Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Sztuczna inteligencja przerobi zdjęcie na klasyczny portret mistrza pędzla

Recommended Posts

7 minut temu, Astro napisał:

Kiedyś, gdy system pisało trzech ludków z wagonem kawy i fajek to miało sens... Dziś już nie.

:)

Z jednej strony masz rację, z drugiej nie. Jeśli chodzi o pisanie systemów to tamten był też prostszy, nie, że prymitywniejszy, ale nie musiał radzić sobie czy to z kompatybilnością wsteczna z (wymienić dowolne) czy z innymi rzeczami. Poziom skomplikowania (też i durnoty) się zmienił, bo musi być user friendly etc etc etc.

Do tego mamy trochę większą wiedzę o inżynierii oprogramowania, o testowaniu itd. Tak, masz rację, mimo to błędów jest dużo, ale i do pisania więcej. Że dzisiejsi programiści są "mniej wyedukowani" niż wcześniej (kto zna teraz choćby assemblera? o kartach perforowanych nie wspomnę, bo pewnie zaczniemy się spierać o "programowaniu" wzorów dywanów ;) ) to prawda, ale... w tym akurat przypadku (generowanie zbiorów uczących) jakiejś magicznej wiedzy nie trzeba. Kurde, mam pomysł, ale ekolodzy mnie zjedzą, bo chciałem napisać, że dałoby się wytrenować do tego małpy :)

Share this post


Link to post
Share on other sites
1 minutę temu, radar napisał:

też i durnoty

Tu się zgodzimy. I basta. ;):D

1 minutę temu, radar napisał:

kto zna teraz choćby assemblera?

Dla dzisiejszego fachowca po uniwerku zaciskarka to potwór ze średniowiecza! Nie wiedzą jak się przed tym bronić. ;)
No ale wiesz, ludkowie, którzy kojarzą co to assembler jednak zarabiają, i to całkiem nieźle. ;) W końcu ktoś te odkurzacze i pralki na rynek musi wypuścić. ;)

