Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Sztuczna inteligencja przerobi zdjęcie na klasyczny portret mistrza pędzla

Recommended Posts

7 minut temu, Astro napisał:

Kiedyś, gdy system pisało trzech ludków z wagonem kawy i fajek to miało sens... Dziś już nie.

:)

Z jednej strony masz rację, z drugiej nie. Jeśli chodzi o pisanie systemów to tamten był też prostszy, nie, że prymitywniejszy, ale nie musiał radzić sobie czy to z kompatybilnością wsteczna z (wymienić dowolne) czy z innymi rzeczami. Poziom skomplikowania (też i durnoty) się zmienił, bo musi być user friendly etc etc etc.

Do tego mamy trochę większą wiedzę o inżynierii oprogramowania, o testowaniu itd. Tak, masz rację, mimo to błędów jest dużo, ale i do pisania więcej. Że dzisiejsi programiści są "mniej wyedukowani" niż wcześniej (kto zna teraz choćby assemblera? o kartach perforowanych nie wspomnę, bo pewnie zaczniemy się spierać o "programowaniu" wzorów dywanów ;) ) to prawda, ale... w tym akurat przypadku (generowanie zbiorów uczących) jakiejś magicznej wiedzy nie trzeba. Kurde, mam pomysł, ale ekolodzy mnie zjedzą, bo chciałem napisać, że dałoby się wytrenować do tego małpy :)

Share this post


Link to post
Share on other sites
1 minutę temu, radar napisał:

też i durnoty

Tu się zgodzimy. I basta. ;):D

1 minutę temu, radar napisał:

kto zna teraz choćby assemblera?

Dla dzisiejszego fachowca po uniwerku zaciskarka to potwór ze średniowiecza! Nie wiedzą jak się przed tym bronić. ;)
No ale wiesz, ludkowie, którzy kojarzą co to assembler jednak zarabiają, i to całkiem nieźle. ;) W końcu ktoś te odkurzacze i pralki na rynek musi wypuścić. ;)

