Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Przeżył bez liści, podpinając się pod korzenie sąsiednich drzew

Rekomendowane odpowiedzi

W nowozelandzkim lesie biolodzy znaleźli pozbawiony liści pniak agatisa (Agathis australis), który nadal żyje dzięki podpięciu korzeni do sąsiednich drzew. Autorzy artykułu z pisma iScience uważają, że inne drzewa "zgadzają się" na to w zamian za dostęp do większego systemu korzeniowego. Uzyskane wyniki sugerują, że zamiast z indywidualnymi osobnikami - drzewami - mamy więc raczej do czynienia z leśnym superorganizmem.

Mój kolega Martin Bader i ja natknęliśmy się na pień agatisa podczas wędrówki po Zachodnim Auckland. To było dziwne, bo choć nie miał on żadnych liści, nadal był żywy - opowiada prof. Sebastian Leuzinger z Uniwersytetu Technologicznego w Auckland.

Leuzinger i Bader postanowili sprawdzić, w jaki sposób pobliskie drzewa utrzymują pieniek przy życiu. Mierzyli przepływ wody między nim a rosnącymi w sąsiedztwie drzewami z tego samego gatunku. Okazało się, że ruch wody w pniu był ujemnie skorelowany z przepływem wody w innych drzewach.

Leuzinger wyjaśnia, że w grę wchodzą szczepy korzeniowe, które powstają, gdy drzewo rozpoznaje, że pobliska tkanka korzeniowa, choć różna genetycznie, jest na tyle podobna, że pozwala na wymianę zasobów.

Zwykle drzewo bazuje m.in. na potencjale wodnym atmosfery. W tym przypadku pień musi się [natomiast] dostosowywać do sąsiednich drzew, ponieważ nie ma transpirujących liści [...].

Szczepy korzeniowe są częste między żywymi drzewami tego samego gatunku, Nowozelandczycy zastanawiali się jednak, czemu żywe agatisy miałyby chcieć utrzymywać przy życiu pień.

W przypadku pnia korzyści są oczywiste - bez szczepów by obumarł. Po co jednak zielone drzewa miałyby utrzymywać przy życiu drzewo-dziadka z dna lasu, skoro wydaje się, że niczym się nie odwdzięcza?

Niewykluczone, że szczepy korzeniowe powstały, nim jeden z osobników stracił liście i stał się gołym pniem. Co istotne, szczepione korzenie rozszerzają system korzeniowy drzew, który daje dostęp do większych ilości wody i składników odżywczych, a także lepiej stabilizuje na stromych zboczach. Kiedy jedno z drzew przestaje dostarczać węglowodany, może to umknąć uwadze ogółu i dzięki temu "pasażer na gapę" nadal żyje.

Można mówić o dalekosiężnych konsekwencjach dla naszego postrzegania drzew - prawdopodobnie tak naprawdę nie mamy do czynienia z drzewami jako jednostkami, ale z lasem jako superorganizmem - podkreśla Leuzinger. Podczas suszy drzewa z lepszym dostępem do wody mogą się np. dzielić zasobami, zwiększając szanse grupy na przetrwanie. Z drugiej strony zjawisko to ma też swoje minusy; połączenia mogą bowiem np. ułatwiać rozprzestrzenianie chorób.