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Choroba zwyrodnieniowa stawów to najczęściej występujące schorzenie spośród wszystkich rodzajów zapaleń stawów. Obecnie diagnozuje się ją przede wszystkim na podstawie zdjęć rentgenowskich. Jednak naukowcy z Wydziału Medycyny University of Pittsburgh oraz Wydziału Inżynierii Carnegie Mellon University stworzyli algorytm sztucznej inteligencji, który diagnozuje to schorzenie wiele lat przed pojawieniem się objawów.
      Złotym standardem w diagnostyce choroby zwyrodnieniowej stawów jest zdjęcie rentgenowskie. Gdy stawy ulegają zniszczeniu, zmniejszają się odległości pomiędzy kośćmi. Problem w tym, że gdy możemy zauważ tę chorobę na zdjęciach, zniszczenia już się dokonały. Znacznie łatwiej jest zaś zapobiegać zniszczeniu tkanki chrzęstnej niż spowodować jej odrastanie, mówi jeden z autorów badań, profesor chirurgii ortopedycznej Kenneth Urish z Pittsburgha.
      Obecnie nie istnieje żadna metoda wykrywania choroby zwyrodnieniowej stawów na etapie, który pozwalałby na naprawienie powstałych szkód. W naszej pracy prezentujemy metodę, która pozwala na wykrycie choroby jeszcze zanim da ona objawy. Metoda ta łączy teorię optymalnego transportu masy ze statystycznym rozpoznawaniem wzorców, czytamy w pracy pod tytułem Enabling early detection of osteoarthritis from presymptomatic cartilage texture maps via transport-based learning.
      Gdy lekarze oglądają zdjęcia stawów, nie widać tam oczywistego wzorca, który od razu można zauważyć gołym okiem. Ale to nie znaczy, że taki wzorzec nie istnieje. To znaczy tylko, że nie można go dostrzec używając konwencjonalnych narzędzi, dodaje doktor Shinjini Kundu.
      To właśnie Kundu odpowiadał za trenowanie algorytmu na podstawie zdjęć kolan wykonanych za pomocą rezonansu magnetycznego, a następnie testował go na zdjęciach, pacjentów, z którymi model nie miał wcześniej do czynienia. Proces nauczania i testowania był powtarzany dziesiątki razy, za każdym razem na innej grupie osób.
      W końcu model poddano ostatecznemu testowi. Miał on do przeanalizowania zdjęcia stawów kolanowych 86 zdrowych osób, u których ani nie występowały objawy choroby zwyrodnieniowej stawów, ani nie było na zdjęciach widać zmian wskazujących na proces chorobowy. Okazało się, że algorytm z 78-procentową trafnością przewidział, u których pacjentów trzy lata później rozwinęła się choroba.
      Osiągnięcie to wskazuje, że wykrycie choroby zwyrodnieniowej stawów może być możliwe na etapie, gdzie można jej zapobiec. W przyszłości połączenie metody przedobjawowego wykrywania z nowymi terapiami pozwalającymi na jej zapobieganie może znacząco zmienić epidemiologię choroby, na walkę z którą którą amerykański system opieki zdrowotnej wydaje obecnie 16,5 miliarda dolarów rocznie. Co więcej, naszą technikę można zastosować do wcześniejszego wykrywania w badaniach obrazowych wielu innych chorób, które obecnie diagnozuje się w zaawansowanym stadium rozwoju.
      Przed tygodniem informowaliśmy o innym algorytmie, który równie dobrze jak radiolodzy potrafi diagnozować raka piersi.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Wykorzystując sztuczną inteligencję, po raz pierwszy udało się znaleźć zlewające się pary galaktyk przy użyciu identycznej metody zarówno w symulacjach, jak i obserwacjach prawdziwego wszechświata. Współautorem pionierskiej pracy jest dr William Pearson z Zakładu Astrofizyki Departamentu Badań Podstawowych NCBJ.
      Ostatnia Nagroda Nobla pokazała, jak ważną i fascynującą dziedziną jest astrofizyka. Wielu naukowców od lat próbuje odkryć tajemnice wszechświata, jego przeszłość i przyszłość. Teraz po raz pierwszy udało im się znaleźć zlewające się pary galaktyk przy użyciu identycznej metody zarówno w symulacjach, jak i obserwacjach prawdziwego wszechświata (wykorzystano do tego sztuczną inteligencję).
      W badaniach prowadzonych przez Lingyu Wang (Holenderski Instytut Badań Kosmicznych, SRON), Vicente Rodrigueza-Gomeza (Instytut Radioastronomii i Astrofizyki, IRyA) oraz Williama J. Pearsona (Narodowe Centrum Badań Jądrowych, NCBJ) zastosowano pionierską metodę identyfikacji zderzających się galaktyk zarówno w symulacjach, jak i w obserwacjach rzeczywistego wszechświata.