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Ponad 2000 uczniów klas czwartych z 57 szkół podstawowych, ponad 370 000 rozwiązanych wygenerowanych zadań matematycznych – to efekt pierwszej edycji projektu "Matematyka – wstęp do kariery wynalazcy". Prowadzony w roku szkolnym 2018/2019 przez naukowców z Wydziału Matematyki i Nauk Informacyjnych Politechniki Warszawskiej projekt miał dwa podstawowe cele: podniesienie u uczniów kompetencji matematycznych oraz weryfikację działania nowej wersji systemu zeszyt.online.
      Zespół naukowców skupionych wokół Politechniki Warszawskiej przez ostatnie lata pracował nad opartym na sztucznej inteligencji systemem wspierającym naukę matematyki. System zeszyt.online, bo o nim mowa, to platforma, do której użytkowania wystarczy przeglądarka internetowa. Po zalogowaniu uczeń dostaje zadania, których zakres i poziom trudności na bieżąco dostosowują się do aktualnych umiejętności oraz skuteczności w rozwiązywaniu.
      Indywidualizacja nauki
      Indywidualizowanie nauczania to przyszłość, od której nie uciekniemy, jeżeli zależy nam na wysokich efektach dydaktycznych i przewadze naszej młodzieży na tle rówieśników z innych krajów.
      Nie ma sensu, aby bardzo dobry uczeń rozwiązywał wiele prostych, mechanicznych zadań – mówi Artur Jackowski, kierownik zespołu zeszyt.online. Od pewnego momentu niczego nowego się nie nauczy. Aby efektywniej wykorzystywać czas nauki, lepiej dać mu zadania, które wymagają od niego większego wysiłku intelektualnego. Z drugiej strony nie ma co dawać uczniom słabszym bardzo trudnych zadań. Zapewne na razie nie będą w stanie ich rozwiązać. Zmarnują tylko czas i nabiorą awersji do matematyki. System automatycznie indywidualizuje naukę, próbując odpowiednio dobierać zadania matematyczne.
      System od początku był projektowany z myślą o samodzielnej pracy. Dlatego uczeń od razu po rozwiązaniu zadania dostaje informację, czy zrobił je poprawnie. Jest to szczególnie przydatne, gdy uczeń jest w domu i nie może liczyć na pomoc rodzica czy też korepetytora. Badania pokazały, że dzięki takiej natychmiastowej automatycznej weryfikacji uczeń, będąc później w szkole, mniej stresuje się przy tablicy, częściej odpowiada na pytania nauczyciela i ogólnie, jest aktywniejszy na lekcji.
      Odejść od schematów, zrozumieć ucznia
      To, z czego jesteśmy najbardziej dumni, to uzyskany przez nas przełom w diagnozie przyczyn błędów i trudności z zadaniem, a następnie udzielaniem uczniowi indywidualnej pomocy – mówi o systemie kierownik zespołu. Jesteśmy tutaj pionierami na światową skalę. Znacząco zmieniamy podejście do nauczania matematyki. Klasycznie nauczyciel czy korepetytor tłumaczą uczniowi, jak powinien był rozwiązać zadanie. W konsekwencji uczy się w ten sposób schematów. Uczeń przyjmuje je do wiadomości, zapamiętuje, a później próbuje je odtworzyć. Jest to bierne podejście do nauki, które zabija kreatywność.
      System zeszyt.online, choć pomaga uczniowi dojść do prawidłowego wyniku, nigdy nie wyświetla mu gotowego rozwiązania. Zamiast tego zmusza go do samodzielnego myślenia i poszukiwań.
