Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Jabłka bio zawierają o wiele bardziej zróżnicowaną i unikatową społeczność bakteryjną

Recommended Posts

Prof. Gabriele Berg z Uniwersytetu Technologicznego w Grazu zbadała mikrobiom jabłek. Okazało się, że zwykłe sklepowe jabłka i owoce bio zawierają podobną liczbę bakterii. Biorąc pod uwagę średnie dla poszczególnych elementów owocu, szacujemy, że typowe 240-g jabłko zawiera ok. 100 mln bakterii.

Bakterie, grzyby i wirusy z naszych pokarmów czasowo kolonizują przewód pokarmowy. Gotowanie zabija większość z nich, dlatego surowe warzywa i owoce są szczególnie istotnymi źródłami mikroflory jelitowej.

By pomóc w mądrym wyborze "kolonizatorów", zespół Berg postanowił zbadać mikrobiom jednych z najpopularniejszych owoców - jabłek.

I tak już duża produkcja jabłek nadal rośnie. O ile jednak ostatnie badania zmapowały zawartość grzybów, o tyle mniej wiadomo o bakteriach z tych owoców.

Austriacy porównywali bakterie z jabłek kupionych w sklepie i dopasowanych organicznych. Oddzielnie analizowano szypułkę, skórkę, miąższ, nasiona i kielich.

Okazało się, że oba rodzaje jabłek zawierały zbliżoną liczbę bakterii. Większość znajdowała się w nasionach. Za resztę odpowiadał miąższ. Jeśli więc ktoś wyrzuca ogryzek, spożycie bakterii spada ze 100 mln do wartości bliżej 10 mln.

Jeśli chodzi o rodzaj bakterii, jabłka organiczne biją sklepowe na głowę. Świeżo zerwane, ekologicznie uprawiane jabłka zawierają o wiele bardziej zróżnicowaną [...] i unikatową społeczność bakteryjną. [...] Poprzednie badania wskazywały [zaś] na ujemną zależność między rozpowszechnieniem ludzkich patogenów i różnorodnością mikrobiomu świeżych produktów.

Naukowcy stwierdzili też, że w większości próbek konwencjonalnych jabłek występowały bakterie Escherichia-Shigella (a więc z grupy obejmującej m.in. patogeny); dla porównania, w jabłkach organicznych nie stwierdzono ich w ogóle. W przypadku probiotycznych pałeczek kwasu mlekowego Lactobacilli statystyki były odwrotne.

Austriacy dodają, że uzyskane wyniki wyjaśniają, czemu niektórzy ludzie twierdzą, że organiczne jabłka mają inny smak. W jabłkach organicznych o wiele liczniejsze były bakterie Methylobacterium, o których wiadomo, że nasilają biosyntezę związków smakowych truskawek. Dotyczyło to zwłaszcza próbek skórki i miąższu, które generalnie mają bardziej zróżnicowaną mikroflorę niż nasiona, szypułka czy kielich.

Ogólnie wyniki uzyskane dla bakterii odzwierciedlają rezultaty wcześniejszych badań nad społecznościami grzybów z jabłek (poszczególne tkanki i praktyki rolne wiążą się ze specyficznymi organizmami).