      Zderzenia galaktyk nie są niczym nowym, od początku powstania wszechświata galaktyki zderzają się ze sobą, często łącząc się w jedną większą galaktykę. Wiadomo, że większość znanych nam galaktyk uczestniczyła w co najmniej kilku takich zderzeniach w ciągu swojego życia. Proces zderzania się galaktyk trwa zwykle setki milionów lat. To ważny aspekt historii naszego wszechświata, który możemy zobaczyć też na własne oczy, np. dzięki zdjęciom z teleskopu Hubble'a.
      Identyfikacja zderzających się galaktyk nie jest jednak prosta. Proces ten możemy badać albo symulując całe wydarzenie i analizując jego przebieg, albo obserwując je w realnym świecie. W przypadku symulacji jest to proste: wystarczy śledzić losy konkretnej galaktyki i sprawdzać, czy i kiedy łączy się z inną galaktyką. W prawdziwym wszechświecie sprawa jest trudniejsza. Ponieważ zderzenia galaktyk są rzadkie i trwają miliardy lat, w praktyce widzimy tylko jeden "moment" z całego długiego procesu zderzenia. Astronomowie muszą dokładnie zbadać obrazy galaktyk, aby ocenić, czy znajdujące się na nich obiekty wyglądają tak, jakby się zderzały lub niedawno połączyły.
      Symulacje można porównać z prowadzeniem kontrolowanych eksperymentów laboratoryjnych. Dlatego są potężnym i użytecznym narzędziem do zrozumienia procesów zachodzących w galaktykach. Dużo więcej wiemy na temat zderzeń symulowanych niż zderzeń zachodzących w prawdziwym wszechświecie, ponieważ w przypadku symulacji możemy prześledzić cały długotrwały proces zlewania się konkretnej pary galaktyk. W prawdziwym świecie widzimy tylko jeden etap całego zderzenia.
      Wykorzystując obrazy z symulacji, jesteśmy w stanie wskazać przypadki zderzeń, a następnie wytrenować sztuczną inteligencję (AI), aby była w stanie zidentyfikować galaktyki w trakcie takich zderzeń – wyjaśnia dr William J. Pearson z Zakładu Astrofizyki NCBJ, współautor badań. Aby sztuczna inteligencja mogła spełnić swoje zadanie, obrazy symulowanych galaktyk przetworzyliśmy tak, żeby wyglądały, jakby były obserwowane przez teleskop. Naszą AI przetestowaliśmy na innych obrazach z symulacji, a potem zastosowaliśmy ją do analizy obrazów prawdziwego wszechświata w celu wyszukiwania przypadków łączenia się galaktyk.
      W badaniach sprawdzono, jak szanse na prawidłową identyfikację zderzającej się pary galaktyk zależą m.in. od masy galaktyk. Porównywano wyniki oparte na symulacjach i rzeczywistych danych. W przypadku mniejszych galaktyk AI poradziła sobie równie dobrze w przypadku obrazów symulowanych i rzeczywistych. W przypadku większych galaktyk pojawiły się rozbieżności, co pokazuje, że symulacje zderzeń masywnych galaktyk nie są wystarczająco realistyczne i wymagają dopracowania.
      Artykuł zatytułowany Towards a consistent framework of comparing galaxy mergers in observations and simulations został przyjęty do publikacji w czasopiśmie Astronomy & Astrophysics.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Porównanie trzech komercyjnych systemów sztucznej inteligencji wykorzystywanej w diagnostyce obrazowej raka piersi wykazało, że najlepszy z nich sprawuje się równie dobrze jak lekarz-radiolog. Algorytmy badano za pomocą niemal 9000 obrazów z aparatów mammograficznych, które zgromadzono w czasie rutynowych badań przesiewowych w Szwecji.
      Badania przesiewowe obejmujące dużą część populacji znacząco zmniejszają umieralność na nowotwory piersi, gdyż pozwalają na wyłapanie wielu przypadków na wczesnym etapie rozwoju choroby. W wielu takich przedsięwzięciach każde zdjęcie jest niezależnie oceniane przez dwóch radiologów, co zwiększa skuteczność całego programu. To jednak metoda kosztowna, długotrwała, wymagająca odpowiednich zasobów. Tutaj mogłyby pomóc systemy SI, o ile będą dobrze sobie radziły z tym zadaniem.
      Chcieliśmy sprawdzić, na ile dobre są algorytmy SI w rozpoznawaniu obrazów mammograficznych. Pracuję w wydziale radiologii piersi i słyszałem o wielu firmach oferujących takie algorytmy. Jednak trudno było orzec, jaka jest ich jakość, mówi Fridrik Strand z Karolinska Institutet.
      Każdy z badanych algorytmów to odmiana sieci neuronowej. Każdy miał do przeanalizowania zdjęcia piersi 739 kobiet, u których w czasie krótszym niż 12 miesięcy od pierwotnego badania wykryto raka piersi oraz zdjęcia 8066 kobiet, u których w czasie 24 miesięcy od pierwotnego badania nie wykryto raka piersi. Każdy z algorytmów miał ocenić zdjęcie w skali od 0 do 1, gdzie 1 oznaczało pewność, iż na zdjęciu widać nieprawidłową tkankę.