      System, gdy zdiagnozuje przyczynę problemu, tak dobiera następne zadania, aby uzupełnić braki w wiedzy i rozumieniu oraz ćwiczy kojarzenie faktów – wyjaśnia Artur Jackowski. Gdy uczeń jest gotowy, to wraca do oryginalnego zadania, które rozwiązuje bez pomocy człowieka. I to się sprawdza. W zeszłym roku szkolnym uczniowie biorący udział w badaniu zrobili błędnie 108 412 zadań. System poprawnie zdiagnozował i znalazł skuteczną pomoc już w co trzecim przypadku. A mówimy tu o danych statystycznych na całkiem dużej próbie badawczej. U uczniów pracujących systematycznie, uzyskujemy jeszcze lepsze wyniki. Im więcej zadań rozwiązuje dana osoba, tym mamy więcej informacji i możemy skuteczniej dopasowywać pomoc.
      Jak zostać generałem matematyki?
      Nauka wymaga od ucznia stałego wysiłku. Aby ją uatrakcyjnić i zmniejszyć odczucie wkładanej pracy, system połączony jest z mechanizmami motywującymi. Uczniowie rozwiązując zadania zbierają punkty, które przekładają się na osiągane stopnie. Każdy zaczyna od szeregowego matematyka i rozwija się w kierunku generała. Dodatkowo zdobywa specyficzne odznaczenia za szczególne osiągnięcia.
      Koniec z matematycznym koszmarem?
      Nad projektem pracują analitycy, programiści, metodycy, nauczyciele matematyki, psychologowie, osoby odpowiedzialne za wsparcie techniczne i utrzymanie infrastruktury. To silny i zgrany zespół, który umożliwia skuteczną realizację stawianych przed nim wyzwań.
      Chcielibyśmy, aby z efektów naszej pracy mogli skorzystać uczniowie z całej Polski – mówi Artur Jackowski. Marzy nam się, aby dzięki zeszyt.online matematyka przestała być postrachem wśród uczniów. Mamy rozwiązania, które umożliwiają wychodzenie ze spirali zaległości, indywidualizowanie i koordynowanie nauki, stawianie uczniom celów i dążenie do ich realizacji, przygotowywanie do sprawdzianów i odległych egzaminów połączone z zarządzaniem powtórkami.
      Wiele tych funkcjonalności jest ciągle testowana na wąskich grupach użytkowników i wymaga dodatkowych nakładów pracy, zanim zostanie szerzej udostępniona. Większe uruchomienie to także koszty związane z utrzymaniem infrastruktury i zapewnieniem wsparcia dla uczniów i nauczycieli.
      Zwracamy się do organów prowadzących szkoły – wyjaśnia Artur Jackowski. W ich placówkach już teraz możemy uruchomić nasze oprogramowanie, jeżeli będą pokrywały koszty serwerów, wdrożenia oraz współfinansowały dalszy rozwój. Poszukujemy również sponsorów – zarówno wśród firm prywatnych jak również instytucji publicznych, którym zależy na poprawie jakości edukacji i chciałyby mieć w tym swój wkład.
      System zeszyt.online zdobył wiele pozytywnych opinii od uczniów i nauczycieli, którzy korzystali z niego w pierwszej edycji projektu "Matematyka – wstęp do kariery wynalazcy".
      W tym roku szkolnym w ramach Programu Operacyjnego Wiedza Edukacja Rozwój 2014–2020 przygotowano bezpłatne miejsca dla 50 dodatkowych klas IV województwa mazowieckiego, żeby dać możliwość przetestowania tego nowatorskiego rozwiązania szerszym kręgom uczniów.
      Więcej informacji o systemie: zeszyt.online