Ponieważ społeczność grzybów jest charakterystyczna dla odmiany jabłek, w przyszłości naukowcy chcą przeprowadzić analizy bakterii z różnych kultywarów.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Naukowcy z Tufts University odkryli, że bakterie istotne dla dojrzewania sera reagują na lotne związki organiczne (ang. volatile organic compounds, VOCs) produkowane przez grzyby ze skórki. Powoduje to silniejszy wzrost niektórych z nich. Skład mikrobiomu sera ma krytyczne znaczenie dla smaku i jakości produktu, dlatego ustalenie, jak można go kontrolować czy modyfikować, sporo znaczy dla sztuki serowarniczej.
      Wyniki badań, które ukazały się w piśmie Environmental Microbiology, zapewniają także model dla zrozumienia i modyfikacji innych istotnych mikrobiomów, np. glebowego czy jelitowego.
      Ludzie od stuleci cenią rozmaite aromaty serów, ale dotąd nie badano, jak aromaty te wpływają na biologię mikrobiomu sera - podkreśla prof. Benjamin Wolfe.
      Amerykanie opowiadają, że wiele mikroorganizmów wytwarza lotne związki organiczne w ramach interakcji ze środowiskiem. Dobrze znanym tego rodzaju związkiem jest geosmina emitowana przez mikroorganizmy glebowe; można ją wyczuć w lesie po dużym deszczu.
      Jak podkreślają uczeni, bakterie i grzyby rosnące w dojrzewającym serze wydzielają enzymy, które rozkładają aminokwasy (powstają m.in. alkohole, aldehydy, aminy czy różne związki siarki) i kwasy tłuszczowe (do estrów, ketonów metylowych i alkoholi drugorzędowych). Wszystkie powstałe związki przyczyniają się do zapachu i smaku serów.
      Zespół z Tufts University odkrył, że tak naprawdę VOCs spełniają 2 funkcje. Przyczyniają się do wrażeń zmysłowych i dodatkowo pozwalają grzybom komunikować się i odżywiać bakterie mikrobiomu sera.
      Parując 16 bakterii serowych z 5 grzybami ze skórki sera, naukowcy zauważyli, że grzyby wywoływały u bakterii szereg reakcji (od silnej stymulacji po silne hamowanie). Jeden z gatunków bakteryjnych, Vibrio casei, reagował, rosnąc szybko w obecności VOCs wszystkich 5 grzybów. Inne bakterie, takie jak Psychrobacter, rosły zaś wyłącznie w odpowiedzi na grzyby Galactomyces. Liczebność dwóch innych bakterii spadała natomiast znacząco podczas wystawienia na oddziaływanie VOCs wytwarzanych przez Galactomyces.
      Uczeni stwierdzili, że lotne związki organiczne zmieniały ekspresję wielu genów bakterii, w tym genów wpływających na sposób metabolizowania składników odżywczych.
      Jednym ze wzmacnianych mechanizmów metabolicznych jest szlak glioksalowy (ang. glyoxylate shunt). W ten sposób bakterie mogą skuteczniej wykorzystywać pewne VOCs jako źródła energii i wzrostu.
      Bakterie są w stanie "zjadać" to, co my postrzegamy jako zapachy. To ważne, gdyż ser nie stanowi bogatego źródła łatwo metabolizowanych cukrów, takich jak np. glukoza. Za pośrednictwem VOCs grzyby wspomagają więc bakterie - wyjaśnia dr Casey Cosetta.
      Teraz, gdy wiemy, że związki znajdujące się w powietrzu są w stanie kontrolować skład mikrobiomów, możemy zacząć myśleć o tym, jak kontrolować skład mikrobiomów innych niż serowe, np. w rolnictwie, by poprawić jakość gleby i plony, czy w medycynie, by lepiej sobie radzić z chorobami mikrobiomozależnymi - podsumowuje Wolfe.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Dzięki wytrwałości dwóch badaczek w kibucu Ketura w Izraelu udało się uzyskać daktyle z palmy daktylowej, która wyrosła z nasiona sprzed ok. 2 tys. lat (znaleziono je na stanowisku archeologicznym na Pustyni Judzkiej). Złotobrązowe owoce o lekko pomarszczonej skórce są podobno bardzo smaczne - ciągnące się i subtelnie słodkie. Zebranie daktyli było kulminacją 15 lat pracy.
      Przywrócenie czegoś do życia ze stanu uśpienia jest bardzo symboliczne w trudnych czasach zmiany klimatu, zanieczyszczenia [środowiska] i wymierania gatunków w alarmującym tempie - podkreśla dr Sarah Sallon, szefowa Centrum Badawczego Medycyny Naturalnej im. Louisa L. Boricka w Hadassah Hospital w Jerozolimie.
