplozji SN 1987A. Jednak w ciągu 50–100 lat gaz i pył powinny na tyle się rozproszyć, że ją zobaczymy. Wówczas astronomowie będą mogli zbadać ją bardziej szczegółowo, co z kolei pozwoli nam lepiej zrozumieć ewolucję supernowych.

      « powrót do artykułu
×
×
  • Create New...