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Na University of Maryland powstał Geneva (Genetic Evasion), system sztucznej inteligencji, który uczy się omijania cenzury w sieci. Podczas testów w Chinach, Indiach i Kazachstanie Geneva opracował dziesiątki sposobów na ominięci cenzury i dotarł do informacji, których samodzielne odnalezienie było niemożliwe.
      Geneva to pierwszy krok w kierunku rozpoczęcia nowego wyścigu zbrojeń, w którym konkurowały będą systemy sztucznej inteligencji opracowane przez cenzorów i ich przeciwników, mówi profesor Dave Levin, główny autor badań. Zwycięstwo w tym wyścigu będzie oznaczało wolność słowa i swobodną komunikację dla milionów ludzi na całym świecie, którzy obecnie nie mogą z niej korzystać.
      Działanie większości systemów internetowej cenzury opiera się na monitorowaniu pakietów wysyłanych przez wyszukiwarki. Blokowane są pakiety zawierające niewłaściwe słowa lub adresy. Geneva w inny sposób dzieli pakiety, przez co systemy cenzurujące nie są w stanie rozpoznać zakazanych treści. Program jest ewoluującym algorytmem, który w każdej swojej generacji identyfikuje te strategie antycenzorskie, które najlepiej działały, wykorzystuje je do dalszej pracy i przestaje używać tych źle działających.
      Testy Genevy przeprowadzono w Chinach, gdzie użytkownik komputera z zainstalowaną Genevą był w stanie wyszukiwać informacje zawierające zakazane słowa, w Indiach, gdzie władze blokują konkretne witryny i w Kazachstanie, gdzie w czasie testów władze blokowały niektóre serwisy społecznościowe. We wszystkich przypadkach Geneva wygrała z cenzurą.
      Naukowcy z Maryland chcą udostępnić swoje dane i kod źródłowy, by inni mogli z nich korzystać i rozwijać Genevę. Jeśli Genevę możnaby zainstalować po stronie serwera i po stronie klienta, to miliony ludzi zyskałyby dostęp do informacji. W tym właśnie kierunku zmierzamy, mówi Levin.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Problem trzech ciał, czyli ruchu trzech ciał oddziałujących na siebie przez grawitację, stanowi poważne wyzwanie obliczeniowe od czasu sformułowania go przez Newtona. Obecnie, dzięki komputerom. możemy poznać dokładne rozwiązanie problemu, jednak nawet nowoczesnym maszynom obliczenia zajmują całe tygodnie, a nawet miesiące.
      Grupa naukowców z Uniwersytetów w Lejdzie, Aveiro, Edynburgu i Cambridge zaprzęgła do obliczeń sztuczną inteligencję. Okazało się, że sieci neuronowe radzą sobie z obliczeniami nawet 100 milionów razy szybciej niż najbardziej zaawansowany obecnie algorytm Brutus. Jak mówi Chris Foley z University of Cambridge, to pokazuje, że sieci neuronowe mogą zostać wykorzystane do badania zachowania gromad gwiazd i lepszego poznania wszechświata.
      Jak czytamy w opublikowanym w arXiv artykule pod tytułem „Newton vs the machine: solving the chaotic three-body problem using deep neural networks [PDF]”, równania takie odgrywają główną rolę w rozwiązaniu wielu klasycznych problemów fizyki. Na przykład wyjaśniają one dynamiczną ewolucję gromad kulistych i jąder galaktycznych, które są uważane za miejsca powstawania układów podwójnych czarnych dziur, które w końcu łączą się, wytwarzając fale grawitacyjne. Los tych systemów zależy od interakcji trzech ciał, układów podwójnych czarnych dziur i pojedynczej czarnej dziury. Interakcje pomiędzy nimi zachodzą zwykle w ściśle określonym przedziale czasu i, biorąc pod uwagę silne interakcje pomiędzy tymi trzema ciałami, można zignorować wpływ innych ciał, co oznacza, że interakcje pomiędzy trzema ciałami można obliczać w izolacji od innych interakcji.
      Foley zauważa, że jeśli potwierdzi się, że sieć neuronowa pozwala na dokonanie precyzyjnych obliczeń w bardo krótkim czasie, to będziemy mogli myśleć o odpowiedziach na znacznie głębsze pytania, jak np. te o powstawanie fal grawitacyjnych.
      Jako, że sieci neuronowe wymagają odpowiedniego treningu przed zaprzęgnięciem ich do pracy Foley i jego koledzy – Philip G. Breen, Tjarda Boekholt i Simon Portegies Zwart – przygotowali za pomocą Brutusa 9900 uproszczonych scenariuszy dotyczących problemu trzech ciał. One posłużyły do treningu. Następnie przetestowali swoją sieć neuronową dając jej do rozwiązania 5000 kolejnych problemów tego typu, z którymi wcześniej się nie zetknęła. Okazało się, że wykonane przez nią obliczenia dały bardzo podobne wyniki, jak te, które uzyskano z Brutusa. O ile jednak Brutus potrzebował na rozwiązanie każdego z tych 5000 problemów około 2 minut, sieć neuronowa radziła sobie z nimi w ułamku sekundy.
      Christopher Foley wyjaśnia, że Brutus i podobne mu algorytmy są znacznie wolniejsze od SI, gdyż prowadzą obliczenia dla każdego niewielkiego przesunięcia się każdego z ciał w układzie. Tymczasem sztuczna inteligencja przygląda się ruchowi i poszukuje wzorców, które pozwolą na przewidzenie przyszłego zachowania ciał.