      W artykule, który w lutym tego roku ukazał się w piśmie Science Advances, naukowcy podkreślali, że Królestwo Judy było szczególne znane z jakości daktyli. Tzw. daktyle judzkie, rosnące na plantacjach wokół Jerycha i Morza Martwego, zostały dostrzeżone przez starożytnych historyków, którzy docenili ich wielkość, słodycz, możność długiego przechowywania oraz właściwości medyczne (na przykład Pliniusz Starszy pisał, że ich sok jest wyjątkowo słodki, przypomina wino i miód). Dowody wskazują, że uprawa judzkich daktyli była kontynuowana także pod panowaniem Bizancjum i Arabów (IV-XI w.), dalsze fale podboju okazały się jednak tak destrukcyjne, że do XIX w. po historycznych plantacjach nie zachował się już żaden ślad.
      Dr Sallon, która specjalizuje się w gastroenterologii pediatrycznej, postanowiła wskrzesić i wykorzystać dawną wiedzę we współczesnej medycynie. W archiwum w Jerozolimie dotarła do informacji, że daktyle są dobre na trawienie i że kiedyś uzdrowiciele stosowali je na poprawę pamięci. Daktyle uznawano też za afrodyzjak.
      Lekarka współpracowała z dr Elaine Solowey, która prowadzi Centrum Zrównoważonego Rolnictwa w Arava Institute for Environmental Studies.
      Sallon pozyskała nasiona daktyli, które znaleziono w latach 60. XX w. podczas wykopalisk w Masadzie. W styczniu 2005 r. dr Solowey wsadziła nasiona do doniczek. Nie miała zbyt wielkich oczekiwań, ale nie przeszkodziło jej to w zastosowaniu kilku ogrodniczych trików.
      Ku swojemu zaskoczeniu parę tygodni później zobaczyła, że ziemia pękła i pojawił się malutki pęd. Po latach Matuzalema, bo tak nazwano roślinę, można podziwiać w pobliżu biura Elaine.
      Ponieważ Matuzalem okazał się osobnikiem męskim (palma daktylowa należy do roślin dwupiennych, w przypadku których kwiaty męskie i żeńskie występują na różnych osobnikach), dr Sallon musiała się znowu udać na poszukiwania. Ponownie zdobyła nasiona ze stanowisk archeologicznych z Pustyni Judzkiej; z 32 dobrze zachowanych nasion z Masady, Kumran, Wadi Makukh i Wadi Kelt wykiełkowało 6. Roślinom nadano biblijne imiona. I tak z nasiona z Masady wyrósł Adam, z nasion z Kumran - Jonasz, Uriel, Boaz i Judyta, a z nasiona z Wadi Makukh - Hanna.
      Dzięki datowaniu radiowęglowemu wiadomo było, że nasiono, które dało początek Hannie, pochodzi z I-IV w.
      Choć już samo wykiełkowanie tak starych nasion było wielkim sukcesem, naukowców czekała kolejna miła niespodzianka. Po 6 latach wzrostu Hanna zakwitła. Wtedy zaczęła się walka z czasem. Solowey zebrała pyłek Matuzalema i przeniosła go na kwiaty Hanny. Chcieliśmy, żeby Matuzalem został "ojcem".
      Na szczęście wszystko poszło dobrze i udało się uzyskać daktyle. Koneserom owoce Hanny najbardziej przypominały daktyle zahidi - iracką odmianę, znaną z łagodnej słodyczy i orzechowego smaku.
      Po zbiorach nie było zbyt wiele czasu na delektowanie się smakiem. Owoce zostały bowiem szybko zabrane do mierzenia i ważenia. Daktyle zapakowano pojedynczo w folię aluminiową, ułożono na lodzie i wysłano do instytutu badawczego Ministerstwa Rolnictwa.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Na terenie niezwykłej Vindolandy, rzymskiego fortu powstałego na północnych rubieżach Imperium Romanum, znaleziono niezwykły zabytek. W ruinach kościoła z VI wieku odkryto 14 fragmentów niezwykle rzadkiego chrześcijańskiego ołowianego kubka lub kielicha. Tym, co czyni znalezisko jeszcze bardziej wyjątkowym jest fakt, że na fragmentach wyryto różne symbole chrześcijańskie.
      Symbole te reprezentują różne formy chrześcijańskiej ikonografii tego okresu. Połączenie tak wielu symboli oraz kontekst, w jakim zostały znalezione, czyni z fragmentów jedne z najważniejszych zabytków tego typu w dziejach wczesnego chrześcijaństwa Europy Zachodniej.