      Trzy systemy, oznaczone jako AI-1, AI-2 oraz AI-3 osiągnęły czułość rzędu 81,9%, 67,0% oraz 67,4%. Dla porównania, czułość w przypadku radiologów jako pierwszych interpretujących dany obraz wynosiła 77,4%, a w przypadku radiologów, którzy jako drudzy dokonywali opisu było to 80,1%. Najlepszy z algorytmów potrafił wykryć też przypadki, które radiolodzy przeoczyli przy badaniach przesiewowych, a kobiety zostały w czasie krótszym niż rok zdiagnozowane jako chore.
      Badania te dowodzą, że algorytmy sztucznej inteligencji pomagają skorygować fałszywe negatywne diagnozy postawione przez lekarzy-radiologów. Połączenie możliwości AI-1 z przeciętnym lekarzem-radiologiem zwiększało liczbę wykrytych nowotworów piersi o 8%.
      Zespół z Karolinska Institutet spodziewa się, że jakość algorytmów SI będzie rosła. Nie wiem, jak efektywne mogą się stać, ale wiem, że istnieje kilka sposobów, by je udoskonalić. Jednym z nich może być np. ocenianie wszystkich 4 zdjęć jako całości, by można było porównać obrazy z obu piersi. Inny sposób to porównanie nowych zdjęć z tymi, wykonanymi wcześniej, by wyłapać zmiany, mówi Strand.
      Pełny opis eksperymentu opublikowano na łamach JAMA Oncology.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Przez niemal 40 lat należące do University of Oxford Ashmolean Museum wstydliwie ukrywało w magazynie niewielki obraz pt. Portret brodatego mężczyzny. Portret o wymiarach kartki pocztowej został podarowany muzeum w 1951 roku i był wystawiany jako oryginalne dzieło Rembrandta. Jednak w 1981 roku grupa ekspertów orzekła, że to fałszywka. Od tamtej pory nikt nie chciał rozmawiać o tym fałszywym Rembrandcie, mówi kurator An Van Camp. Teraz obraz ponownie trafi na wystawę.
      Ashmolean Museum oświadczyło, że najnowsze badania wykazały, iż Portret brodatego mężczyzny niewątpliwie powstał w pracowni Rembrandta. Nie można wykluczyć, że jest on dziełem samego mistrza.
      Van Camp mówi, że od dawna podejrzewała, iż dzieło może być autentyczne. Gdy muzeum przygotowywało się do wystawy pt. Młody Rembrandt, o ekspertyzę poproszono Petera Kleina, dendrochronologa specjalizującego się w określaniu wieku drewnianych obiektów. Klein stwierdził, że dąb, na którym namalowano obraz, został ścięty w rejonie Bałtyku w latach 1618–1628. Okazało się też, że materiał z tego samego drzewa został użyty w dwóch innych dziełach: Andromedzie przykutej do skały (ok. 1630 r.) Rembrandta oraz Portrecie matki Rembrandta (ok. 1630) autorstwa Jana Lievensa, zapomnianego obecnie malarza, który w młodości był przyjacielem i bliskim współpracownikiem Rembrandta, uważanym przez współczesnych za równego Rembrandtowi.
      Obecnie zdobyte dowody wskazują, że Portret brodatego mężczyzny powstał w pracowni Rembrandta. Dopiero kolejne badania pozwolą odpowiedzieć na pytanie, czy namalował go sam Rembrandt.
      Rembrandt, podobnie jak wielu artystów w jego czasach, miał wielu uczniów, którzy studiowali i starali się naśladować jego styl. Niektórzy z nich z czasem odnieśli sukces. Jednak wpływ takich mistrzów jak Rembrandt był tak wielki, że specjaliści mają problemy z określeniem, które dzieła wyszły spod ręki mistrza, a które namalował uczeń lub naśladowca.
      Pod koniec lat 60. powołano do życia Rembrandt Research Project. Pracujący w jego ramach panel ekspertów określa autentyczność dzieł Rembrandta. Ich decyzje mają kolosalne konsekwencje, również finansowe, dla właścicieli dzieł. Jednak i eksperci się mylą. W 1979 stwierdzili oni, że Portret młodej kobiety znajdujący się w Allentown Art Museum w Pennsylvanii nie wyszedł spod ręki Rembrandta, ale jest dziełem kogoś z jego pracowni. Ostatnio jednak grupa konserwatorów, używając najnowocześniejszych technik, stwierdziła, że portret namalował sam Rembrandt.
      Podobnie było z Portretem brodatego mężczyzny. Dzieło w 1951 roku przekazał Ashmolean Museum handlarz dziełami sztuki Percy Moore Turner. Z tyłu obrazu znajdowała się naklejka z aukcji z 1777 roku, na której była informacja, że autorem dzieła jest Rembrandt. Jednak w 1981 roku eksperci z Rembrandt Research Project orzekli, że obraz namalował artysta spoza kręgu Rembrandta. Obraz trafił więc na kilkadziesiąt lat do magazynu.