W najbliższej przyszłości Leuzinger chce poszukać w lasach podobnych pieńków i przeprowadzić pogłębione badania.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      W miarę wzrostu globalnych temperatur drzewa będą emitowały więcej izoprenu, który pogorszy jakość powietrza, wynika z badań przeprowadzonych na Michigan State University. Do takich wniosków doszedł zespół profesora Toma Sharkeya z Plant Resilience Institute na MSU. Naukowcy zauważyli, że w wyższych temperaturach drzewa takie jak dąb czy topola wydzielają więcej izoprenu. Mało kto słyszał o tym związku, tymczasem jest to drugi pod względem emisji węglowodór trafiający do atmosfery. Pierwszym jest emitowany przez człowieka metan.
      Sharkey bada izopren od lat 70., kiedy był jeszcze doktorantem. Rośliny emitują ten związek, gdyż pozwala on im radzić sobie z wysoką temperaturą i szkodnikami. Problem w tym, że izopren, łącząc się z zanieczyszczeniami emitowanymi przez człowieka, znacznie pogarsza jakość powietrza. Mamy tutaj do czynienia z pewnym paradoksem, który powoduje, że powietrze w mieście może być mniej szkodliwe niż powietrze w lesie. Jeśli bowiem wiatr wieje od strony miasta w stronę lasu, unosi ze sobą tlenki azotu emitowane przez elektrownie węglowe i pojazdy silnikowe. Tlenki te trafiając do lasu wchodzą w reakcję z izoprenem, tworząc szkodliwe i dla roślin, i dla ludzi, aerozole, ozon i inne związki chemiczne.
      Sharkey prowadził ostatnio badania nad lepszym zrozumieniem procesów molekularnych, które rośliny wykorzystują do wytwarzania izoprenu. Naukowców szczególnie interesowała odpowiedź na pytanie, czy środowisko wpływa na te procesy. Skupili się zaś przede wszystkim na wpływie zmian klimatu na wytwarzanie izoprenu.
      Już wcześniej widziano, że niektóre rośliny wytwarzają izopren w ramach procesu fotosyntezy. Wiedziano też, że zachodzące zmiany mają znoszący się wpływ na ilość produkowanego izoprenu. Z jednej powiem strony wzrost stężenia CO2 w atmosferze powoduje, że rośliny wytwarzają mniej izoprenu, ale wzrost temperatury zwiększał jego produkcję. Zespół Sharkeya chciał się dowiedzieć, które z tych zjawisk wygra w sytuacji, gdy stężenie CO2 nadal będzie rosło i rosły będą też temperatury.
      Przyjrzeliśmy się mechanizmom regulującym biosyntezę izoprenu w warunkach wysokiego stężenia dwutlenku węgla. Naukowcy od dawna próbowali znaleźć odpowiedź na to pytanie. W końcu się udało, mówi główna autorka artykułu, doktor Abira Sahu.
      Kluczowym elementem naszej pracy jest zidentyfikowanie konkretnej reakcji, która jest spowalniana przez dwutlenek węgla. Dzięki temu mogliśmy stwierdzić, że temperatura wygra z CO2. Zanim temperatura na zewnątrz sięgnie 35 stopni Celsjusza, CO2 przestaje odgrywać jakikolwiek wpływ. Izopren jest wytwarzany w szaleńczym tempie, mówi Sharkey. Podczas eksperymentów prowadzonych na topolach naukowcy zauważyli też, że gdy liść doświadcza wzrostu temperatury o 10 stopni Celsjusza, emisja izoprenu rośnie ponad 10-krotnie.