      Symbole znajdują się na zewnętrznej i wewnętrznej stronie naczynia. Wydaje się, że wszystkie zostały wykonane tą mą ręką. Co prawda fragmenty zachowały się w złym stanie, jednak dzięki specjalistycznym narzędziom udało się uwidocznić i zarejestrować symbole. Obecnie trwają prace nad ich odczytaniem.
      Część z symboli znamy z dziejów wczesnego chrześcijaństwa. Są wśród nich statki, krzyże, chrystogram chi-rho, ryba, waleń, zadowolony biskup, anioły, litery łacińskie, greckie. Niewykluczone, że widoczne są litery pisma ogamicznego.
      To niezwykle ekscytujące znalezisko pochodzące ze słabo poznanego okresu historii. Widoczne tutaj oczywiste związki z chrześcijaństwem są niezwykle ważne, a naczynie jest unikatowe na Wyspach Brytyjskich. Dalsze prace powiedzą nam więcej o rozwoju wczesnego chrześcijaństwa na początku średniowiecza, mówi doktor David Petts z Durham University.
      Vindolanda zdradza więc swoje kolejne tajemnice. Niedawno znaleziono tam skórzaną mysz, służącą do zabawy, a nieco wcześniej najstarsze pisane zabytki Vindolandy, czyli listy pierwszego komendanta fortu Juliusa Verecundusa. Z kolei kilka lat wcześniej w Vindolandzie odkryto jedyną rzymską deskę klozetową.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Globalny Bank Nasion (norw. Svalbard globale frøhvelv), znajdujący się w norweskim archipelagu Svalbard na wyspie Spitsbergen, rozpoczyna właśnie eksperyment, który potrwa 100 lat.
      Kwestia długości życia nasion jest kluczowa dla banków genów oraz instytutów badawczych pracujących z roślinami i nasionami. Z tego powodu w Globalnym Banku Nasion rozpoczyna się eksperyment dot. długowieczności czy inaczej mówiąc, długości życia nasion.
      Eksperyment, który potrwa 100 lat, obejmuje nasiona 13 ważnych roślin uprawnych/rolniczych. Produkują je partnerzy projektu z całego świata, m.in. Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK).
      Pierwsze eksperymentalne próbki trafią do Svalbard globale frøhvelv 27 sierpnia. Będą się one składać z nasion wyprodukowanych w IPK Gatersleben. Zapewniamy nasiona 5 roślin: pszenicy, jęczmienia, groszku, sałaty i kapusty. Materiał wyhodowano na naszych polach eksperymentalnych w zeszłym roku. IPK jest pierwszą instytucją dostarczającą nasiona [...] - opowiada prof. Andreas Börner.
      W kolejnych 2-3 latach wyprodukowane zostaną nasiona kolejnych 8 roślin. Wszystkie trafią do magazynów nasion (panuje tam temperatura -18°C). Będą one pochodzić z banków genów/instytutów badawczych, które skorzystają na możliwości utworzenia duplikatów bezpieczeństwa swoich cennych kolekcji nasion. Indyjski ICRISAT (International Crops Research Institute for the Semi-Arid Tropics) dostarczy nasiona orzecha ziemnego, in. orzachy podziemnej, ciecierzycy, rozplenicy perłowej, a także nikli indyjskiej. Empresa Brasileira de Pesquisa Agropecuária (Embrapa) dostarczy soję, szwedzki Nordic Genetic Resource Center (NordGen) nasiona tymotki, portugalski Instituto Nacional de Investigação Agrária e Veterinária (INIAV) nasiona kukurydzy, a tajlandzki NRSSL ryż.
      Równolegle nasiona 5 instytucji będą przechowywane w kriopojemnikach w IPK. Istotne jest to, że magazynowanie w ciekłym azocie spowalnia proces starzenia. Pomysł jest taki, by porównać jakość początkowych nasion z materiałem składowanym w Svalbard globale frøhvelv [...] - wyjaśnia dr Manuela Nagel z IPK. Z tego powodu przechowujemy nasiona i mąkę z nasion i analizujemy główne związki, by wychwycić proces deterioracji nasion podczas 100-letniego przechowywania.
      To eksperyment jedyny w swoim rodzaju. Zapewni przyszłym pokoleniom cenne informacje na temat żywotności nasion i bardziej precyzyjną wiedzę, jak często należy przeprowadzać regenerację nasion [wytwarzać ich nową partię] - dodaje Åsmund Asdal z NordGen.
      Pierwsze eksperymentalne nasiona, które trafiają właśnie do banku, będą testowane w 2030 r. Następnie analogiczne badania kiełkowania będą prowadzone co 10 lat aż do roku 2120.

      « powrót do artykułu
×
×
  • Create New...