      Peter Klein, który oceniał wiek drewna, zauważył, że głowa mężczyzny jest namalowana tak, jak robił to Rembrandt i takie właśnie portrety kolekcjonowali współcześni wielkiego malarza. Konserwator Jevon Thistlewood zauważa, że część tła została zamalowana nieznaną ręką, co odebrało obrazowi głębię i wrażenie ruchu. Gdy wystawa Młody Rembrandt zostanie w listopadzie zamknięta, konserwatorzy rozpoczną oczyszczanie i konserwację obrazu. Nie możemy się doczekać tego, co znajdziemy, mówi Thistlewood.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Elon Musk ogłosił przełom w dziedzinie synchronizacji ludzkiego mózgu ze sztuczną inteligencją. Podczas pokazu na żywo Musk zaprezentował układ scalony zbudowany przez jego firmę Neuralink. To w pełni samodzielny implant mózgowy, który bezprzewodowo przesyła informacje o aktywności mózgu, nie wymagając przy tym żadnego zewnętrznego sprzętu. Działanie chipa zaprezentowano na przykładzie żywej świni.
      Uczestnicy pokazu mogli zobaczyć grupę świń, z których jedna miała wszczepiony implant. Ekran nad nią na bieżąco pokazywał i rejestrował aktywność jej mózgu. Dotychczas by zarejestrować działanie mózgu konieczne było podłączenie badanej osoby lub zwierzęcia do zewnętrznego urządzenia, np. elektroencefalografu (EEG).
      Celem Muska jest stworzenie implantu mózgowego, który bezprzewodowo połączy ludzki mózg ze sztuczną inteligencją i pozwoli na kontrolowanie komputerów, protez i innych maszyn jedynie za pomocą myśli. Implant może służyć też rozrywce. Za jego pomocą będzie bowiem można kontrolować gry.
      Musk chce stworzyć implant, który będzie rejestrował i zapisywał aktywność milionów neuronów, przekładając ludzkie myśli na polecenia dla komputera i odwrotnie. Wszystko to miało by się odbywać za pomocą niewielkiego wszczepialnego implantu.
      Prace nad implantem pozwalającym na stworzenie interfejsu mózg-komputer trwają od ponad 15 lat. Ich celem jest umożliwienie normalnego funkcjonowania ludziom z chorobami neurologicznymi czy paraliżem. Badania bardzo powoli posuwają się naprzód. Od 2003 w USA implanty mózgowe wszczepiono mniej niż 20 osobom. Wszystkie dla celów badawczych. Większość z takich systemów posiada jednak części, które wystają poza organizm, umożliwiając w ten sposób zasilanie i transmisję danych. Takie zewnętrzne części to ryzyko infekcji. Są ponadto niepraktyczne.
      Neuralink twierdzi, że jej układ jest najbardziej zaawansowany z dotychczasowych. Zawiera procesor, nadajnik bluetooth, akumulator oraz tysiące elektrod. Każda z tych elektrod rejestruje aktywność do 4 neuronów.
      Bolu Ajiboye, profesor inżynierii biomedycznej z Case Western Reserve Univeristy, który jest głównym naukowcem konsorcjum BrainGate pracującym nad implantami dla pacjentów neurologicznych, mówi, że jeśli chip Muska będzie przez dłuższy czas umożliwiał bezprzewodową transmisję danych, to mamy do czynienia dużym postępem na tym polu. W Neuralinku pracują mądrzy ludzie prezentujący innowacyjne podejście. Wiem, co oni tam robią i z niecierpliwością czekam na wyniki, stwierdza uczony.
      Na razie jednak osiągnięcia Neuralink znamy z prezentacji, a nie z recenzowanych artykułów. Nie wiemy na przykład, a jaki sposób urządzenie transmituje tak dużą ilość danych bez generowania uszkadzającego mózg ciepła. Ponadto, jak zauważa Ajiboye, urządzenie jest dość duże jak na implant mózgowy. Jest to bowiem cylinder o średnicy 23 i długości 8 mm. Tymczasem urządzenie, które obecnie testuje BrainGate ma wymiary 4x4 mm. Zawiera też element wystający przez czaszkę oraz 100 elektrod. Tymczasem urządzenie Neuralinka korzysta z 1000 elektrod.
      Podczas pokazu z udziałem Muska wykorzystano trzy świnie, z których jedna – imieniem Gertruda – miała wszczepiony implant. Widać było, że za każdym razem gdy Gertruda węszy, zwiększała się aktywność elektryczna jej mózgu.
      Jednak rejestracja danych to nie wszystko. Najważniejsze jest ich dekodowanie. Wiele laboratoriów na całym świecie poświęciło wiele czasu na opracowywanie algorytmów mających na celu interpretację sygnałów z mózgu. Neuralink nam tego nie zaprezentował, mówi Ajiboye.
      Pierwsze implanty Neuralinka mają mieć zastosowanie medyczne. Mogą np. trafić do ludzi z uszkodzonym rdzeniem kręgowym. Jednak Elon Musk stwierdził, że w przyszłości chce wyjść poza zastosowania medyczne. Słowa te wywołały duże poruszenie w mediach. Jako naukowcy specjalizujący się w dość szczególnej dziedzinie musimy być odpowiedzialni za słowa, ważyć obietnice jakie składamy i uważać na to, co opowiadamy o naszej technologii. Gdy pojawił się Elon Musk nasze prace przyciągnęły uwagę mediów. To dobrze, jednak rodzi to też wyzwania. A jednym z takich wyzwań jest odróżnienie propagandy od rzeczywistości.
       


      « powrót do artykułu
×
×
  • Create New...