      Uczony zauważa, że problemem może być skalowanie możliwości sieci neuronowej. Musi ona bowiem się uczyć na istniejącym zestawie danych. Teraz była trenowana na uproszczonych scenariuszach. Jeśli jednak będzie potrzeba nauczenia jej radzenia sobie z bardziej złożonymi scenariuszami, czy z układami czterech lub nawet pięciu ciał, konieczne będzie wcześniejsze przygotowanie scenariuszy treningowych. A te trzeba będzie wykonać za pomocą powolnego Brutusa. Tu właśnie dochodzimy do momentu, gdy z jednej strony możemy trenować fantastycznie pracującą sieć neuronową, a z drugiej potrzebujemy danych treningowych. To wąskie gardło, stwierdza Foley. Sposobem na poradzenie sobie z tym problemem byłoby stworzenie całego zestawu danych uzyskanych za pomocą takich programów jak Brutus. To jednak oznacza, że najpierw musiałyby powstać standardowe protokoły, dzięki którym dane uzyskane od różnych programów będą spełniały te same wymagania i zostaną zapisane w tych samych formatach.
      Innym problemem jest fakt, że sieć neuronowa może zostać uruchomiona na określony czas. Nie sposób jednak przewidzieć, jak długo potrwają konkretne obliczenia zatem sieć może przestać działać zanim dostarczy wyników. Foley przewiduje powstawanie hybryd, w których część pracy wykonają programy takie jak Brutus, a sieci neuronowe zajmą się przetwarzaniem tylko najbardziej wymagających obliczeń. Za każdym razem gdy podczas obliczeń Brutus się zatnie, może włączać się sieć neuronowa i popchnie obliczenia do przodu, a gdy Brutus znowu będzie gotów do pracy, podejmie ją na nowo.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Zmarł Charlie Cole, jeden z czterech fotografów, którzy w 1989 r. podczas protestów na placu Niebiańskiego Spokoju w Pekinie uwiecznili mężczyznę (Nieznanego Buntownika) stojącego samotnie naprzeciw kawalkady czołgów. Za zdjęcie Cole otrzymał nagrodę World Press Photo.
      Cole mieszkał od jakiegoś czasu na Bali. Zmarł w wieku 64 lat. Słynne zdjęcie wykonał z hotelowego balkonu.
      Fotograf opowiadał później, że spodziewał się, że Tank Man może zostać zabity, dlatego czuł się w obowiązku dokumentować przebieg zdarzeń.
      Cole bał się przeszukania przez chińską bezpiekę, dlatego ukrył film w łazience. Zrobił to skutecznie, bo choć władze przetrząsnęły pokój, niczego nie znalazły...
      Charlie Cole urodził się w 1955 r. w Bohnam w Teksasie. W 1980 r. przeprowadził się do Japonii, gdzie pracował dla różnych gazet i magazynów, w tym dla Time'a czy New York Timesa. W 1987 r. dołączył do Newsweeka i w związku z tym podróżował po całej Azji. Mieszkając na Bali, pracował jako wolny strzelec.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Od 1938 r. barasinga tajska (Rucervus schomburgki), in. jeleń Schomburgka, była uznawana za gatunek wymarły. Nowe dowody, zdobyte z poroża pozyskanego pod koniec 1990 lub na początku 1991 r., pokazują jednak, że azjatycki ssak przetrwał co najmniej 50 lat dłużej, a niewykluczone, że występuje nadal.
      Autorzy publikacji z Journal of the Bombay Natural History Society podkreślają, że dotąd powtarzano, że dzika populacja wymarła w wyniku nadmiernych polowań w 1932 r., a ostatni osobnik żyjący w niewoli został zabity 6 lat później.
      Co ciekawe, na początku lat 90. kierowca ciężarówki znalazł w Laosie poroże, które wyglądało na świeże. Mężczyzna przekazał je do sklepu w prowincji Phôngsali. W lutym 1991 r. znalezisko zostało sfotografowane przez agronoma ONZ-etu Laurenta Chazée.
      Ostatnio analizą poroża ze zdjęć zajęli się prof. Gary Galbreath z Northwestern University i G.B. Schroering. W oparciu o koszyczkowaty kształt i silnie rozgałęzioną strukturę uznano, że należało ono do jelenia Schomburgka (poroża innych azjatyckich jeleni nie mają takiego sygnaturowego koszyczkowatego kształtu).
      Galbreath potwierdził także, że gdy poroże sfotografowano w 1991 r., było świeże. Upstrzone ciemnoczerwonymi-czerwono-brązowymi plamami zaschniętej krwi, zostało odcięte od głowy zwierzęcia. Oceniając jego wiek, naukowcy zwracali uwagę nie tylko na kolor krwi, ale i na stan odsłoniętego szpiku kostnego.
      [...] Krew nadal była czerwonawa, a z czasem stałaby się czarna. W tropikach poroże bardzo szybko przestaje tak wyglądać.
      Przed uznaniem gatunku za wymarły jeleń został dobrze udokumentowany na terenie Tajlandii. Galbreath uważa jednak, że niewielka populacja R. schomburgki występowała również w środkowym Laosie. Możliwe, że barasinga żyje tam do dziś...

      « powrót do artykułu
×
×
  • Create New...