      Dokonane odkrycie można już teraz wykorzystać w praktyce. Chociażby w ten sposób, by w miastach sadzić te gatunki drzew, które emitują mniej izoprenu. Jeśli jednak naprawdę chcemy zapobiec pogarszaniu się jakości powietrza, którym oddychamy, powinniśmy znacząco zmniejszyć emisję tlenków azotu. Wiatr wiejący od strony terenów leśnych w stronę miast będzie bowiem niósł ze sobą izopren, który wejdzie w reakcje ze spalinami, co pogorszy jakość powietrza w mieście.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Afryka od dekad traci lasy. Głównie z powodu intensywnego rolnictwa, pozyskiwania drewna oraz produkcji węgla drzewnego. Jednak niedawne analizy zdjęć satelitarnych prowadzonych przy użyciu sztucznej inteligencji wykazały, że coraz więcej drzew pojawia się poza terenami leśnymi. Wiele z nich rośnie na polach indywidualnych rolników, którzy odrzucają porady agencji rządowych i pomocowych zalecające im wycinkę drzew, gdyż utrudniają uprawę ziemi. Rolnicy pozwalają drzewom odrastać. To poprawia jakość gleby, zwiększa plony, dostarcza rolnikom owoców, drewna i żywności dla zwierząt. W efekcie poprawia jakość życia całych rodzin.
      Na zdjęciach satelitarnych widać, jak wielkie obszary należące do licznych indywidualnych rolników zmieniają barwę z brązowej na zieloną. I widać to od Senagalu po Niger i od Etiopii po Malwi. Takie wyniki dała pierwsza analiza satelitarna afrykańskiej roślinności, na której widać pojedyncze drzewa poza lasami. Wykazała ona, że co najmniej 29% afrykańskich drzew rośnie na terenach, które nie są klasyfikowane jako lasy. I nie są to drzew na plantacjach, a głównie naturalne drzewa, które wysiały się na sawannach, pastwiskach i polach uprawnych.
      Lasy pokrywają 21% powierzchni Afryki. Głównie znajdują się w Basenie Kongo. To tam znajduje się największy, po amazońskim, las deszczowy Ziemi. Jeśli teraz dodamy do tego drzewa poza lasami, okaże się, że pokrywają one 30% Afryki. A to nie wszystko. Badania nie były bowiem w stanie zarejestrować małych drzew.
      Obserwacje satelitarne potwierdzają to, co naukowcy od pewnego czasu podejrzewali. Chris Reij w World Resources Institute na własne oczy widział, że miliony rolników w Nigrze, Mali i Etiopii pozwalają rosnąć drzewom, które jeszcze niedawno były bezwzględnie tępione. Obecne szeroko zakrojone badania dodają wiarygodności analizom przeprowadzonym niedawno przez Graya Tappana, geografa z U.S. Geological Survey. W maju na podstawie zdjęć satelitarnych obejmujących fragmenty Afryki oszacował on, że w Afryce Subsaharyjskiej rolnicy pozwolili rosnąć ok. 1,4 miliardowi drzew. To trzykrotnie więcej niż pokazały obecne zautomatyzowane badania.
      Odradzanie drzew rozpoczęli rolnicy z południowego Nigru. Tam drzewa tradycyjnie znajdowały się na polach, były częścią prekolonialnego systemu uprawy. Korzenie tych drzew wciąż tkwią w ziemi. Jednak od czasów kolonialnych rolnicy są zachęcani, by wycinać drzewa i nie dopuszczać do pojawienia się nowych. W latach 80. naukowcy zaczęli coraz częściej mówić o pustynnieniu Afryki. Uważano, że wiele terenów zmieni się w pustynie. Wtedy rolnicy wzięli sprawy w swoje ręce. Przestali słuchać ekspertów i tych rządowych i tych zagranicznych. Coraz częściej pozwalali, by drzewa odrastały. Podobno wszystko zaczęło się od tego, gdy do jednej wsi wrócili dwaj młodzi rolnicy, którzy w porze suchej pracowali w odległej kopalni. Już rozpoczęła się pora deszczowa, więc nie chcieli tracić czasu na oczyszczanie swoich pól z odrastających drzew i rozpoczęli uprawę roślin. Kilka miesięcy później okazało się, że mają lepsze plony niż sąsiedzi. W kolejnym roku inni rolnicy z tej wsi również nie usunęli odrastających drzewek. Z czasem wieść się rozniosła i kolejne wsie przestały słuchać rad o konieczności wycinania drzew.
      Powrót do tradycyjnych metod uprawy jest spektakularny. Reji mówi, że gdy w 2004 roku jechał ze stoli Nigru na południe wszędzie widział drzewa. Jeszcze 20 lat wcześniej ich nie było. To właśnie wtedy postanowił bliżej przyjrzeć się temu zjawisku. To samo zaobserwował w południowym Mali pomiędzy dwoma największymi miastami kraju. Tam niemal wszędzie rośnie las na polach uprawnych, mówi. Zaś przy granicy z Burkina Faso obserwował wielki piękny park z drzewami młodszymi niż 20 lat.
      Rolników szczególnie cieszy Faidherbia albida, drzewo z rodziny bobowatych. Na początku pory deszczowej zrzuca ono liście, użyźniając glebę i zwiększając plony. Wchodzi wówczas w stan uśpienia, więc nie konkuruje z roślinami uprawnymi o składniki odżywcze i wodę.
      Podobne spostrzeżenia ma wspomniany już Gray Tappan z US Geological Survey. W latach 80. współtworzył, wciąż najdokładniejszą, mapę roślinności Senegalu. W ubiegłym roku wrócił na miejsca swoich badań i stwierdził, że pola uprawne są pełne drzew. To olbrzymi sukces, który dowodzi, że drzewa mogą regenerować się bardzo szybko, nawet w regionach o niskich opadach.
      Niezwykłe widoki czekały też na naukowców w Etiopii. Jadąc 200 kilometrów na południe od miasta Hawassa mieli wrażenie, jakby podróżowali przez las. Co interesujące, w regionach o największym zagęszczeniu ludności występowało też największe zagęszczenie drzew. Dzieje się tak dlatego, że tam rolnicy mają mniejsze pola więc muszą uzyskiwać większe plony. A te zapewnia im gęstsza pokrywa drzew.
      Tappan szacuje, że drzewa rosną na 40% pól uprawnych w Mali i Burkina Faso, 50% pól w Nigrze, 65% w Senegalu i 70% w Malawi. Dzięki niewielkim rolnikom obszar Sahelu stał się miejscem, który więcej węgla przechwytuje niż emituje do atmosfery.
      Z badań wynika, że Afryka ma znacznie więcej drzew, niż dotychczas sądzono. A wiele z nich to drzewa młode, które regenerowały się naturalnie na polach niewielkich rolników, a ci pozwolili im rosnąć, zwiększając dzięki temu plony i poprawiając jakość życia swoich rodzin. Przy okazji zaś drzewa te przechwytują dwutlenek węgla, spowalniając tempo globalnego ocieplenia.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Na Nowej Zelandii znaleziono kości dwóch nieznanych dotychczas gatunków pingwina. Jeden z nich mógł być największym z pingwinów, jakie chodziły po Ziemi. Na podstawie zachowanych kości płetw naukowcy stwierdzili, że należały one do gatunku pingwina, który ważył średnio 154 kilogramy. Największe ze współcześnie żyjących pingwinów, pingwiny cesarskie ważą do 45 kilogramów.
      Gatunek wielkiego pingwina został nazwany Kumimanu fordycei, na cześć doktora R. Ewana Fordyce'a z University of Otago. Ewan Fordyce to legenda w naszej branży i jeden z najwspanialszych mentorów, jakich miałem. Bez rozpoczętego przez Ewana programu badawczego nie wiedzielibyśmy, że wiele gatunków kiedykolwiek istniało, mówi główny autor badań, doktor Daniel Ksepka z Bruce Museum w USA. Drugi z nowo odkrytych gatunków, nazwany Petradyptes stonehousei, był znacznie mniejszy od K. fordycei, ale i tak jego waga sięgała 50 kg, był więc sporo większy od pingwina cesarskiego. Jego nazwa to hołd dla doktora Bernarda Stonehouse'a, który jako pierwszy opisał pełny cykl rozrodczy pingwina cesarskiego.
      Oba gatunki żyły miliony lat temu, zanim jeszcze pingwiny całkowicie wykształciły dzisiejsze płetwy. Kości płetw K. fordycei – którego szczątki liczą sobie 57 milionów lat – i P. stonehousei są bardziej smukłe niż współczesnych pingwinów, a przyczepy mięśni bardziej przypominają te spotykane u ptaków latających.
      Ksepka uważa, że większe rozmiary ciała niosły ze sobą sporo korzyści. Pingwiny mogły złapać większą ofiarę, a przede wszystkim lepiej utrzymywały ciepło w zimnych wodach. Być może to dzięki temu najwcześniejsze pingwiny z Nowej Zelandii skolonizowały inne części świata. Żyjące obecnie duże gorącokrwiste zwierzęta morskie mogą nurkować na znaczne głębokości. To zaś każe nam się zastanowić, czy ekologia K. fordycei nie była odmienna. Być może nurkował on na większe głębokości i miał dostęp do pożywienia nieosiągalnego dla współcześnie żyjących pingwinów, zastanawia się doktor Daniel Thomas z Massey University w Auckland.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Złożona ludzka mowa mogła wyewoluować dzięki życiu na drzewach, uważa doktor Adriano Lameira z University of Warwick. Specjalizuje się on w badaniu początków języka i jest autorem pierwszej analizy ewolucji spółgłosek. Wynika z niej, wbrew oczekiwaniom, że nasi przodkowie mogli prowadzić bardziej nadrzewny sposób życia, niż nam się wydaje.
      W ludzkich językach spotykamy pokaźną liczbę spółgłosek. Od 6 w języku rotokas po 84 w wymarłym ubychijskim. Spółgłoski to dźwięki języka mówionego, które powstają w wyniku częściowego lub całkowitego zablokowania przepływu powietrza przez aparat mowy. Zdecydowana większość naczelnych niemal nie używa dźwięków przypominających spółgłoski. Ich zawołania składają się z dźwięków przypominających samogłoski.
      Doktor Lameira, chcąc poznać początki spółgłosek, przejrzał dostępną literaturę i porównał wzorce dźwięków wydawanych przez człowiekowate. Do tej rodziny, obok ludzi – którymi Lameira się nie zajmował – należą orangutany, szympansy, bonobo i goryle. Okazało się, że – w przeciwieństwie do innych naczelnych – małpy te używają dźwięków przypominających spółgłoski, ale ich wykorzystanie jest bardzo nierównomiernie rozłożone pomiędzy gatunkami.
      Goryle, na przykład, używają zawołania przypominającego spółgłoskę, ale jest ono rozpowszechnione tylko w pewnych populacjach. Niektóre grupy szympansów posługują się jednym czy dwoma zawołaniami jak spółgłoski powiązanymi z konkretnym zachowaniem, ale takie zawołania przy tym zachowaniu rzadko zdarzają się wśród innych grup, mówi uczony.
      Tymczasem orangutany używają pełnego bogactwa zawołań podobnych do spółgłosek, jest ono widoczne w różnych populacjach i dotyczy różnych zachowań, podobnie jak ma to miejsce w ludzkiej mowie. Ich repertuar wokalny jest pełen kliknięć, cmoknięć, parsknięć, prychnięć czy dźwięków przypominających pocałunki, dodaje.
      Uczony od 18 lat obserwuje orangutany w naturalnym środowisku i uważa, że to ich nadrzewny tryb życia i sposób zdobywania pożywienia mogą wyjaśniać bogactwo wydawanych przez nich dźwięków przypominających spółgłoski. Wszystkie małpy to zręczni zbieracze. Wypracowały złożone mechanizmy zdobywania trudno dostępnej żywności, zamkniętej np. w orzechach. Jej zdobycie wymaga użycia rąk lub narzędzi. Goryle czy szympansy potrzebują stabilnej pozycji na ziemi, by dostać się do takiego pożywienia i używać narzędzi. Jednak orangutany w dużej mierze żyją na drzewach, tam zdobywają pożywienie, a co najmniej jedna z kończyn jest ciągle zajęta zapewnianiem zwierzęciu stabilności. Z tego też powodu u orangutanów rozwinęła się większa kontrola nad wargami, językiem i szczęką. Mogą używać ust jako dodatkowego narzędzia. Znane są np. z tego, że za pomocą samych warg potrafią obrać pomarańczę. Ich kontrola motoryczna nad ustami jest znacznie większa niż u małp afrykańskich, jest niezbędną częścią ich biologii, mówi Lameira. Skutkiem ubocznym lepszej kontroli nad wargami, językiem i szczęką jest zaś zdolność do artykułowania dźwięków podobnych do spółgłosek. To zaś może oznaczać, że nasi przodkowie byli bardziej zależni od drzew, niż obecnie sądzimy.
      Dlaczego więc u innych żyjących na drzewach małp nie pojawiła się zdolność do wydawania dźwięków podobnych do spółgłosek? Uczony wyjaśnia, że są to mniejsze zwierzęta, do tego posiadające ogony i żywiące się w nieco inny sposób, zatem nie potrzebują aż tak zręcznych ust i języków jak orangutany. Praca Lameiry jest dostępna na łamach Trends in Cognitive Sciences.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Parlament Nowej Zelandii przyjął ustawę Smokefree Aotearoa 2025 Action Plan, która ma uczynić Nową Zelandię pierwszym krajem wolnym od tytoniu. Tak zwykle definiuje się państwo, w którym tytoń pali nie więcej niż 5% dorosłej populacji. Ustawa wchodzi w życie w styczniu przyszłego roku.
      Projekt ustawy przedstawiono w grudniu 2021 roku. Opisuje ona trzy radykalne kroki, które mają znacząco zmniejszyć liczbę palaczy w Nowej Zelandii. Po pierwsze ustawa zakazuje sprzedaży tytoniu osobom urodzonym w roku 2009 lub później. W ten sposób ma pojawić się ciągle rosnąca grupa osób, które nigdy nie paliły. Po drugie liczba punktów detalicznej sprzedaży tytoniu ma zostać zmniejszona o 95%. Jednak najbardziej radykalnym posunięciem jest, zdaniem ekspertów, wymóg zmniejszenia ilości nikotyny w papierosach poniżej poziomu, w którym pojawia się uzależnienie. To właśnie ten element ustawy ma przynieść prawdziwą zmianę reguł gry walce z tytoniem.
      Wiceminister zdrowia, Ayesha Verrall, która stoi za ustawą, przypomina, że badania naukowe jasno wskazują, iż zmniejszenie ilość nikotyny w tytoniu zmniejsza uzależnienie. Badania wykazały też, że – szczególnie w ubogich okolicach – mniejsza liczba punktów sprzedaży papierosów przekłada się na mniejsza liczbę palących młodych ludzi oraz ułatwia palaczom zerwanie z nałogiem.
      Krytycy nowej ustawy twierdzą, że doprowadzi ona do rozwoju czarnego rynku oraz będzie kryminalizowała palaczy. To jednak zbyt daleko posunięta krytyka, gdyż karom będą podlegali nie palacze, ale punkty sprzedaży i osoby dostarczające papierosy ludziom urodzonym w roku 2009 lub później.
      Nowa Zelandia od lat jest światowym liderem w walce z tytoniem. Już w 1990 roku zakazano tam palenia w pomieszczeniach w miejscu pracy, w 2004 pojawił się zakaz palenia w barach i restauracjach, a w 2019 zakazano palenia w pojazdach przewożących dzieci, rozpoczęto też kampanię uświadamiającą, jak palenie z drugiej ręki wpływa na zwierzęta domowe. Od roku 2010 opodatkowanie papierosów wzrosło o 165%. Z tego też powodu w Auckland paczka Marlboro kosztuje równowartość 21 USD, podczas gdy w Nowym Jorku jest to 14 USD.
      Taka polityka daje wyraźne skutki. Odsetek palących dorosłych w Nowej Zelandii jest jednym z najniższym wśród krajów rozwiniętych i wynosi 10,9%, to dwukrotnie mniej niż w Polsce. Mimo tego palenie tytoniu jest tam jedną z głównych przyczyny chorób i przedwczesnych zgonów. Każdego roku z tego powodu umiera około 5000 osób z liczącej 5,1 miliona populacji.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...